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Abstract: The stochastic dynamics of a two-state bioreactor model with random feed flow
fluctuations and non-monotonic specific growth rate is analyzed. Using the Fokker-Planck
equation approach for describing the probability density function (PDF) evolution the lack
of stochastic robustness due to deterministic bifurcation phenomena for the open-loop reactor
operating under optimal (maximum production) operation condition is established, and the
associated stochastic stabilization problem is addressed. Inherent differences between the
presence of multiplicative noise, due to the feed flow fluctuations, and additive background noise
are analytically established. Numerical simulation results illustrate these inherent differences,
the stochastic fragility of the open-loop operation yielding a stochastic extinction phenomenon,
as well as the stochastic PDF stabilization with a proportional feedback control.
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1. INTRODUCTION

Stochastic fluctuations are present in different levels of
magnitude in all technical processes [Åström 1970, Jazwin-
ski 1970, Risken and Frank 1996, Krstic and Deng 1998].
Their influence is often neglected, or sometimes approx-
imated with local Gaussian distributions [Åström 1970].
The nonlocal solution behavior of the associated stochas-
tic differential equation (SDE) can be analyzed using
the associated Fokker-Planck equation (FPE) [Risken and
Frank 1996, Horsthemke and Lefever 1984], with the pos-
sibility of drawing analytic solutions for the stationary
state probility density function (PDF) and for the multi-
(deterministic, diffusion and escape)time scale of the tran-
sient PDF of single and two-state systems. This approach
is employed in the present study for the analysis of an
open-loop (OL) and closed-loop (CL) two-state bioreactor
with multiplicative noise in the feed flow rate.

In most of the recent stochastic bioreactor studies, Monte
Carlo based simulation analysis has been employed [Chen
and Zhang 2013, Zhang et al. 2014, Meng et al. 2016, Wang
et al. 2017, Sun et al. 2017] lacking the possibility of as-
sessing steady-state multimodal PDFs and PDF transients
along diffusion and escape time scales [Risken and Frank
1996, Alvarez et al. 2018]. Studies focussing on the solution
behavior of the associated FPE are much less frequent.
Within these, most employ a direct numerical solution,
like in [Campillo et al. 2014, Voulgarelis et al. 2018]. An
analytic analysis of the PDF solution behavior has been
performed in a pioneering study [Stephanopoulos et al.
1979] with the single-state approximation of a three-state
bioreactor with Monod kinetics, exploiting characteristic

deterministic time scales, but overlooking diffusion and
metastability scales. Accordingly, the potential of the FP
PDE-based theory [Risken and Frank 1996, Alvarez et al.
2018] for the analytic assessment of the PDF behavior in
terms of nonlinear deterministic dynamics and stochastic
(diffusion and escape) time scales has not been further
exploited for the analysis of OL and CL bioreactors.

In recent works on chemical continuous stirred tank reac-
tors [Tronci et al. 2011, Baratti et al. 2016, 2018, Alvarez
et al. 2018] this potential has been exploited yielding im-
portant insights in the PDF OL and CL solution behavior.
Besides the fundamental understanding of the complex
and sometimes counterintuitive interconnections and im-
plications of stochastic fluctuations on the reactor dynam-
ics, important insights into aspects of modeling, robustness
and robust feedback control have been obtained. In partic-
ular it has turned out that the inherent differences between
additive and multiplicative noise [Horsthemke and Lefever
1984, Risken and Frank 1996, Baratti et al. 2016, 2018]
with respect to the associated PDF shape and dynamics
imply either minor or a substantial difference between
the mean and the mode of the associated non-gaussion
PDFs, depending on the specific system and its operation
condition. The implications of this subtlety on the design
of feedback controllers has been exemplarily discussed,
e.g., in [Baratti et al. 2018]. The stochastic robustness
properties and their importance in reactor operation close
to deterministically structurally unstable [Andronov and
Pontryagin 1937] steady states have been delimited on
noise-dependent stochastic time scales for the transition
between safety critical reactor operation regimes.



This global nonlinear dynamics based FPE approach is
applied in the present paper for accessing the fundamental
PDF solution behavior of a two-state bioreactor operated
in deterministically optimal (maximum production) mode
with stochastic fluctuations in the feed flow rate, implying
a multiplicative noise excitation. Analytic and numerical
solution aspects of the associated FPE are discussed as well
as the impact on the most probable state behavior of the
CL reactor with proportional feedback control, extending
the previous results in [Baratti et al. 2018] to the case of
a two-state reactor with non-isotonic Haldane kinetics.

2. PROBLEM STATEMENT

Consider the dimensionless model of a bioreactor in chemo-
stat operation

ds

dta
= θ(se − s)− k0µ(s)b, s(0) = s0 (1a)

db

dta
= −θb+ k0µ(s)b, b(0) = b0 (1b)

with the (actual) time ta ≥ 0, the dimensionless biomass
concentration b(t) = cb(t)/(Y cse) ≥ 0 at time t ≥ 0, where
cb(t) denotes the concentration in g/l, yield coefficient Y
and substrate feed concentration cse in g/l, dimensionless
substrate concentration s(t) = cs(t)/(cse) ≥ 0, dilution
rate θ = q/V with flow rate q(t) ≥ 0 and constant volume
V > 0, growth rate constant k0, and non-monotonic
specific growth rate

µ(s) =
s

ks + s+ s2

ki

(2)

with half-saturation and inhibition constants ks, ki, re-
spectively. Introducing the reaction invariant

m = b+ s, me = se, m(0) = b(0) + s(0) =: m0,

the reactor dynamics (1) can be written as

ds

dta
= θ(se − s)− k0µ(s)(m− s), s(0) = s0 (3a)

dm

dta
= θ(se −m), m(0) = m0. (3b)

In the sequel it is considered that the flow rate q is subject
to high-frequency fluctuations, i.e.

q(t) = q̄ + q̃(t) + wq (4)

with constant nominal value q̄, control q̃, and stochastic
fluctuation wq that can be modeled as a white noise, i.e.

wq(t) ∼ N (0, σ2
q ) (5)

with associated zero mean normal distribution with stan-
dard deviation σq.

Additionally, it is considered that the reactor dynamics
are subject to uncorrelated white background noise wb =
[ws, wm]ᵀ with covariance Qb =diag(qi)i=s,m. Under these
assumptions, and introducing the time scaling t = taV/q̄,
the reactor model (3) can be written in a stochastic form
as

ṡ = (1 + u)(se − s)− δµ(s)(m− s) + (se − s)wθ + ws
(6a)

ṁ = (1 + u)(se −m) + (se −m)wθ + wm (6b)

with ṡ = ds
dt , u = q̃/q̄, wθ = wq/q̄ ∼ N (0, qθ), wb ∼

N (0, Qb), Damköhler number δ = k0V/q̄ > 0, and the

initial value determined by a probability density function
(PDF) π0 so that E[π0] = [s0, m0]ᵀ.

Introducing the state x(t) = [s(t) m(t)]ᵀ at time t ≥ 0,
the stochastic dynamics can be compactly written as

ẋ = f(x, u) + g(x)wd +wb, t > 0, (7a)

with the noises wθ ∼ N (0, qθ), wb ∼ (0, Qb), state

x(t) ∈ X := [0, s+]× [0,m+], (7b)

initial state characterized by a PDF π0 : X → R with∫
X π0(x)dx = 1, E[π0] = x0, and

f(x, u) =

[
(1 + u)(se − s)− δµ(s)(m− s)

(1 + u)(se −m)

]
,

g(x) =

[
se − s
se −m

]
.

(7c)

Following [Alvarez et al. 2018], the stochastic differential
(called Langevin) equation (7) is written as

ẋ = f(x, u) +w, w ∼ N (0, Q(x)) (7d)

with state dependent covariance matrix

Q(x) = qθg(x)gᵀ(x) +Qb

=

[
qθ(se − s)2 + qs qθ(se − s)(se −m)
qθ(se − s)(se −m) qθ(se −m)2 + qm

]
.

(7e)

Note that for all piecewise continuous, bounded input
functions u : [0,∞) → R+ the deterministic system with
w = 0 and initial condition x(0) = x0 has a unique
solution τx(·;x0, u) : [0,∞) → X . In particular, for
constant u it holds true that x(t) = τx(t;x0, u) converges
with the time scale tx to the steady–state solution x̄, i.e.,

τx(t;x0, u)
tx→ x̄, tx ≈

(
(1 + u)−1 + δ−1

)−1
,

given that (see, e.g., [Smith and Waltman 1995, Schaum
et al. 2012]) for the deterministic bioreactor model with
either monotonic and non-monotonic growth rate µ (i)
no limit cycle solutions exist, (ii) there exist between two
(for monotonic growth rates) or three (for non-monotonic
growth rates) steady states x̄i, i ∈ N, (iii) for m+ > min

and s+ ≥ sin the set X is positively invariant 1 and thus,
(iv) in virtue of the theorem of Poincaré-Bendixson all
trajectories converge to steady state solutions.

Given the stochastic setup of (7d) with white noise inputs
and initial state distribution π0, the state is described in
a stochastic way using the PDF π : [0,∞)×Xe → R with

X ⊂ Xe = [s−, s+]× [m−,m+],

∫
Xe
π(t,x)dx = 1, (8)

for all t ≥ 0. From the application of Stratonovich’s
stochastic calculus [Risken and Frank 1996, Jazwinski
1970] to the SDE (7d) it follows that the state PDF π
is the unique solution of the FPE

∂tπ = ∂s

(
−ϕ1π +

1

2
(q11∂sπ + q12∂mπ)

)
+ ∂m

(
−ϕ2π +

1

2
(q21∂sπ + q22∂mπ)

) (9a)

with drift terms

ϕ1(x, u) = f1(x, u)− 1

2
(∂sq11(x) + ∂mq12(x))

=

(
1 + u+

3

2
qθ

)
(se − s)− δµ(s)(m− s)

(9b)

1 A set M ⊂ R is called positively invariant for a given system, if all
solutions starting in M stay in M for t ≥ 0.



ϕ2(x, u) = f2(x, u)− 1

2
(∂sq21(x) + ∂mq22(x))

=

(
1 + u+

3

2
qθ

)
(se −m)

(9c)

and boundary conditions

−ϕiπ +
1

2

(
qii∂xiπ + qij∂xjπ

)
= 0, i 6= j ∈ {1, 2}. (9d)

The extended state space Xe is introduced in order to
accommodate well the state excursions due to noise in-
jection, considering that the probability of a solution of
the SDE (7d) to stay in Xe is the same as the one for the
deterministic solutions to stay in X .

Denote by τπ the solution of (9) so that for any t ≥ 0
it holds that π(t, ·) = τπ(t, ·;πe0, u). In particular, for a
constant u it holds true that π asymptotically reaches a
stationary PDF π̄ along probability convection (tx) and
diffusion (td) time scales, as well as along escape (te) time
scale when metastability (MS) is at play [Horsthemke and
Lefever 1984, Risken and Frank 1996, Tronci et al. 2011,
Baratti et al. 2018, Alvarez et al. 2018], i.e.,

τπ(t, ·;πe0)
tπ→ π̄, tπ =

{
max{tx, td}, no MS

max{tx, td, te}, MS,

with te ≥ td ≥ tc ≈ tx.

In the sequel, the qualitative dependency of the PDF
π on the Damköhler number δ is investigated for the
optimal (maximum conversion) operation by following the
approach in [Tronci et al. 2011, Baratti et al. 2016, Alvarez
et al. 2018, Baratti et al. 2018], i.e., delimiting the stochas-
tic stationary behavior along the deterministic bifurcation
behavior in the understanding that the onset of MS goes
at hand with deterministic bifurcation phenomena. These
considerations are rounded up by some conclusions about
the CL behavior for u 6= 0.

3. OPTIMAL REACTOR OPERATION

In this section important facts about the reactor behavior
are summarized that will be put in perspective for the
stochastic analysis. For this purpose, note that the maxima
(i.e., modes) of the PDF (9b), (9c) correspond to the zeros
of the drift terms ϕi, i = 1, 2 which for qθ = 0 and constant
flow input u coincide with the deterministic steady-state
solutions. Accordingly, the next considerations are directly
carried out for the stochastic setup (7d).

3.1 Bifurcation behavior

The deterministic steady state solutions x̄i = [x̄1,i, se]
ᵀ, i =

1, 2(, 3) for u = 0 are determined by the algebraic equation

0 = ϕ1(x̄1,i, se, 0), qθ = 0. (10)

It is known from previous studies (e.g., [Schaum et al.
2012]) that this equation has between one and three
solutions depending on the parameter triplet (δ, ks, ki). For
qθ 6= 0 the steady-state condition (10) modifies to

xi,1 = se ∨ µ(x1,i) =
1 + qθ
δ

=
q̄(1 + qθ)

k0V
. (11)

Geometrically, this can be interpreted as the intersection
points of three curves in the space J = [0, s+] × [0, γ+]
with s+ ≥ se and γ+ ≥ max{µ+, (1 + qθ)/δ

−}

C := {i ∈ J | i2 = µ(i1)}, (12a)

Lh := {i ∈ J | i2 = (1 + qθ)/δ} , (12b)

Lv := {i ∈ J | i1 = se}. (12c)

These intersections are shown in Figure 1. In accordance

0

Fig. 1. Intersection of the three curves defined in (12) with
their respective stability properties and bifurcation
concentrations s×, s•.

(see also [Schaum et al. 2012]), there occurs a saddle-
node bifurcation at s× =

√
kski when (1 + qθ)/δ =

µ(s×)= µ× and a transcritical bifurcation at s• = se
when (1 + qθ)/δ = µ(s•). The presence of multiplicative
noise (i.e., with qθ 6= 0) induces a shift in the mode
of the stationary PDF with respect to the deterministic
steady-state solutions (i.e., with qθ = 0). This modified
bifurcation behavior should be accounted for in reactor
design and control.

3.2 Optimal operation

Given that as only meaningful open-loop operation point
the locally asymptotically stable steady-state in the left
branch of the curve C in Fig. 1 can be considered, and that
this steady state is a direct consequence of the flow rate
according to (11), the maximum conversion is determined
by the solution of the optimization problem

max
q̄
q̄(se − xi1), s.t. (11) holds true. (13)

As shown in [Schaum et al. 2012], the assocated optimal
steady state substrate concentration

s∗ = µ−1(q̄∗(1 + qθ)/(k0V )) (14)

is located to the left of the saddle-node bifurcation point
s× (cp. Fig. 1) and can be structurally stable [Andronov
and Pontryagin 1937] with respect to slight fow rate fluc-
tuations or structurally unstable and subject to disap-
pearance due to bifurcation in consequence to stochastic
variations in the flow rate, that manifest themselves in (14)
by the shift produced by qθ > 0.

4. STOCHASTIC BEHAVIOR

4.1 Fokker-Planck equation

The representation (9) underlines the structure of a
diffusion-convection-reaction equation where in the mul-
tiplicative case the diffusion shows a spatial dependency



and is coupled, while in the case of uncorrelated additive
background noise the diffusion matrix is diagonal with
constant diffusion coefficient. In accordance, the shape of
the PDF will be different in the multiplicative and additve
noise cases. Further note that according to (9) the velocity
of the mode (most probable state) increases due to the
drift force exerted by the auxiliary functions ϕ1, ϕ2 (9b),
(9c), implying that the presence of multiplicative noise
goes along a faster PDF mode evolution in comparison
to a non-multiplicative one (i.e., with qθ = 0), given that
for qθ > 0 it always holds that ϕi > fi, i = 1, 2.

4.2 Baysian formulation

In order to further highlight the transient and stationary
behavior of the PDF π, following the approach in [Baratti
et al. 2018, Alvarez et al. 2018], consider the solution of
the FPE in Bayesian form [Papoulis and Pillai 2002] as

π(t, s,m) = κ(t,m|s)β(t, s), π(0,x) = π0e(x) (15a)

for x ∈ Xe and t ≥ 0, with the conditional (κ) and
marginal (β) PDFs, given by

β(t, s) =

∫ ∞
−∞

π(t, s,m)dm (15b)

κ(t,m|s) =
π(t, s,m)

β(t, s)
(15c)

where it holds that β(t, s) 6= 0 for all s ∈ [s−, s+] and∫ s+
s−

β(t, s)ds = 1 for all t ≥ 0. Note that according to the
preceding analysis the only dependency of the conditional
PDF κ on the substrate concentration s is induced by the
diffusion coefficients q1j , j = 1, 2 in (9). Hence, for pure
additive noise κ will be independent of s and its solution
correspond to a Gaussian-like PDF with mode at se.

In virtue of the boundary conditions, the dynamics of the
marginal PDF β is given by

∂tβ = ∂s

(
−
∫ ∞
−∞

ϕ1πdm+
q11

2
∂sβ +

∫ ∞
−∞

q12

2
∂mπdm

)
,

with ∫ ∞
−∞

ϕ1(s,m)π(t, s,m)dm

=

∫ ∞
−∞

ϕ1(s,m)κ(t,m|s)dmβ(t, s)

=: κ̂(t, s)β(t, s). (16)

For the second integral it follows that∫ ∞
−∞

q12

2
∂mπdm =

q12

2
π
∣∣∣∞
−∞
−
∫ ∞
−∞

(
∂m

q12

2

)
πdm.

With (15a) and substitution of (9d) one has∫ ∞
−∞

q12

2
∂mπdm = −

∫ ∞
−∞

(
∂m

q12

2

)
κdmβ.

Summarizing, the marginal PDF β satisfies the uni-
dimensional FPE

∂tβ = ∂s

(
−ϕ̄1β +

q11

2
∂sβ
)

(17)

where

ϕ̄1(t, s) = κ̂(t, s) +

∫ ∞
−∞

(
∂mq12(s,m)

2
κ(t, s|m)dm

)
.

For the stationary solution β̄ it follows that

β̄(s) = Cβ exp

(∫ s

s−
2
ϕ̄1,∞(s)

q11(s)
ds

)
(18a)

with ϕ̄1,∞ = limt→∞ ϕ̄1(t, s), and Cβ so that∫ s+

s−
β̄(s)ds = 1. (18b)

The stationary solution β̄ (18) shows substantial difference
between the multiplicative and additive cases, coded in the
relation between f1 and ϕ̄1 which depends on f1, q11, κ̂ and
∂mq12. Particular differences will be highlighted below in
the numerical simulation section.

4.3 Stochastic control

The consideration of the stochastic control problem is
a relevant application-oriented subject [Åström 1970,
Jazwinski 1970, Krstic and Deng 1998, Liu and Krstic
2012, Baratti et al. 2018] that goes beyond the scope of
the present study, and here it suffices to say that: (i) for a
one-state isothermal reactor with Langmuir-Hinshelwood
kinetics and OL multimodality or fragile monomodality, it
has been established that proportional control can attain
CL robust PDF monomodal behavior with mode close to
the prescribed setpoint, and (ii) in this section, preliminary
results on the attainment via proportional linear control of
CL PDF behavior of the stochastic bioreactor (7d) (with
two-state OL fragily stable monomdal PDF) are presented.

For this aim, let us consider the stochastic bioreactor (7d)
with inlet flowrate linear proportional control

u = −k(y − s̄), y = s. (19)

Given that the marginal PDF β for the substrate and the
relation (19) between u and s, the associated control PDF
is given by

ν(t, u) = β
(
t, s̄− u

k

)
. (20)

Driven by the substrate measurement interpreted as the
most probable substrate value over the admissible prob-
abilistic interval, the control must operate with (∼r) ad-
missibly bounded offset and wide CL robust monomodal
stationary PDF

π̄(s,m) 3 max
s∈[0,s+]

β(t, s) ∼r π̄(se, s
∗), s∗ = s̄ (21)

with control setpoint s̄ at optimal deterministic value
condition s∗. In particular we are interested in: (i) the
open-to-closed loop PDF spatiotemporal topology change,
and (ii) the kind of statistical control-like [MacGregor
and Kourti 1995] tradeoff between state PDF regulation,
stochastic disturbance attenuation, and control PDF effort
(in the sense of what the control PDF must statistically do
to attain robust CL monomodality with admissible mode
offset). The corresponding states (π) and control (ν) PDF
evolutions are described by the closed-loop FPE (9) with
u given by (19) that establishes [Papoulis and Pillai 2002]
the control PDF ν(u, t) from π(t, s,m) according to (20)
and the stochastic control equation.

From a previous control study [Baratti et al. 2018] for
a single-state reactor it is known that the solution of
the CL FPE asymptotically reaches, with responses along
deterministic and diffusion time scales (no metastability



at play), a unique robustly monomodal stationary PDF π̄
with substrate mode (sm) about the prescribed (determin-
istic OL fragile SS) s̄ = s∗ if and only if the control gain
k is chosen so that the closed-loop auxiliary equation (9b)
with (19) evaluated for m = se is non-decreasing in s.

5. NUMERICAL ILLUSTRATION

In this section the theoretical results obtained in the
previous section are illustrated and corrobarated based on
the numerical solution of the FPE based on a finite-volume
method implemented as discussed in [Balzano et al. 2010].

The subsequent simulations emphasize the main changes
to be expected in the passage from additive to multi-
plicative noise, namely a faster transient response and a
reshaping of the stationary PDF. For the simulations the
following set of kinetic parameters have been considered

ks = 1, ki = 100. (22)

The optimal operation point corresponds to q̄/V = 1 and
is close to the saddle-node bifurcation. In consequence it
is not robustly stable and slight changes in the dilution
rate can cause its dissappearance in a deterministic setup
[Schaum et al. 2012], phenomenon referred to as ”washout”
[Bailey and Ollis 1986].

5.1 Open-loop behavior

Consider that the reactor is operating close to the deter-
ministically locally asymptotically stable optimal opera-
tion point with an initial condition x0 = [0.0901, 0.9]ᵀ

and subjected to random white noise fluctuations in the
feed flow with intensity qθ = 0.004. The simulation results
for the marginal PDF β defined in (15b) for this case are
provided in Fig. 2, showing snapshots over time of the
solution with qθ 6= 0 (mutiplicative noise - black lines) and
q = 0.002 (additive noise - blue dashed lines).

2
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Fig. 2. Snapshots at t ∈ {1, 2, 3, 4, 5} of the marginal PDF
β for multiplicative noise (black line) with qθ = 0.004
and additive noise (blue line) with intensity q = 0.002.

It can be seen in Fig. 2 that, (i) as predicted by the pre-
ceding theory, the mode time evolution with multiplicative
noise is faster than the one with additive noise, (ii) in both
cases the most probable state (largest mode of the PDF)
converges towards washout (i.e., zero conversion), and (iii)
during the transient the non-washout probability is higher

for additive noise than for multiplicative noise. Note that
fact (ii) illustrates the lack of robustness of the optimal
operation point in presence of stochastic excitation, under-
lain by the deterministic structural instability with respect
to small changes in the flow rate [Schaum et al. 2012].

Note further that the different transient shapes lead to
different mode and mean values over time, implying im-
portant aspects that should be taken into account in a
control application scenario (see also the discussion on
mode versus mean control PDF control in [Baratti et al.
2018] in the context of a single-state reactor).

5.2 Closed-loop behavior

In Fig. 3, the CL (top panel) and OL (bottom panel)
marginal substrate state PDFs are reported for the
deterministic optimal operation with initial conditions
(m0, s0) = (0.9, 0.0901), background noise intensity
(qm, qs) = (0.002, 0.002), inlet flowrate noise intensity
qθ = 0.004, control gain k = 8 and set-point s̄ = 0.0901. As
it can be clearly seen in Fig. 3, the proportional feedback
control compensates the lack of robustness so that the
most probable CL reactor state remains in close to (up to
admissable offset) deterministic optimal operation in spite
of the feed flow stochastic perturbation, while the most
probable state of the OL reactor undergoes extinction.

Fig. 3. OL (top panel) and CL (bottom panel) marginal
state substrate evolution with δ∗ = 21.11, initial con-
ditions: (m0, s0) = (0.9, 0.0901), background noise in-
tensity: (qm, qs) = (0.002, 0.002), inlet flowrate noise
intensity qθ = 0.004 and control gain k = 8.

In Fig. 4, the steady state marginal substrate (top panel)
and control variable (bottom panel) PDFs for the same
condition as in Figure 3 but with two different control
gains: k = 2 (blue line), k = 8 (black line) and OL
(red dashed line) are reported. The steady state PDFs
are monomodal but, for small k show a long right tail
that become almost Gaussian increasing the control gain
value as could be understood by comparing the mode
(0.0921, 0.0908) and mean (0.1556, 0.0928) values for the
two cases. The control effort (bottom panel) exhibits an
opposite behavior i.e., increasing the control gain the
distribution will widen with decreasing mode values. This
is not surprising in the light of FP theory since, being the
washout the most probable state for the selected operating
conditions, the control effort is large and becomes larger
as we require narrow substrate state PDF.
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Fig. 4. Stationary marginal substrate PDF β̄ (top panel)
and stationary control variable PDF ν (bottom
panel). Initial conditions: (m0, s0) = (0.9, 0.0901),
noise: (qm, qs) = (0.002, 0.002), qθ = 0.004, δ∗ =
21.11, Set point: s̄ = 0.0901, k = 2 blue line; k = 8
black line; OL dashed red line.

6. CONCLUSIONS

The effect of multiplicative stochastic excitation in the flow
rate of a continuously stirred tank bioreactor with non-
monotonic Haldance growth rate is considered. Departing
from the deterministic multiplicity and bifurcation behav-
ior and the associated (potential) structural instability of
the optimal, maximum conversion steady-state the effect
of multiplicative versus additive noise is discussed in the
framework of the Fokker-Planck equation. The impact of
multiplicative noise under proportional feedback control is
analyzed in terms of stabilization potential for the associ-
ated PDF versus energy wastefullness. The results extend
the ones in [Baratti et al. 2018] to a two-state reactor.

The present study is a point of departure to address in
the future the global-nonlinear state PDF estimation and
control problems for stochastic chemical and biological
reactors, with complex nonlinear deterministic dynamics.
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