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Abstract: Urea-based selective catalytic reduction (SCR) is a promising method for removing
NOx emissions. In the urea-based SCR method, zeolite-based catalysts are popularly used
owing to their applicability over a wide range of temperatures compared to other catalysts.
However, they still have several drawbacks such as inferior performance at low temperatures
and thermal instability. This has subsequently led to numerous studies and experiments on
the development of superior catalysts. While substantial experimental data exist on zeolite-
based catalysts, extracting useful information from the data with a simple literature search is
difficult owing to not only the amount of data but also complex correlations between feature,
including preparation variables such as doped-metal loading and operational variables such as
reaction temperature. Recently, extracting insights from a large database has become possible
by utilizing machine learning tools. Among them, the decision tree can extract insights on
the synthesis of the catalysts as the results derived from the models are intuitive and easy to
interpret, unlike those from conventional discriminant machine learning models. In this study,
classification models are obtained by training decision tree models with literature data on zeolite-
based urea SCR catalysts, particularly the Beta and ZSM-5 types, and several experimental
heuristics are extracted from the derived models.

Keywords: Catalysts, Machine learning, Decision tree, Big data, Diesel vehicle, Selective
catalytic reduction, Nitrogen oxides.

1. INTRODUCTION

Urea-based selective catalytic reduction (SCR) is a promis-
ing method for the removal of NOx emissions. Among urea
SCR methods, zeolite-based catalysts are commonly used
owing to their wide temperature window. Despite their
advantages over other catalysts, zeoltie-based catalysts
still have flaws such as inferior NOx conversion at low tem-
peratures and the thermal instability regarded as a major
drawback in practical applications (Han et al., 2019). To
tackle these limitations, various synthesis methods such
as doping additional metals or implementing new zeolite
supports have been examined under different operating
conditions, leading to several articles and related exper-
imental data.
While substantial experimental data exist on zeolite-based
catalysts, extracting useful information from the data with
a simple literature search is difficult owing to not only large
amount of data but also complex correlations between
features including preparation variables such as doped-
metal loading and preparation methods, and operational
variables such as the reaction temperature.
Recently, extracting knowledge from a large database
by utilizing machine learning tools has become possible.
These tools facilitate the understanding of complicated

patterns and relations in large databases that cannot easily
analyzed by humans. Hence, machine learning applications
have extended to various field such as biology, materials,
and catalysts (Han et al., 2011). In particular, decision
trees, which are a popular machine learning tool, have
been utilized to extract insights from experimental data
in publications regarding various catalysts, such as those
involved in water gas shift reaction and reforming of
methane (Şener et al., 2018), (Odabaşı et al., 2014).
A decision tree has several advantages in acquiring exper-
imental heuristics regarding the development of catalysts
compared to other machine learning tools. In particular,
unlike conventional discriminant models such as deep neu-
ral networks, extracting important experimental features
is easy because the classification flowcharts yielded by
the decision tree models are explicitly suggested and the
interpretation of the results is intuitive. In addition, a
decision tree model is non-parametric and does not require
any assumptions regarding the distribution of input data.
Hence, it is suitable for categorical or encoded discrete
numerical input data such as the preparation variables in
the catalyst experiments (Friedl and Brodley, 1997). In
this study, classification models are obtained by training
a model with literature data on zeolite-based urea SCR
catalysts, particularly the Beta and ZSM-5 types. The



experimental heuristics are extracted from the derived
decision tree models.
The remainder of the paper is organized as follows: In
Section 2, the database of the zeolite-based catalysts for
training and the computational details of the decision tree
models and data preprocessing are indicated. In Section
3, the settings for decision tree models and the analysis of
the results derived from the models are suggested. Finally,
concluding remarks are provided in Section 4.

2. DATABASE AND METHODS

2.1 Database construction

The database was constructed by collecting the experimen-
tal data on NOx conversion from numerous publications
with a total of 1918 data points. These databases can be
categorized according to the zeolite type, Beta, which has
a large pore size (He et al., 2009), (Gao et al., 2016),
(Wang et al., 2019a), (Pereda-Ayo et al., 2014), (Xu et al.,
2014), (Xu et al., 2018), (Xu et al., 2016), (Krivoruchenko
et al., 2014), (Zhu et al., 2019), (Xia et al., 2016), (Kwak
et al., 2012), (Wang et al., 2019b), (Rahkamaa-Tolonen
et al., 2005), (Krivoruchenko et al., 2015), (Zhu et al.,
2016), (Nedyalkova et al., 2013) and ZSM-5, which has
a medium pore size (He et al., 2009), (Qi et al., 2008),
(Brandenberger et al., 2011), (Xiaoyan et al., 2012), (Park
et al., 2006), (Ye et al., 2012), (Zhang et al., 2014), (Salker
and Weisweiler, 2000), (Jouini et al., 2018), (Sultana et al.,
2013), (Panahi et al., 2015), (Li et al., 2016), (Branden-
berger et al., 2010), (Lou et al., 2014), (Kwak et al., 2012),
(Wang et al., 2019b). In these publications, the efficiency
of NOx conversion is selected as the target variable to be
enhanced, where measurement data on the efficiencies were
provided depending on the preparation or operational vari-
ables. In organizing the initial dataset for the decision tree
models, NOx conversion was chosen as the output variable
and other variables were selected as input features. Table

1 shows that the input features comprise both continuous
and categorical data, where their applicable ranges or
identities according to the data types are suggested.

2.2 Computational details on decision tree models

Decision trees are popular classification models that se-
quentially divide datasets into subsets according to the
splitting criteria. Among the several training algorithms
of decision trees, the Classification and Regression Tree
(CART) algorithm is used herein. CART is a binary tree
wherein each internal node yields two succeeding nodes
and the post-pruning method called cost complexity prun-
ing is used to simplify the model structure (Friedl and
Brodley, 1997).
To obtain decision tree models with high accuracy, several
parameters need to be considered. First, the number of
classes in training data should be balanced. Otherwise the
data belonging to a minority group are more often mis-
classified. In case of NOx conversion dataset, the samples
where the NOx conversion corresponds to the values of
0∼75% and 75∼100% were assigned to class “low” and
“high,” respectively. These divisions are not only meaning-
ful physically but also suitable for addressing the class im-
balance problem. Next, the best subset of input features to
ensure model performance were selected. The features that
are redundant and irrelevant to the target variable might
degrade the accuracy of decision tree models and could
make understanding the results difficult. To prevent these
limitations, recursive feature elimination (RFE), a popular
feature selection method, was utilized, which is explained
in the next section. Finally, setting the hyperparameters
of the decision tree modes is critical. Decision tree models
include several hyperparameters such as maximum depth
of trees and maximum number of leaf nodes. We herein
performed a grid search for these hyperparameters to dis-
cover the hyperparameters yielding the best performance.

Table 1. Catalyst features and their ranges

Category Features Ranges for continuous variables or identities for discrete variables

zeolite type ZSM-5, Beta
Si/Al 4.6 ∼ 40.0

metal species and composition (wt%) Fe (0.0 ∼ 10.0), Cu (0.0 ∼ 14.4), Mn (0.0 ∼ 30.0)

preparation methods Incipient to wetness impregnation (IWI), Ion-Exchange (IE)
Solid-state-ion-exchange (SSIE), IE + IW
Homogeneous deposition precipitation (HDP)

calcination time (hr) 2.0 ∼ 20.0
calcination temperature (◦C) 200 ∼ 700

hydrothermal aging O2 (%) 0.0 ∼ 20.0
condition H2O (%) 0.0 ∼ 10.0

CO2 (%) 0.0 ∼ 5.0
N2, He, Ar (%) 0.0 ∼ 100.0
temperature (◦C) 0.0 ∼ 900.0
time (hr) 0.0 ∼ 48.0

reaction condition NO (ppm) 350.0 ∼ 1200.0
NH3 (ppm) 350.0 ∼ 1200.0
O2 (%) 2.0 ∼ 14.0
H2O (%) 0.0 ∼ 10.0
CO2 (%) 0.0 ∼ 5.0
N2, He, Ar (%) 76.0 ∼ 98.0
GHSV (hr−1) 0.12 ∼ 6.7
temperature (◦C) 50.0 ∼ 772.0

*GHSV (hr−1) : Gas hourly space velocity (hr−1)



2.3 Computational details on data preprocessing

Encoding categorical data into numerical data is critical
issue in machine learning. There are two typical encod-
ing methods: (i) label encoding that assigns an arbitrary
integer to each category and (ii) one-hot encoding that
represents the feature as a one-hot vector where the cor-
responding category is given a value of one and others are
given a value of zero. In this study, the former method was
used because the latter method can induce a sparse tree
structure where the trees tend to grow in one direction.
Among various feature selection methods, we adopted
RFE that iteratively removes one feature with the small-
est ranking from the original feature set at a time. This
method has the advantage in that it prevents the models
from becoming sub-optimal when several features are re-
moved simultaneously. Here, the ranking scores of features
are given as Gini importance that are calculated in training
decision tree models.

3. RESULTS AND DISCUSSIONS

Before training the decision tree models, the total dataset
was split into two subdivisions: Beta-based catalysts and
ZSM-5-based catalysts. When the total dataset was used
for training, judging whether the extracted heuristics were
general or specific inference regarding zeolite type was
difficult. These unclear results from the decision tree model
are caused by the complex correlations between zeolite
type and the other features. Therefore, the decision tree
models were trained based on each dataset divided by zeo-
lite type, leading to more clearly interpretable decision tree
model. This approach is also reasonable in that numerous
zeolite-based catalyst studies have been conducted around
a specific zeolite type.
In the case of a Beta-based catalyst, the number of data
samples corresponding to “high” and “low” were 561 and
432, respectively. The numbers of ZSM-5-based data sam-
ples corresponding to each class were 452 and 473, respec-
tively. The numbers of these class is quite comparable for
both catalysts, hence, the class imbalance problem can be
prevented.

Fig. 1. Recursive feature elimination on Beta-based cata-
lysts

Table 2. Optimal hyperparameters of the deci-
sion tree models

Hyperparameters Beta ZSM-5

criterion Information gain Information gain
max depth of tree 7 8

max leaf nodes 40 40
min sample 5 5

min leaf nodes 5 5

RFE was executed for the original feature subset except
zeolite type as given Table 1. Nominal decision tree mod-
els without pruning are used to obtain information gain,
which is utilized as ranking criterion. The result of RFE
about Beta is illustrated in Figs.1, but that about ZSM-5
is not presented here. Accuracy denotes the average clas-
sification accuracy of the model when the model is trained
by a selected feature subset with five-fold cross validation.
The solid line and shaded regions indicates the mean of
classification accuracy and one standarad deviation above
and below the mean, respectively. The optimal number
of selected features for Beta and ZSM-5 was 8 and 13,
respectively and that of Beta is represented by the dotted
line in the Fig. 1
To prevent overfitting and to obtain an interpretable size
of tree, setting hyperparameters to prune the decision
tree model is necessary. In addition, it is important in
ensuring the model performance. To acquire the best
hyperparameters, we performed a grid search on several
critical hyperparameters whose values are within a rea-
sonable range. The best hyperparamters derived by grid
search are listed in Table 2. For Beta-based catalysts, the
classification accuracy of the models with the best and
the worst hyperparameters was 0.89 and 0.83, respectively.
In the case of ZSM-5 based catalysts, the accuracy was
0.85 and 0.74, respectively. These results demonstrate that
more precise models can be generated by appropriately
selecting hyperparameters.

3.1 Decision tree analysis on Beta-based catalysts

The optimal decision tree for the Beta-based catalyst is
illustrated in Fig. 2. The reaction temperature was selected
as the attribute of the root node, top of the decision trees,
as it is the most deterministic factor in splitting the NOx
conversion of the catalyst. In general, NOx conversion is
heavily dependent on the reaction temperature. Accord-
ing to the criterion of the root node, the total dataset
was partitioned into the two subdivisions specified by the
feature of high and low reaction temperatures. Based on
the tree structure, we extracted a few significant heuristics
for each temperature region, as given in Table 3, where the
recommended heuristics are denoted as R, while unadvis-
able heuristics are denoted as U.
According to the heuristic R1, the catalysts that com-
prise fairly low amounts of Si/Al ≤ 10 show high NOx
conversion at low temperatures. These behaviors were
demonstrated by the experiments conducted by (Xu et al.,
2014), wherein a unique zeolite-synthesizing approach was
introduced that produces Beta containing low amounts of
Si/Al. Owing to the distinct properties of catalysts derived
by this approach, the amount of isolated Cu2+ increases
and the proximity of the Cu ions is closer, leading to the
enhancement of active sites. In addition to Cu, high NOx



Fig. 2. Decision tree of Beta-based catalysts

conversion can be achieved for the Fe-doped Beta zeolite
synthesized by the suggested method (Zhu et al., 2016). In
particular, the Beta-based catalysts that have at least 1.0
wt% of Cu ions have high NOx conversion at a relatively
low temperature of 137.0 ◦C.
Except employing the suggested zeolite synthesizing ap-
proach, obtaining heuristics to ensure high NOx perfor-
mance at severely low temperature is difficult because the
NH3-NOx reactions are activated as the reaction temper-
ature increases. However, several heuristics such as R2
can be observed for temperature ranging from 194.0 ◦C
to 248.0 ◦C, which are still relatively low temperatures.
R2 suggests that high NOx conversion can be obtained
when Cu(wt%) is higher than 5.2 in the case where Si/Al
is 10∼22. On the contrary, achieving NOx conversion for
the catalyst is difficult where Cu(wt%) is lower than 5.2.
These trends can be demonstrated by the experiments in
(Pereda-Ayo et al., 2014), where a tentative explanation
is suggested that the presence of CuO enhanced via high
copper content promotes NOx reduction at lower temper-
atures.
According to the decision tree models, the data samples
satisfying criterion such as Si/Al ≥ 22.0, are interpreted to
have high NOx conversion. However, this conclusion might
be misleading because the dataset corresponding to Si/A

l> 22.0 is limited to the specific catalyst containing high
metal content, particularly iron (Xia et al., 2016), it was
unreasonable to draw a conclusion that the condition of
Si/Al > 22.0 is the only splitting criterion which guaran-
tees high NOx conversion. Therefore, we added another
critical features such as the Fe(wt%) content into the
recipes of heuristic R2.
Additional analysis, as described above, was conducted
for extracting the heuristic U1. As shown in Fig. 3, most
samples satisfying the condition of H2O(%)>5.5 are clas-
sified into “low” class label. However, most catalysts cor-
responding to this dataset were had a low Cu content that
is regarded as the important feature in determining the
performance of NOx conversion. Therefore, we replaced
the previous criterion with the criteria Cu(wt%)≤1.7. This
rearranged heuristic U1 implies that the synthesis of a
catalyst containing a small amount of metals, such that
Fe(wt%)≤0.05 and Cu(wt%)≤1.7, should be avoided be-
cause high NOx conversion cannot be achieved using these
catalyst, even at a high reaction temperature.
Heuristic U2 shows that performance of catalysts contain-
ing high amount of Cu can degrade when the reaction tem-
perature is considerably high. Perdeda et al. explained that
the presence of isolated Cu2+ ions enhancing NOx conver-
sion at high temperature can be lessened as the amount

Table 3. Heuristics for high NOx conversion for Beta-based catalysts

Reaction
Heuristics Preparation variables Operational variables

Accuracy of
Temperature classification

Low
R1

Si/Al ≤ 10.0 175.0 ≤ Tr ≤ 248.0 24/26
Si/Al ≤ 10.0, 1.0 ≤ Cu(wt%) ≤ max 137.0 ≤ Tr ≤ 248.0 7/9

R2
10 < Si/Al ≤ 22, 5.2 ≤ Cu(wt%) ≤ max

194.0 ≤ Tr ≤ 248.0
4/5

22.0 < Si/Al ≤ max 5/6

High
U1 Fe(wt%) ≤ 0.05, Cu(wt%) ≤ 1.7 Tr > 248.0 0/37
U2 Fe(wt%)≤ 0.05, 4.23 < Cu(wt%)≤ max, 8.6 < Si/Al ≤ max Tr > 435.0 0/7

*Accuracy of classification = high/(high + low), Tr: Reaction temperature



Table 4. Heuristics for high NOx conversion for ZSM-5-based catalysts

Reaction
Heuristics Preparation variables Operational variables

Accuracy of
Temperature classification

Low
R3

2.0 ≤ Fe(wt%) ≤ 8.0, Cu(wt%) = 4.0
177.0 < Tr ≤ 300.0 33/39

30.0 ≤ Mn(wt%) ≤ max

R4
2.7 ≤ Cu(wt%) ≤ max, Ta ≤ 750.0 ◦C,

172.0 ≤ Tr ≤ 300.0 21/27
calcination temperature ≤ 525.0

High U3 Fe(wt%) ≤ 0.64, Cu(wt%) ≤ 1.3 300.0 ≥ Tr ≤ 575.0 6/18

*Accuracy of classification = high/(high + low), Tr: Reaction temperature, Ta: Aging temperature

of Cu increase (Pereda-Ayo et al., 2014). To synthesize a
catalyst covering a wide range of high temperature, the
recipes identified by heuristic U2 should be avoided.

3.2 Decision tree analysis on ZSM-5-based catalysts

The illustration of the decision tree on ZSM-5-based cata-
lyst is not presented here, but the heuristics extracted from
the models are summarized in Table 4. In the decision tree
of ZSM-5-based catalyst, the reaction temperature was
selected as an attribute of the root node whose value is
slightly higher than that of Beta-based catalyst.
R3 suggests that high NOx conversion at low temperature
can be obtained when the catalysts are doped by bi-metals
such as Fe and Cu or with a hight content of Mn. According
to (Zhang et al., 2014), ZSM-5-based catalysts containing
both Fe and Cu exhibited excellent performance owing to
their improved redox ability and larger acid sites over the
catalyst surface. The catalyst containing a high content of
Mn demonstrated high NOx conversion (Lou et al., 2014).
These results are supported by the superiority of Mn at
low temperature owing to its property regarding variable
valences and detect sites of various oxidation states (Suib,
1998).
Heuristic R4 shows that high NOx conversion at low tem-
perature can be achieved for catalysts containing Cu(wt%)
≥ 2.7 and prepared under calcination temperature(◦C) ≤
525.0. These catalysts also have strong thermal stability.
Thus, high NOx conversion are still guaranteed after the
process of aging under temperature(◦C) ≤ 750. In addi-
tion, a notable inference is the criterion of the calcination
temperature. The performance of catalysts that calcined
at temperature (◦C) ≥ 525 are degraded so that the
corresponding samples are assigned to “low” class. Lou et
al. observed that active surface of Mn-doped catalysts was
reduced when the catalysts are prepared under calcination
temperature(◦C) ≥ 600 (Lou et al., 2014). Similar to the
case of Mn, it is thought that the calcaination at severely
high temperature has a negative effect on the performance
of catalysts doped by other metals such as Fe or Cu.
As can be seen in the heuristic U3, catalysts containing
small amount of metals also exhibit low NOx conversion
even under the high reaction temperature in similar to
trends mentioned above. Hence, it is recommended to
avoid synthesis of the catalysts based on these recipes.

4. CONCLUSION

In this study, the classification model with decision tree
was obtained by training the literature data on zeolite-
based urea SCR catalysts. Also, experimental heuristics
leading to superior catalysts can be extracted from the

models. However, few misinterpretable rules are yielded
from decision tree owing to the sparsity of training data.
This fundamental limitation can be tackled by increasing
the number of data. Otherwise, further statistical analysis
on correlations among features or data visualizing are
required to clarify the extracted rules.
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