Bradford, E., Imsland, L., Zhang, D., and delRio Chanona, E.A. (2020).Stochastic data-drivenmodel predictive control using gaussian processes.Computers & Chemical Engineering, 139, 106844.Bradford, E., Schweidtmann, A.M., Zhang, D., Jing, K.,and del Rio-Chanona, E.A. (2018). Dynamic modelingand optimization of sustainable algal production withuncertainty using multivariate gaussian processes.Com-puters & Chemical Engineering, 118, 143–158.Fogler, H.S. (2006).Elements of chemical reaction engi-neering. Prentice Hall Professional.Forbes, M.G., Patwardhan, R.S., Hamadah, H., andGopaluni, R.B. (2015).Model predictive controlin industry: Challenges and opportunities.IFAC-PapersOnLine, 48(8), 531–538.GPy (since 2012). GPy: A gaussian process framework inpython.Hoskins, J. and Himmelblau, D. (1992). Process controlvia artificial neural networks and reinforcement learn-ing.Computers & chemical engineering, 16(4), 241–251.Hwangbo, S. and Sin, G. (2020). Design of control frame-work based on deep reinforcement learning and monte-carlo sampling in downstream separation.Computers &Chemical Engineering, 106910.Jones, D.R., Schonlau, M., and Welch, W.J. (1998). Ef-ficient global optimization of expensive black-box func-tions.Journal of Global optimization, 13(4), 455–492.Josiah Yan , Thang D. Bui , Turner, R.E. (2017). AUnifying Framework for Gaussian Process Pseudo-PointApproximations using Power Expectation Propagation.Journal of Machine Learning Research 18, 18, 1–72.Lee, J.H. and Lee, J.M. (2006). Approximate dynamicprogramming based approach to process control andscheduling.Computers & chemical engineering, 30(10-12), 1603–1618.Lee, J.M. and Lee, J.H. (2005). Approximate dynamicprogramming-based approaches for input–output data-driven control of nonlinear processes.Automatica, 41(7),1281–1288.Liu, D.C. and Nocedal, J. (1989). On the limited memorybfgs method for large scale optimization.Mathematicalprogramming, 45(1-3), 503–528.Ma, Y., Zhu, W., Benton, M.G., and Romagnoli, J. (2019).Continuous control of a polymerization system withdeep reinforcement learning.Journal of Process Control,75, 40–47.Mayne, D. (2015).Robust and stochastic mpc: Arewe going in the right direction?IFAC-PapersOnLine,48(23), 1–8.Mehta, S. and Ricardez-Sandoval, L.A. (2016). Integra-tion of design and control of dynamic systems underuncertainty: A new back-off approach.Industrial &Engineering Chemistry Research, 55(2), 485–498.Petsagkourakis, P., Sandoval, I.O., Bradford, E., Galvanin,F., Zhang, D., and del Rio-Chanona, E.A. (2020a).Chance constrained policy optimization for process con-trol and optimization.arXiv preprint arXiv:2008.00030.Petsagkourakis, P., Sandoval, I.O., Bradford, E., Zhang,D., and del Rio-Chanona, E.A. (2020b). Reinforcementlearning for batch bioprocess optimization.Computers& Chemical Engineering, 133, 106649.Rasmussen, C. and Williams, K. (2006).Gaus-sianprocessesformachinelearning.doi:10.1142/S0129065704001899.Rasmussen, C.E. and Williams, C.K.I. (2005).GaussianProcesses for Machine Learning (Adaptive Computationand Machine Learning). The MIT Press.Schweidtmann, A.M., Bongartz, D., Grothe, D., Kerken-hoff, T., Lin, X., Najman, J., and Mitsos, A. (2020).Global optimization of gaussian processes.Shin, J., Badgwell, T.A., Liu, K.H., and Lee, J.H. (2019).Reinforcement learning–overview of recent progress andimplications for process control.Computers & ChemicalEngineering, 127, 282–294.Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,D., Graepel, T., et al. (2018). A general reinforcementlearning algorithm that masters chess, shogi, and gothrough self-play.Science, 362(6419), 1140–1144.Spielberg, S., Tulsyan, A., Lawrence, N.P., Loewen, P.D.,and Bhushan Gopaluni, R. (2019). Toward self-drivingprocesses: A deep reinforcement learning approach tocontrol.AIChE Journal, 65(10), e16689.Sutton, R. and Barto, A. (2018).Reinforcement Learning:An Introduction. Adaptive Computation and MachineLearning series. MIT Press.Watkins, C.J.C.H. (1989). Learning from delayed rewards.Zhang, C., Vinyals, O., Munos, R., and Bengio, S. (2018).A study on overfitting in deep reinforcement learning.