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Abstract: Machine learning modeling of chemical processes using noisy data is practically
a challenging task due to the occurrence of overfitting during learning. In this work, we
propose a co-teaching learning algorithm that develops Long short-term memory (LSTM)
networks to capture the ground truth (i.e., underlying process dynamics) from noisy data. We
consider an industrial chemical reactor example and use Aspen Plus Dynamics to generate
process operational data that is corrupted by sensor noise generated by industrial noisy
measurements. An LSTM model is developed using the co-teaching method with additional
noise-free data generated from simulations of the reactor first-principles model. Through open-
loop and closed-loop simulations, we demonstrate that compared to the LSTM model developed
from the standard training process, the co-teaching LSTM model is more accurate in predicting
process dynamics, and therefore, achieves better closed-loop performance under model predictive
control.
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1. INTRODUCTION

Machine learning has attracted an increasing level of at-
tention in classical engineering fields in recent years due to
its ability of analyzing big data from industrial processes.
Machine learning techniques such as neural networks have
been successfully applied in process modeling, process
monitoring, and fault detection, which fall into the cat-
egories of regression and classification problems. Among
many types of neural networks, recurrent neural network
(RNN), and long short-term memory (LSTM) networks
become popular for modeling dynamic systems from time-
series data, and have been incorporated in model predic-
tive control (MPC) to predict evolution of process states
when process first-principles models are unavailable. While
many research works have studied neural network model-
ing of chemical processes using noise-free data, learning
using noisy data is practically challenging due to the
high capacity of neural network to fit noisy data (i.e.,
overfitting). Considering that the sensor measurements
in chemical plants are commonly affected by noise and
faults in real-time operation, machine learning modeling
of chemical processes using industrial noisy data remains
an important research topic.
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One way to handle noisy measurements in linear systems
is Kalman filter (Patwardhan et al. (2012)). Additionally,
many other methods such as moving horizon estimation
and unscented Kalman filter have been proposed to deal
with data noise (Patwardhan et al. (2012)). In the state
estimation methodology, to establish a correct estimation,
a model representation is generally needed and the co-
variance matrices need to be tuned as well (Lima and
Rawlings (2011)). Recently, the effect of learning with
raw vibration signals from a laboratory-scale water flow
system was studied using machine learning methods (i.e.,
LSTM and a feed-forward deep neural network) and a lin-
ear statistical learning approach (i.e., projection to latent
structure, PLS) (Shah et al. (2020)). From their findings,
it is shown poor performance from both machine learning
methods and PLS when using raw vibration data and that
further treatment is needed on the data for better model
prediction. When exposing machine learning models to
Gaussian noise, Ref Yeo (2019) has shown that machine
learning models can efficiently learn the true process dy-
namics due to the dominant role of the internal states
during the prediction step. Regarding the integration of
machine learning models in model predictive controllers,
the noiseless situation has been explored in recent works
(Wu et al. (2019b,c); Hassanpour et al. (2020)). However,
at this point, machine learning modeling of nonlinear
processes using noisy data has not been addressed yet.



Therefore, to handle industrial data noise following a
non-Gaussian distribution, co-teaching method that was
utilized in Han et al. (2018) to solve image classification
problems with misclassified labels by training two machine
learning models simultaneously is adapted in this work to
solve process modeling problems using noisy data.

In this work, we consider a chemical reactor example
simulated in Aspen Plus Dynamics, with noisy data gener-
ated from Aspen dynamic simulations. To implement the
co-teaching method, the reactor first-principles model is
first developed to generate noise-free data. Subsequently,
LSTM models are trained using both noisy and noise-
free data under co-teaching framework, and incorporated
in the Lyapunov-based model predictive controller that
optimizes process performance while maintaining system
stability. Finally, we compare the co-teaching LSTM model
with the LSTM model trained using the standard learning
algorithm and demonstrate its superiority in both open-
loop and closed-loop operations.

2. PRELIMINARIES

2.1 Notation

The Euclidean norm of a vector is denoted by the operator
|·| and the weighted Euclidean norm of a vector is denoted
by the operator |·|Q where Q is a positive definite matrix.

xT denotes the transpose of x. The notation LfV (x)

denotes the standard Lie derivative LfV (x) := ∂V (x)
∂x f(x).

Set subtraction is denoted by ”\”, i.e., A\B := {x ∈
Rn | x ∈ A, x /∈ B}.

2.2 Class of Systems

We consider the class of continuous-time nonlinear systems
described by the following system of first-order nonlinear
ordinary differential equations:

ẋ = F (x, u) := f(x) + g(x)u, x(t0) = x0

y = x+ w
(1)

where x ∈ Rn is the state vector, u ∈ Rm is the
manipulated input vector, y ∈ Rn is the vector of state
measurements that are sampled continuously, and w ∈ Rn

is the noise vector. The input vector is constrained by
u ∈ U := {umin

i ≤ ui ≤ umax
i , i = 1, ...,m} ⊂ Rm.

f(·) and g(·) are sufficiently smooth vector and matrix
functions of dimensions n × 1 and n × m, respectively
with f(0) assumed to be zero such that the origin is a
steady-state of the nominal (i.e., w(t) ≡ 0) system of
Eq. 1 (i.e., (x∗s, u

∗
s) = (0, 0), where x∗s and u∗s represent

the steady-state state and input vectors, respectively).
Throughout the manuscript, we assume that the full state
measurements are continuously available at all times, and
the initial time t0 is taken to be zero (t0 = 0).

2.3 Long Short Term Memory (LSTM) Model

Long short-term memory (LSTM) networks are a type of
recurrent neural network capable of modeling long-term
dependencies in sequence prediction problems due to the
design of three gates, i.e., the input gate, the forget gate,
and the output gate, in the network structure. A schematic

Fig. 1. Schematic of LSTM units (Chen et al. (2020)).

of LSTM network structure is shown in Fig. 1. In this
work, the LSTM model is developed to predict the states
of Eq. 1 given the control actions and the past noisy state
measurements. Specifically, given the input sequencem(k),
k = 1, ..., T , where T is the number of measured states of
the sampled-data system of Eq. 1, the following equations
are used to calculate the predicted output sequence x̂(k):

i(k) =σ(ωmi m(k) + ωhi h(k − 1) + bi) (2a)

f(k) =σ(ωmf m(k) + ωhfh(k − 1) + bf ) (2b)

c(k) =i(k)tanh(ωmc m(k) + ωhc h(k − 1) + bc)

+ f(k)c(k − 1) (2c)

o(k) =σ(ωmo m(k) + ωhoh(k − 1) + bo) (2d)

h(k) =o(k)tanh(c(k)) (2e)

x̂(k) =ωyh(k) + by (2f)

where m(k), c(k), h(k), i(k), f(k), and o(k) are the input
sequence, the cell state, the internal state, the outputs
from the input gate, the forget gate, and the output gate,
respectively. x̂ ∈ Rn×T represent the LSTM network
output sequences. The weight matrices for the LSTM input
vector m, and the hidden state vector in the input gate
are represented by ωmi and ωhi , respectively. Similarly, the
weight matrices for the input vector m and hidden state
vector h in calculating the cell state c, the forget gate f ,
and the output gate o are represented by ωmc , ωhc , ωmf , ω

h
f ,

ωmo , ω
h
o , respectively, with bi, bf , bo, bc representing the

bias terms. Finally, the LSTM predicted state is calculated
using Eq. 2f where ωy and by denote the weight matrix and
bias vector for the output, respectively. Since the LSTM
model uses control actions and past state measurements to
predict future states, the input sequence m ∈ R(n+m)×T

contains the manipulated inputs u ∈ Rm and the past
measured states x ∈ Rn within a certain period of time
(i.e., T ). The LSTM model uses the sigmoid activation
function σ(·) and the hyperbolic tangent function tanh(·)
as the nonlinear activation functions. Additionally, as
LSTM networks are a type of recurrent neural network,
we can also present the LSTM model in a continuous-time
nonlinear system as follows:

˙̂x = Fnn(x̂, u) := Ax̂+ ΘT z (3)

where x̂ ∈ Rn is the LSTM state vector, u ∈ Rm is the
manipulated input vector, and z = [z1 · · · zn+m+1]T =
[σ(x̂1) · · ·σ(x̂n) u1 · · ·um 1]T ∈ Rn+m+1 is a vector of
both the network states x̂ and the inputs u. σ(·) represents
nonlinear activation functions in each LSTM unit, and “1”



represents the bias term. The diagonal matrix A ∈ Rn×n

and the matrix Θ ∈ R(n+m+1)×n consist of the LSTM
weights that will be optimized.

Training data is generated from extensive open-loop sim-
ulations of the nonlinear system of Eq. 1 under various
initial conditions and control actions. The system inputs u
are applied in a sample-and-hold fashion, i.e., u(t) = u(tk),
∀t ∈ [tk, tk+1), where tk+1 := tk + ∆ and ∆ is the
sampling period, and the explicit Euler method is utilized
with a sufficiently small integration time step hc < ∆ to
integrate the continuous-time nonlinear system of Eq. 1
in simulations. Then, the LSTM model can be trained
following the learning process as discussed in Wu et al.
(2019b).

Remark 1. It should be mentioned that in this work, the
LSTM model is trained using noisy data (i.e., the state
measurements are corrupted by industrial data noise),
which makes it challenging to obtain a well-conditioned
LSTM model that can capture the ground truth (i.e.,
the underlying process dynamics of Eq. 1) using standard
learning algorithm. Therefore, to handle the noisy training
data, we propose a co-teaching method that improves
model prediction accuracy by taking advantage of noise-
free data generated from computer simulations.

2.4 Model Predictive Control Using LSTM models

The LSTM model is incorporated in Lyapunov-based
model predictive controller (LMPC) to provide state pre-
dictions in solving the MPC optimization problem. The
formulation of LSTM-based MPC is presented as follows:

J = min
u∈S(∆)

∫ tk+N

tk

L(x̃(t), u(t))dt (4a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (4b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (4c)

˙̂
V (x(tk), u) ≤ ˙̂

V (x(tk),Φnn(x(tk)),

if x(tk) ∈ Ωρ̂\Ωρnn (4d)

V̂ (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N ), if x(tk) ∈ Ωρnn

(4e)

where x̃, N and S(∆) are the predicted state trajectory,
the number of sampling periods in the prediction horizon,
and the set of piecewise constant functions with period

∆.
˙̂
V (x, u) in Eq. 4d denotes the time-derivative of V̂ ,

i.e., ∂V̂ (x)
∂x (Fnn(x, u)). The LMPC is implemented in a

receding horizon manner, where the first control action
u∗(tk) in the optimal input sequence u∗(t), ∀t ∈ [tk, tk+N )
is applied to the system for the next sampling period.
Specifically, the LMPC minimizes the time-integral of the
cost function L(x̃(t), u(t)) that achieves its minimum value
at the steady-state (x∗s, u

∗
s) = (0, 0) accounting for the

constraints of Eqs. 4b-4e. The control objective of LMPC
is to maintain the closed-loop state in the stability region
Ωρ̂ for all times, and ultimately bound the state in the
target region Ωρnn , which is a small level set of V around
the origin. Φnn(x) in Eq. 4d is the a pre-determined
control law that renders the origin of the LSTM system
of Eq. 3 exponentially stable. When a well-conditioned
LSTM model with a sufficiently high model accuracy can
be obtained using noise-free training data, the LMPC of

for i = 0 to Imax do
Select a mini-batch Dm from D
Obtain the small-loss data sequences from model A:
DA = {x ∈ Dm | loss(A, x) ≤ lossT }
Obtain the small-loss data sequences from model B:
DB = {x ∈ Dm | loss(B, x) ≤ lossT }
Update the weight matrix of model A: WA = WA −
η∇loss(A,DB)
Update the weight matrix of model B: WB = WB −
η∇loss(B,DA)

end

Algorithm 1. Co-teaching Algorithm

Eq. 4 guarantees closed-loop stability of the nonlinear
system of Eq. 1. Theoretical results on closed-loop stability
can be found in Wu et al. (2019b).

3. CO-TEACHING METHOD

Co-teaching method was originally proposed to improve
model accuracy in image classification problems, for which
the dataset is corrupted by noise (Han et al. (2018)).
Specifically, data noise in classification problems could
cause mislabeled data (for example, an object “A” is
mislabeled as object “B”), while in regression problems,
data noise could cause a deviation from its ground truth
value. In either case, it is challenging for machine learning
model to achieve a desired model accuracy with a noisy
dataset following the standard learning algorithm. There-
fore, co-teaching method provides an alternative way to
train machine learning models under noisy labels by taking
advantage of noise-free data and training two models at the
same time (Han et al. (2018); Yang et al. (2020)). The
intuition of co-teaching stems from the observations that
neural networks will use a simple pattern to fit training
data at the early stage of training process (Han et al.
(2018)). As a result, when assessing loss function value
under a simple pattern that approximates the relationship
between neural network inputs and outputs, the noisy data
generally has a large loss function value, while noise-free
data has a small value.

Fig. 2 shows two types of co-teaching structures (i.e.,
symmetric and asymmetric frameworks) that train two
networks: A and B, simultaneously. The symmetric co-
teaching training method is implemented following Algo-
rithm 1, which is stated as follows: 1) at each training
epoch, a mini-batch Dm is selected from the original mixed
dataset D. Then, each model checks its data sequences
(i.e., each pair of data labeled as input and output), and
generates a small dataset (i.e., DA and DB) with all the
data that has a low loss function value (e.g., loss(A, x) ≤
lossT ), where lossT is the threshold for identifying small-
loss data sequences; 2) this new small dataset is then sent
to the peer network, and the neural network weights WA,
WB are updated with a learning rate η; 3) finally, the
training is resumed, and the above process is repeated
until the end of training epochs Imax. The asymmetric co-
teaching method is implemented in a similar way to train
two models simultaneously. However, under asymmetric
co-teaching framework, noise-free data is used by model
A only, and noisy data is used by model B only. At each
training epoch, model A injects a subset of noise-free data
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Fig. 2. The symmetric (left) and asymmetric (right) co-
teaching frameworks training two networks (A and
B) simultaneously.

sequences into model B. Note that the information flows
in one direction in asymmetric co-teaching framework, i.e.,
from model A to model B only.

Additionally, when using co-teaching method to solve the
regression problem of LSTM modeling, the neural network
structure needs to be carefully chosen. For example, the
number of units in each network plays a role in learning
the underlying process dynamics from a mixed dataset of
both noisy and noise-free data. If a deep neural network
with a large number of layers and neurons is used, the
neural network may well fit the noisy data at early stage
(i.e., over-fitting) before effectively learning the ground
truth from noise-free data. Additionally, the mixed dataset
should be constructed with an appropriate ratio of noise-
free data to noisy data. If noise-free data is insufficient,
the neural networks will not be able to learn the ground
truth, and may overfit the noisy data as training evolves.

In the following sections, we use a chemical process ex-
ample simulated in Aspen Plus Dynamics to illustrate
the application of co-teaching LSTM modeling approach.
Specifically, we will discuss the following steps in this
case study: 1) data collection using Aspen simulation and
first-principles solutions, 2) LSTM training process, and
3) development of LSTM-based MPC that drives reactor
temperature to its desired set-point. Through open-loop
and closed-loop simulations, we demonstrate that the pro-
posed LSTM model using co-teaching method outperforms
the standard LSTM model in terms of more accurate
predictions and better control performance.

3.1 Development of Aspen Plus Reactor Model

We consider an irreversible, second-order, exothermic reac-
tion using Ethylene(A) and Benzene(B) to produce Ethyl
benzene (EB) in a well-mixed, non-isothermal continuous
stirred tank reactors (CSTR) Kamal and Malah (2017).
The CSTR reactor is fed with two Hexane solutions in the
feeding flow F1 and F2. The two flows have the same inlet
temperature T0, but different volumetric flowrate Fvj,in,
j = 1, 2, where j = 1, 2 denotes the feeding flow F1 and
F2. The reactants A and B are contained in each feeding
flow separately with inlet molar concentration CA0 and
CB0. The reactions taking place in the CSTR are:

C2H4 + C6H6 → C8H10 (ethylbenzene) (5a)

C2H4 + C8H10 → C10H14 (di− ethylbenzene) (5b)

C6H6 + C10H14 → 2C8H10 (5c)

In this study, the reactor model is developed in Aspen Plus
and Aspen Plus Dynamics V11. The model is constructed
and the steady-state simulations are first performed in
Aspen Plus. Then, a dynamic simulation of the reactor
process is carried out in Aspen Plus Dynamics to analyze
its real-time performance. In Aspen Plus, a main flow sheet
is designed with three valves and one CSTR as shown in
Fig. 3. The valves play a role as a connector of fluid flow

Fig. 3. Aspen flow sheet of steady-state model.

and parts by defining the pressure drop in the specific
location, which is critical for generating a logical dynamic
model. Without reasonable pressure drop in the process
provided, Aspen Plus Dynamics can not identify the source
making the fluid flow through the system and may result in
failure of dynamic simulation. In this model, the pressure
drop at V1 and V2 are both 5 bar, and the pressure drop
at V3 is 2 bar.

Hexane is chosen as the solvent in the feeding flow F1 and
F2 to ensure that the flow is in the liquid phase under
the inlet temperature. Therefore, with a constant inlet
volumetric flow rate, the amount of feeding reactants can
be manipulated by adjusting the feeding concentration.
Process parameter values used in the Aspen model are
listed in Table 1, where CA, CB , ρL, V , and T are the
concentration of ethylene, the concentration of benzene,
mass density, volume and temperature of the reacting liq-
uid in the CSTR, respectively. Cp is the mass heat capacity
of the liquid mixture and is assumed to be constant. CAs
and CBs are the steady-state concentration of reactants A
and B, and CA0, CB0 are the inlet concentration of A and
B.

Table 1. Parameter values of Aspen model

T0 = 350.0 K Ts = 322.2 K

Fv1,in = 50.0 m3/hr Fv2,in = 23.6 m3/hr

CAs = 1.5454 kmol/m3 CBs = 4.2714 kmol/m3

CA0 = 4 kmol/m3 CB0 = 5 kmol/m3

Qs = −695.1 kJ/s Cp = 2.41 kJ/kg K

V = 60 m3/s ρL = 683.7 kg/m3

A liquid-only CSTR equipped with a heating jacket that
supplies/removes heat at a rate Q, is considered to carry
out three reactions. The initial temperature and pressure
of the CSTR are set to be 400 K and 15 bar which can
be automatically adjusted by the steady-state simulation
in Aspen. After incorporating the reactions of Eq. 5 in the
CSTR, steady-state simulation is performed for analysis
of plant behavior.

Before exporting the steady-state model to Aspen Plus
Dynamics, reactor geometry and thermodynamic param-
eters are required to be defined in the dynamic mode of
Aspen. In this study, the CSTR geometric is vertical, flat,



and 10 meters in length. Its thermodynamic parameter is
reported in Table 2.

Table 2. Thermodynamic parameters of CSTR

Heat Transfer Option Dynamic

Medium Temperature 298 K

Temperature Approach 77.33 K

Heat Capacity 4200 J/kg K

Medium Holdup 1000 kg

Then, we run the steady-state simulation again to ensure
that the dynamic mode is set up properly. After executing
the pressure check in Aspen Plus Pressure Checker, the
steady-state model is exported to Aspen Plus Dynamics.
Lastly, we choose the pressure as the driven type of the
dynamic model.

3.2 Dynamic Model in Aspen Plus Dynamics

The flow sheet of Aspen dynamic model is shown in Fig. 4.
Specifically, a direct acting level controller, where direct
means the output signal increases as the input signal
increases, is added to the dynamic model to regulate the
liquid level at 50 percent occupation in this study. Note
that the controller can be designed following the default
setting before exporting the steady-state model or can be
manually developed in Aspen Plus Dynamics.

Fig. 4. Aspen flow sheet of dynamic model.

After controller configuration, we run a steady-state sim-
ulation in Aspen Plus Dynamics to obtain the steady-
state for the dynamic model. The steady-state value of
Q is −695097.0 W . Then, the heating type of CSTR is
changed to constant duty to allow the outside controllers
to manipulate Q during the dynamic simulation. The volu-
metric flow rates of F1 and F2 are fixed, and a steady-state
simulation is performed to ensure that the dynamic model
reaches the steady-state before collecting data.

Since Aspen dynamic model can be considered a high-
fidelity process model for CSTR, we use Aspen dynamic
simulation to generate datasets for neural network train-
ing. Industrial noise is introduced on state measurements
to represent common sensor variability in chemical plants.
Fig. 5 shows the normalized data noise obtained from
Aspen public domain data. Specifically, open-loop simu-
lation is carried out in Aspen Plus Dynamics using the
pseudorandom input signals generated in Matlab. A local
Message Passing Interface (MPI) is constructed to link
Aspen with Matlab so that the Aspen dynamic model
can automatically read the input signals from Matlab and
apply them in the dynamic simulations.

In the open-loop simulation, the manipulated input vari-
able Q varies within the range of [−1.0 × 106 W , −4.0 ×
105 W ], and is implemented in a sample-and-hold fashion

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

Fig. 5. Normalized industrial noise from Aspen public
domain data.

with the value updated every five minutes of the simulation
time. We run the open-loop simulation for 15, 000 minutes
(simulation time) under pseudorandom input signals of Q
with the industrial noise of Fig. 5 added on the tempera-
ture measurements. All the state measurements (e.g., CA,
CB , and T ) and input value of Q are continuously recorded
to build the dataset for neural network training.

3.3 First-Principles Model

Since Aspen Plus models are typically not used in con-
troller design due to its high computational cost, to re-
duce the computational time of solving the process model,
first-principles models can be adopted in the design of
model-based controllers. Additionally, extensive computer
simulations using first-principle model is one of the most
efficient data generation methods in machine learning.

In this study, we take advantage of the first-principles
model of CSTR to generate noise-free datasets for LSTM
training using co-teaching method. Although the first-
principles model may not fully capture the Aspen model
dynamics under the same operating conditions, we will
demonstrate that the co-teaching method using noisy data
from Aspen model, and noise-free data from first-principles
solutions is still able to improve prediction accuracy of
LSTM model. While in practice noisy data is provided
by chemical plants, and noise-free data is unavailable, the
implementation of co-teaching method in this case study
implies that the co-teaching LSTM modeling approach
can improve prediction accuracy by using noise-free data
generated from first-principles models, which broadens
its application in many process modeling problems in
industry. By applying mass and energy balances, the
dynamic model of CSTR is described by the following
nonlinear ODEs:

dCA
dt

=
Fv1,in

V
(CA0 − CA)− r1 − r2 (6a)

dCB
dt

=
Fv2,in

V
(CB0 − CB)− r1 − r3 (6b)

dT

dt
=
Fv1,in + Fv2,in

V
(T0 − T ) +

−∆H1

ρLCp
r1 (6c)

+
−∆H2

ρLCp
r2 +

−∆H3

ρLCp
r3 +

Q

ρLCpV
(6d)

r1 =k1e
E1
RT CACB (6e)

r2 =k2e
E2
RT CACEB (6f)

r3 =k3e
E3
RT CBCDEB (6g)



where rj , j = 1, 2, 3 denote the rate of each reaction in
Eq. 5 based on the rate law equation, and CEB , CDEB
represent the concentration of C8H10, and of C10H14,
respectively. The kinetic parameters for reactions are given
in Table. 3, where R, kj , ∆Hj , and Ej , j = 1, 2, 3 represent
ideal gas constant, pre-exponential constant, enthalpy of
reaction, and activation energy of each reaction, respec-
tively.

Table 3. Parameter values of the first-
principles model of CSTR

k1 = 1.528 × 106 m3/kmol s ∆H1 = −1.04 × 105 kJ/kmol

k2 = 2.778 × 105 m3/kmol s ∆H2 = −1.02 × 105 kJ/kmol

k3 = 0.4167 m3/kmol s ∆H3 = −5.50 × 102 kJ/kmol

E1 = 71160 kJ/kmol R = 8.314 kJ/kmol K

E2 = 83680 kJ/kmol E3 = 62760 kJ/kmol

V = 60 m3/s ρL = 683.7 kg/m3

Cp = 2.41 kJ/kg K

The manipulated input is the heat input rate Q repre-
sented in deviation variable form, i.e., uT = [Q − Qs].
Similarly, the process states are represented by xT = [CA−
CAs CB − CBs T − Ts] where CAs, CBs, Ts are the
steady-state values of CA, CB and T . By representing all
the variables in deviation forms, the equilibrium of Eq. 6
is at the origin of state-space. The same pseudorandom
signals of Q applied in Aspen simulations are applied to
the open-loop simulation of the first-principles model of
Eq. 6, where explicit Euler method is used to integrate the
nonlinear ODEs with a sufficiently integration time step
hc = 0.05 min. The input signals are applied in a sample-
and-hold fashion with the sampling period ∆ = 5 min.
In open-loop simulations, process variables are measured
every integration time step.

Fig. 6 compares the open-loop state profiles from Aspen
simulation and first-principles solutions under the same
input sequences. Although the state profiles are close to
each other, small deviations in the evolution of states
can be noticed between the two models, which implies
the existence of a model mismatch between the Aspen
model and the first-principles model of Eq. 6. Therefore,
with noisy data from Aspen simulation and noise-free data
from first-principles solutions, the simulation study in the
next section provides an insight on the applicability of co-
teaching method in handling real industrial noisy data, for
which the corresponding noise-free data is generally un-
available, but can be obtained from computer simulations
using first-principles or empirical models.

3.4 Co-teaching LSTM Model

To reduce the impact of measurement noise in predicting
future states, the LSTM models in this work rely on the
state measurements over a past period of time to make
predictions. The LSTM model is developed with CA, CB ,
T , and Q as inputs to predict the temperature T in the
future time. Specifically, when using LSTM models in
MPC to predict future states, the LSTM input vector
at the current time step t = tk consists of the state
measurements of CA(t), CB(t) and T (t) over past five
sampling periods, i.e., ∀t ∈ [tk−5, tk] and the heat input
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Fig. 6. State profiles (CA −CAs, CB −CBs, T − Ts) from
open-loop simulations of Aspen model and of first-
principle model, respectively, under the same input
sequences of Q.

rate Q(t), ∀t ∈ [tk−4, tk+1] implemented in a sample-
and-hold fashion. Note that the heat input rate within
the last sampling period, i.e., ∀t ∈ [tk, tk+1] is unknown
at the current time step tk as it is the variable that will
be optimized by MPC to meet the control objective. The
LSTM output vector at the current time step t = tk is the
predicted temperature T (t) over t ∈ [tk−4, tk+1]. Since the
temperature measurements before the current time step
are known, only the prediction of T (t) in the last sampling
period, i.e., ∀t ∈ [tk, tk+1] will be used in MPC to solve
the optimization problem.

After running Aspen dynamic simulations and open-loop
simulations of the first-principles model of Eq. 6, we obtain
a dataset with LSTM inputs and outputs and reshape it
to the following tensor dimensions: [2467,500,4] for inputs
and [2467,500,1] for outputs, where the first element rep-
resents the total number of data sequences, the second ele-
ment represents the length of each data sequence (i.e., 500
data points correspond to five sampling periods 25 min,
in which the data point is collected every integration time
step hc = 0.05 min), and the last element represents the
dimension of inputs and outputs, respectively (i.e., the
LSTM has four inputs: CA, CB , T , and Q, and one output:
T ). Among 2467 data sequences, 494 sets of data are used
for validation, and 100 sets of data are saved for testing.
In the case of the co-teaching method, noiseless datasets
are obtained from first-principles solutions under the same
operating conditions as performed in Aspen simulations.
The high-level application programming interface, Keras,
is used to develop the standard and co-teaching LSTM
networks under the optimization algorithm Adam Kingma
and Ba (2014).

Remark 2. While in this study, the LSTM model is built
using data only, in Wu et al. (2020), we have demonstrated
that by incorporating physical knowledge of chemical
processes (such as the first-principles model of Eq. 6)
into neural network modeling, the model performance can
be enhanced as compared to brutal-force neural network
models. Therefore, in addition to the simulating noise-free
data for co-teaching method, the process model of Eq. 6
can be further utilized to guide neural network structure
designs following the approaches in Wu et al. (2020).



3.5 Open-loop Simulation Results

We first carry out open-loop simulation study to demon-
strate the improvement of LSTM model accuracy using co-
teaching method. Table 4 shows the mean squared errors
(MSE) between the predicted temperature under different
LSTM models, and the ground truth (i.e., actual temper-
ature value of the nominal system) from testing dataset
(the unit of MSE is K2). The results for standard LSTMs
under different datasets are shown in item 1, and those for
co-teaching LSTMs are shown in item 2.

Table 4. Open-loop prediction results under
industrial noise

Methods MSE T

1a) LSTM : only using noisy data 1.8217
1b) LSTM : mixed data (noise-free data from fp) 3.0357
1c) LSTM : mixed data (noise-free data from Aspen) 1.5386

2a) Co-teaching LSTM (noise-free data from fp) 0.8596
2b) Co-teaching LSTM (noise-free data Aspen) 0.7140

Note that all the LSTM models in Table 4 are developed
with the same structure in terms of the number of neurons,
layers, epochs, and the type of activation functions and
of optimization algorithms. We first consider three types
of datasets for standard LSTM models, and the results
are reported in item 1 of Table 4. Specifically, in item
1a, the LSTM model is trained following the standard
training process with noisy data only (i.e., noisy data from
Aspen simulations in Section 3.2); in item 1b, the LSTM
model is trained using a mixed dataset consisting of both
noisy data from Aspen simulations and noise-free data
from simulations of the first-principles model in Section 3.3
(“fp” in Table 4 represents the first-principles model); in
item 1c, we consider a scenario where noise-free data is
also available from Aspen simulations, thereby the LSTM
model is trained using both noisy and noise-free data from
Aspen simulations. However, it should be noted that the
last scenario is considered only for comparison purposes
since the noise-free data from chemical plants (here the
Aspen model can be considered as a real chemical process)
are generally unavailable. It can be seen from Table 4
that introducing noise-free data into brute force learning
of LSTMs (i.e., standard LSTM models) may or may not
improve their prediction accuracy. Specifically, when noise-
free data from the same process (i.e., from Aspen model)
is provided with noisy data, standard LSTM achieves a
lower MSE in item 1c than the standard LSTM using noisy
data only in item 1a; however, the standard LSTM using
a mixed dataset with noise-free data from first-principles
model has a larger MSE due to the mismatch between
the Aspen model (i.e., source of noisy data) and the
first-principles model (i.e., source of noise-free data). This
mismatch, if not handled appropriately, may misguide
LSTM training and leads to worse prediction performance.

Subsequently, we train LSTM models using co-teaching
method with the same two types of mixed datasets (i.e.,
the noise-free data from Aspen model, and from first-
principles model, respectively). The co-teaching LSTM
training is initially equipped with a noisy dataset, and
as the training evolves, noise-free data sequences are
introduced into the learning process as discussed in the

co-teaching algorithm. As shown in Table 4, the two
co-teaching LSTM models have lower MSEs than the
corresponding standard LSTM models using the same type
of mixed dataset. Additionally, the co-teaching LSTM
using noise-free data from Aspen simulations has the
lowest MSE results among all the LSTM models in this
study.

3.6 Closed-loop Simulation Results

Finally, we incorporate the LSTM models in the LMPC
of Eq. 4, and carry out closed-loop simulation study to
demonstrate the improved closed-loop performance under
co-teaching LSTM models. The control objective of LMPC
is to stabilize the reactor temperature at its steady-state
Ts by manipulating the heat input rate ∆Q. The LMPC
objective function of Eq. 4a is designed with the following
form that has its minimum value at the steady-state:

L(x, u) = |x3|2Q1
+ |u|2Q2

(7)

where Q1 and Q2 are the coefficient matrices that rep-
resent the contributions of temperature and of control
actions (both are in deviation forms) in the MPC objective
function. In this example, we choose Q1 = 1 and Q2 = 5×
10−9. The nonlinear optimization problem of LMPC is
solved using the python module of the IPOPT software
package Wächter and Biegler (2006), named PyIpopt with
the sampling period ∆ = 5 min.

Fig. 7 and Fig. 8 show the closed-loop state profiles
(with noisy measurements) under LMPC using standard
LSTM and co-teaching LSTM models for two different
initial conditions. Specifically, Fig. 7 shows that starting
from an initial temperature T = 340 K higher than the
steady-state value, both standard LSTM and co-teaching
LSTM models drive the temperature to its steady-state
within 100 minutes. However, in Fig. 8, with an initial
temperature T = 300 K lower than the steady-state value,
the standard LSTM model takes much longer time than
the co-teaching LSTM model to stabilize the temperature
at the steady-state.
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Fig. 7. Closed-loop state profile (x3 = T − Ts) and
manipulated input profile (u = Q−Qs) for the initial
condition T = 340 K under the MPC using standard
LSTM, and co-teaching LSTM, respectively.

To further analyze their closed-loop performances in terms
of state convergence speed and energy consumption, we use
the MPC objective function as an indicator of closed-loop
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Fig. 8. Closed-loop state profile (x3 = T − Ts) and
manipulated input profile (u = Q−Qs) for the initial
condition T = 300 K under the MPC using standard
LSTM, and co-teaching LSTM, respectively.

performance as it accounts for both state and input infor-
mation. It can be seen from Eq. 7 that a lower objective
function value implies a faster convergence to the steady-
state and less consumption of Q during operation. There-
fore, we integrate the objective function value over the

closed-loop simulation period ts, i.e., Ls =
∫ t=ts
t=0

L(x, u)dt,
for each LSTM model. For the initial condition T = 340 K,
Ls is calculated to be 44963.07 for standard LSTM and
37843.28 for co-teaching LSTM; for the initial condition
T = 300 K, Ls are calculated to be 120697.7 for stan-
dard LSTM and 41083.07 for co-teaching LSTM. In both
cases, co-teaching LSTM model has a lower Ls value than
standard LSTM model, which indicates an improvement
in closed-loop performance. Additionally, we test more
initial conditions of temperature within [300, 340] K under
LMPC. It is demonstrated that for Tinitial > Ts, both
standard and co-teaching LSTM models can stabilize the
temperature at the steady-state within a short time, while
for Tinitial < Ts, co-teaching LSTM models significantly
improves its dynamic response than standard LSTM (like
the one in Fig. 8). For all the tested initial conditions,
co-teaching LSTM model achieves a better closed-loop
performance with a lower value of Ls.

Remark 3. In this work, the state profile oscillations in
Figs. 7 and 8 are due to the data noise in sensor measure-
ments. However, in the case that the state profiles vary due
to varying process parameters, online learning of process
models using most recent process data can be employed
to update process models as time evolves. The interested
reader is referred to Wu et al. (2019a) for discussion of
event- and error-triggered online neural network update
within real-time machine learning-based MPC.

4. CONCLUSION

In this work, we developed an LSTM modeling approach
using co-teaching technique to predict underlying process
dynamics (ground truth) from noisy data. A chemical reac-
tor example was utilized to demonstrate the application of
co-teaching method with noisy and noise-free data gener-
ated from Aspen simulation and first-principles solutions,
respectively. Then, we simulated the reactor under LSTM-
based MPC in Aspen Plus Dynamics, and demonstrated
the superiority of co-teaching LSTM model over the stan-

dard LSTM model in both open-loop prediction accuracy
and closed-loop control performance.
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