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Abstract: We provide optimal feed trajectories for fedbatch fermentation of microorganisms
with substrate inhibition kinetics. We demonstrate that the optimal trajectories are non-unique
and provide analytical procedures for solving the optimal control problem. Since, the optimal
trajectories are non-unique this is essential for practical operations as a numerical solution could
be any of the feasible non-unique optimal solutions. In addition, we investigate the sensitivity of
the optimal trajectories and demonstrate that a bang-bang solution is optimal from a sensitivity
point of view. This insight is relevant for model predictive control of fedbatch fermentation.
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1. INTRODUCTION

In biotechnology, fedbatch reactors are used for production
of proteins (enzymes), beverages, and vaccines. Fedbatch
operation is also used for start-up of novel continuously
operated reactors such as continuous stirred tank reactors
and the U-loop reactor. The results and insight provided
by the optimal trajectories provided in this paper are
relevant for optimal operation of such reactors and may
also be relevant for semi-batch operation of chemical
reactors.

Fedbatch bioreactors are widely used in the food, pharma-
ceutical and biotechnological industries due to the scale
in such industries and their effectiveness in converting
cells into biochemical products such as proteins (enzymes),
beverages, and industrial solvents. Amongst the different
operational techniques of a bioreactor, fedbatch operation
has been particularly fruitful due to its economic relevance
(Lim and Shin, 2011). Fedbatch operation is an operational
technique, where substrate is fed to the bioreactor without
removing product until the bioreactor is full.

In fedbatch operation of a bioreactor, the aim typically is
to maximize the biomass yield or the yield of a certain
product, which typically is strongly related to the biomass
growth. Therefore optimal control of a bioreactor is of
great importance for process engineers. However, optimal
control of a bioreactor has proven to be challenging due to
its very nonlinear behaviour and absence of steady states.
Despite advances in computational power and numerical
algorithms for optimal control problems implemented in a
receding horizon manner, surprisingly, the use of such op-
timization based feedback enabled techniques are still not
widely used for control of fedbatch operated bioreactors
(Engell, 2007). Furthermore, important process variables

can not always be measured which contributes to making
making feedback control difficult in practice (Vojinović
et al., 2006). To understand if there is a deeper funda-
mental reason for the lack of application of numerical
nonlinear model predictive control for fedbatch operation
of fermentors, we derive analytic solutions to nonlinear op-
timal control problems. These analytical solutions provide
structural insight of the optimal trajectories and in par-
ticular demonstrate that the optimal control problem has
non-unique optimal solution trajectories. This insight is
important for the numerical solution of such optimal con-
trol problems. Regularization and homotopy techniques
based on this insight can be used to steer the numerical
solution towards a particular solution that is desirable
from a practical point of view.

Optimal operation of a bioreactor using a simple model
is often subject to manipulating a substrate feed rate
and a water inlet variable. Determination of the feed rate
often results in a singular control problem, due to the
control variables appearing linearly in the Hamiltonian,
such that Pontryagin’s maximum principle fails to provide
a solution. Weigand (1981) used a mass balance model
to solve a repeated fedbatch fermentation process. To
overcome the issue of singular control, they use the second
order derivative to produce conditions which yield optimal
control. More recently, Petersen and Jørgensen (2014)
used a similar mass balance model with two liquid inlets
instead of a substrate feed and a water inlet. This variable
choice (variable transformation) allowed them to derive an
analytic solution. Using the same model as Petersen and
Jørgensen (2014), we show that optimal trajectories in the
mass balance model are non-unique. We provide methods
to find optimal trajectories and use in silico simulations to
investigate the sensitivity of the solutions.
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Fig. 1. A sketch of a bioreactor in fedbatch operation. The
diagram shows the model state variables and control
inputs.

This paper is organized as follows. We present the fermen-
tation model and the optimal control problem in Section 2.
Section 3 and 4 derive analytical expressions for 3 selected
optimal control trajectories, and provide a numerical sensi-
tivity study of these 3 selected optimal control trajectories.
Section 5 concludes that the optimal control problem for
fedbatch operation of microorganism with Haldane growth
has a non-unique optimal solution. Sensitivity analyses
reveal that the bang-bang solution is least sensitive to the
initial conditions and stochastic process noise.

2. FERMENTATION MODEL

We derive a mathematical model that describes a fedbatch
fermentation process using stoichiometric and kinetic pa-
rameters for Methylococcus Capsulatus (Olsen et al., 2010).
Table 1 provides the stoichiometric, kinetic and opera-
tional parameters for this fedbatch fermentation. As il-
lustrated in Fig. 1, the model variables are the volume, V ,
the biomass concentration, cX , and the substrate concen-
tration, cS , along with water inlet rate, FW , and substrate
inlet rate, FS . We use Haldane growth kinetics to model
the reaction from substrate to biomass and assume that
the system is oxygen saturated.

We consider a differential equation of the following form,

d

dt
g(x(t)) = f(x(t), u(t)), t ∈ [t0, tf ], (1)

where x(t0) = x0. This form is natural in many applica-
tions, namely within process engineering. g(x(t)) typically
represents mass, momentum, or energy. Assuming that
dg/dt is non-singular, one often rewrites the above form
to,

d

dt
x(t) =

(
dg

dx
x(t)

)−1
f(x(t), u(t)), t ∈ [t0, tf ], (2)

where x(t0) = x0. However, this form is not numerically
equivalent to the form in (1) and does not guarantee
conservation of mass, momentum, energy, etc. Thus, we
keep the model in the form given by (1).

Table 1. Parameters for the fedbatch fermen-
tation of M. Capsulatus.

Variable Value Unit

µmax 0.37 1/h
KS 0.021 kg/m3

KI 0.38 kg/m3

γs 1.777 kg substrate/kg biomass
cS,in 10.0 kg/m3

2.1 Stoichiometry and kinetics

The reaction stoichiometry is given by,

γS → X, (3)

where γ denotes the stoichiometric coefficient. The reac-
tion rate governed by Haldane growth kinetics is given by,

r = µ(cS)cX . (4)

The specific growth rate, µ(cS), is given by,

µ(cS) = µmax
cS

KS + cS + c2S/KI
, (5)

where cX and cS respectively denote the biomass and
substrate concentration. Thus, the reaction rate is limited
by substrate inhibition. The production rate of biomass,
X, and substrate, S, is defined from the stoichiometry in
(3),

RX = r, RS = −γr. (6)

2.2 Mass balances

The manipulated variables are the inlet flow rates, i.e.
the substrate inlet flow rate, FS , with a fixed substrate
concentration, cS,in, and the water inlet flow rate, FW .
The total flow rate, F , to the reactor is

F = FW + FS (7)

and the corresponding substrate concentration is

cin =
FScS,in
F

=
FScS,in
FW + FS

. (8)

The fermentation process in fedbatch operation is modeled
using mass balances, yielding the following system of
differential equations,

d

dt
(V ) = FS + FW , (9a)

d

dt
(V cX) = RXV, (9b)

d

dt
(V cS) = FScS,in +RSV, (9c)

where V (t0) = V0, cX(t0) = cX,0, and cS(t0) = cS,0. Each
of the three equations respectively model the total volume,
V , the total mass of biomass, mX = V cX , and the total
mass of substrate, mS = V cS .

2.3 Objective function

The objective of the fedbatch fermentation is to maximize
the produced biomass. This can be expressed by the
objective function,

φ =

∫ tf

t0

RXV dt, (10)

which represents the produced biomass within the time
interval [t0, tf ].



Table 2. Operational restrictions on control
inputs and state variables.

Variable Value Unit

Vmax 12.39 m3

cX,max 2.00 kg biomass/m3

cS,max 3.00 kg substrate/m3

Fs,max 10.00 m3/h
Fw,max 10.00 m3/h

2.4 Input constraints and path constraints

The fermentation process is subject to operational con-
straints. The input constraints are given by,

0 ≤ FS ≤ FS,max, (11a)

0 ≤ FW ≤ FW,max. (11b)

The state constraints are given by,

0 ≤ V ≤ Vmax, (12a)

0 ≤ cX ≤ cX,max, (12b)

0 ≤ cS ≤ cS,max, (12c)

where cX,max and cS,max are chosen to keep the states in
a region that ensures model accuracy. Table 2 shows the
parameters for the constraints.

3. DERIVATION OF OPTIMAL TRAJECTORIES

In this section we derive selected optimal control trajecto-
ries for the optimal control problem presented in Section
2. We derive optimal trajectories that maximize the pro-
duced biomass over the fixed time period [t0, tf ].

Let β(t) = RXV denote the integrand in the objective
function (10) and β∗(t) the optimal trajectory of β(t).
Petersen and Jørgensen (2014) showed that,

β∗(t) = µ(c∗S)cX,maxV0 exp(µ(c∗S)t). (13)

As the specific growth rate, µ(cS), has a maximum,
µ(c∗S), we consider solutions where c∗S = arg max µ(cS) =√
KIKS . If β(t) = β∗(t), we require that,

cXV = cX,maxV0 exp(µ(c∗S)t). (14)

At t = t0 (14) implies that the initial biomass is given by,

cX,0 = cX,max. (15)

Inserting (9a) into (9c) and utilizing (14) we get,

d

dt
(V )c∗S = FScS,in +RSV (16a)

(FS + FW )c∗S = FScS,in − γRXV (16b)

(FS + FW )c∗S = FScS,in − γβ∗ (16c)

FS =
FW c∗S + γβ∗

cS,in − c∗S
. (16d)

To ensure feasibility, we must show that this control input
does not violate state constraints. The lower bounds on the
states are automatically satisfied due to the non-negativity
of the inputs. We consider the upper bound of (12a). We
need to show that,

V ≤ Vmax. (17)
As V is non-decreasing, it is sufficient to consider whether
the total volume V at t = tf exceeds Vmax. We integrate
both sides of (9a) to get,

Vmax = V0 +

∫ tf

t0

(FS + FW ) dt. (18)

We integrate (9c) and apply (13) to obtain the total inlet
from FS ,

c∗S(Vmax − V0) =

∫ tf

t0

(FScS,in +RSV ) dt (19a)

c∗S(Vmax − V0)

cS,in
=

∫ tf

t0

(
FS −

γ

cS,in
β∗(t)

)
dt (19b)∫ tf

t0

FS dt =
(c∗S + γcX,max)(Vmax − V0)

cS,in
. (19c)

Consequently, the total inlet from FS is constant. Sim-
ilarly, using (18) and (19c), the total inlet from FW is
constant,∫ tf

t0

FW dt =
(cS,in − c∗S − γcX,max)(Vmax − V0)

cS,in
. (20)

Thus if (20) is satisfied, FS , given in (16d), satisfies the
upper bound (12a). As the total input from FW is non-
negative, we note that (20) implies,

cS,in ≥ c∗S + γcX,max. (21)

Now we consider the upper bound of (12b). We need to
show that,

cX ≤ cX,max. (22)

Using (14) and the integral of (9a) from t′ = t0 to t′ = t,
we need to show that,

cX ≤ cX,max (23a)

cX,maxV0 exp(µ(c∗S)t)

V
≤ cX,max (23b)

V0 exp(µ(c∗S)t)− V0 ≤
∫ t

t0

FS(t′) + FW (t′) dt′. (23c)

From (16d), we find that,∫ t

t0

FS(t′) dt′ =

∫ t

t0

FW (t′)c∗S + γβ∗(t′)

cS,in − c∗S
dt′. (24)

The right hand side of (24) is bounded by applying (21),

γ

cS,in − c∗S

∫ t

t0

β∗(t′) dt′ =
γ(β∗(t)− β∗(t0))

µ(c∗S)(cS,in − c∗S)
(25a)

≤ γ(β∗(t)− β∗(t0))

µ(c∗S)(γcX,max)
(25b)

= V0(exp(µ(c∗S)t)− 1). (25c)

We now insert the right hand side of (24) into the right
hand side of (23c). Utilizing (25c), we find that,

0 ≤ c∗S
cS,in − c∗S

∫ t

t0

FW (t′) dt′ +

∫ t

t0

FW (t′) dt′ (26a)

≤
(

1 +
c∗S

cS,in − c∗S

)∫ t

t0

FW (t′) dt′. (26b)

As the right hand side of the above is positive, we conclude
that (22) is satisfied and thus the upper bound of (12b)
is not violated. Lastly, we consider the upper bound of
(12c). This bound is satisfied by choosing cS,max such that
c∗S ≤ cS,max.

We have shown that the optimal control problem is solved
with any control input that satisfies (16d) and (20), and
does not violate the operational restrictions given by (11a)
and (11b). Thus, the solution to the optimal control
problem is non-unique.



Maximum Biomass Concentration

FW =

(
RX,max(cS,in − c∗S)

cS,incX,max
+

R∗S
cS,in

)
V0 exp(µ(c∗S)t)

FS =

(
c∗SRX,max

cS,incX,max
− R∗S
cS,in

)
V0 exp(µ(c∗S)t)

Bang-Bang

FW =

{
Fw,max, 0 ≤ t ≤ tswitch

0, tswitch < t ≤ tf

FS =
Fwc

∗
S + γsβ

∗(t)

cS,in − c∗S
, 0 ≤ t ≤ tf

Constant Water Flow Rate

FW =
(cS,in − c∗S − γscX,max)(Vmax − V0)

cS,intf

FS =
Fwc

∗
S + γsβ

∗(t)

cS,in − c∗S

Fig. 2. The control input for three different solutions to
the deterministic optimal control problem.

4. OPTIMAL CONTROL AND SENSITIVITIES

In this section, we present three concrete solutions to
the optimal control problem that satisfy the previously
derived conditions. We also investigate the sensitivity of
the solutions using Monte-Carlo simulation and stochastic
differential equation extensions of the model.

The first solution fixes RX = RX,max = µ(c∗S)cX,max

throughout the operation. As a result, we have R∗S =
−γsRX,max. We name this solution Maximum Biomass
Concentration. In the second solution we fix FW = FW,max

until a switching time, t = tswitch, and then FW = 0. Using
(20) one can compute tswitch,

tswitch =
(cS,in − c∗S − γscX,max)(Vmax − V0)

Fw,maxcS,in
. (27)

We name this solution Bang-Bang. In the third solution
FW is computed from (20) and kept constant throughout
the operation. We name this solution Constant Water
Flow Rate. Fig. 2 provides the control inputs for the three
control strategies that are all optimal, i.e. the deterministic
optimal control problem has the same value for all 3 input
profiles. Fig. 3 illustrates the corresponding trajectories.

Fig. 4 shows the state variables for the three solutions. In
all three solutions cS diverges from c∗S , which indicates
that a sensitivity study is of interest. We use Monte-
Carlo simulations and stochastic simulations to compare
the sensitivities of the 3 different optimal solutions.

4.1 Perturbations in initial conditions

We first consider normally distributed initial conditions.
We consider the case where cS,0 ∼ N (c∗S , 0.022) and
cX,0 ∼ N (cX,max, 0.1

2). We run 5000 simulations for each

Table 3. Nominal initial conditions.

Variable Value Unit

V0 1.00 m3

cX,0 2.00 kg biomass/m3

cS,0 0.0893 kg substrate/m3
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Fig. 3. The produced biomass and inputs to the bioreactor
when using the three chosen control strategies. The
three solutions produce the same optimal amount of
biomass.

perturbation and compute the produced biomass at t = tf .
Note that a simulation is not stopped if cX ≥ cX,max, i.e
this enables the produced biomass at t = tf to exceed
the case with deterministic initial conditions. Fig. 5 shows
the trajectory of 10 of these 5000 simulation for cX,0 ∼
N (cX,max, 0.1

2).

Fig. 6 shows that the Bang-Bang control strategy leads to
the largest 10th quantile and mean produced biomass at
time t = tf for both perturbations in initial conditions.
Based on these simulations, we conclude that the Bang-
Bang control strategy is least sensitive (more robust) to
the given perturbations in initial conditions. This makes
intuitive sense as the Bang-Bang solution fills the bioreac-
tor as fast as possible, making a small difference in nX,0 or
nS,0 have less impact on cX and cS shortly after operation
start.

4.2 Process noise

We now consider the impact on produced biomass when
adding a stochastic diffusion term to the deterministic
differential equation model (9). The resulting model is
represented as a system of stochastic differential equations
(SDEs),
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Fig. 4. State variables of the bioreactor when using the
three chosen control strategies. The Bang-Bang solu-
tion and the Maximum Biomass Concentration solu-
tion respectively define the upper and lower bound of
the speed which the bioreactor is filled. cS diverges
from c∗S in all three solutions. This indicates that the
optimal trajectory is a repeller.

dV = (Fs + Fw) dt+ σ1dB1, (28a)

d(cXV ) = (RXV ) dt+ σ2dB2, (28b)

d(cSV ) = (FscS,in +RSV ) dt+ σ3dB3, (28c)

where V (t0) = V0, cX(t0) = cX,0, and cS(t0) = cS,0.
Furthermore, Bk denotes a standard Weiner process, i.e.
dBk(t) ∼ N(0, dt). We consider two types of noise, case
1 with a constant diffusion coefficient across all three
equations, and case 2 where the diffusion coefficient scales
with the size of the drift term,

(1) σ1 = σ2 = σ3 = C,

(2) σk =
√
C|fk|, k ∈ {1, 2, 3},

where C ∈ [0.02, 0.2] is a constant and fk denotes the drift
term for equation k. We determine the distribution of the
produced biomass at t = tf for the three control strategies
for different values of C. We use the Euler-Maruyama
numerical scheme with ∆t = 10−4 to solve 500 realization
of the SDE for each control strategy and each value of C.

Fig. 7 and Fig. 8 illustrate the produced biomass as
function of the diffusion scaling coefficient. It is evident
that the Bang-Bang solution results in the largest mean
and 10th quantile of the produced biomass for all values of
C and both types of noise. In Fig. 7 we observe that even
the 10th quantile of the produced biomass when using the
Bang-Bang solution exceeds the mean produced biomass
when using the Maximum Biomass Concentration solution
for all values of C. Thus, it seems that the Bang-Bang
solution is the most robust to both presented noise types.

Fig. 5. The trajectory from 10 draws from the distribution
cX,0 ∼ N (cX,max, 0.1

2). Amongst these 10 draws, we
see that the Bang-Bang solution results in most pro-
duced biomass. The dotted black trajectory represents
the solution without the presence of noise. All other
colored trajectories correspond to the 10 draws.

5. CONCLUSION

In this paper, we consider substrate and water feeding
profiles that maximize productivity of a bioreactor in
fedbatch operation. We model the bio-culture dynamics
using a mass balance model and a reaction rate based
on Haldane growth kinetics. We show that the solution
of the optimal control problem is non-unique, and that
the optimal control problem is solved with any control
input that satisfies (16d) and (20), and does not violate
the operational restrictions given by (11a) and (11b).

In addition to deriving optimality conditions, we investi-
gate the sensitivity of three concrete solutions to the op-
timal control problem. We name these solutions the Max-
imum Biomass Concentration solution, the Bang-Bang
solution and the Constant Water Flow Rate solution. We
investigate solution sensitivity by Monte-Carlo simulations
of the initial conditions and simulations of equivalent
stochastic differential equations with process noise. Specif-
ically, we used open-loop simulations to investigate the
impact on produced biomass when perturbing the initial
conditions and when adding model randomness using a
system of stochastic differential equations (SDE). Our
numerical simulations show that the Bang-Bang solution is
least sensitive to the perturbations, and results in a larger



Fig. 6. The distribution of nX at t = tf in the presence
of perturbations in the initial conditions. Left: cX,0 ∼
N (cX,max, 0.1

2). Right: cS,0 ∼ N (c∗S , 0.022).
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Fig. 7. The produced biomass, nX , as a function of the
diffusion coefficient, σ = C, at t = tf for the three
control strategies. The non-dotted line represents the
mean produced biomass, while the dotted line rep-
resents to the 10th quantile for the corresponding
control strategy.

biomass yield in the presence of the investigate types of
randomness.

The insight provided by the analytical optimal feed profiles
is very important for nonlinear model predictive control of
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Fig. 8. The produced biomass, nX , as a function of
the diffusion coefficient, σk =

√
C|fk|, at t = tf

for the three control strategies. The non-dotted line
represents the mean produced biomass, while the
dotted line represents to the 10th quantile for the
corresponding control strategy.

such fedbatch fermentations; and may explain the limited
use of nonlinear model predictive control in industrial
fedbatch fermentations. Numerical solution of the optimal
control problem in nonlinear model predictive control of
such fedbatch fermentations is not well defined in the
sense that the optimal solution is non-unique and the
optimization algorithm may converge to any of the optimal
solutions. It is not guaranteed that it will converge to
the bang-bang solution that is least sensitive to additive
process noise and initial condition perturbations. While
the sensitivity can be reduced by feedback enabled control
of the substrate, the bang-bang nominal trajectory is still
expected to be the most robust.

Further work includes implementation of nonlinear model
predictive control for simulated case studies of fedbatch
fermentation, and implementation in an industrial fed-
batch fermentor.
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