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Abstract: Efficient fault root cause diagnosis is essential to ensure the production safety of industrial
processes. The existing root cause diagnosis models can be summarized as linear methods and nonlinear
methods. Linear methods cannot handle nonlinear processes well, while nonlinear methods usually
require pairwise calculations between variables, which are complex and difficult to apply in real time. To
address the above issues, a method for root cause diagnosis of nonlinear processes, termed sparse
adjacency forecasting (SAF), is proposed in this paper. SAF is a causal inference method based on the
idea of Granger causality. While forecasting time series, it constructs an adjacency matrix to synthesize
the process information and the interaction of different variables. By adding sparse constraints to the
adjacency matrix, the predictive effects between variables are reflected, and the causality is captured.
This method only needs to model once to obtain the causal relationship between all variables, which
avoids multiple modeling and improves diagnosis efficiency. Besides, in order to solve the nonlinear
problem, multiple nonlinear random feature nodes are introduced for time series prediction. Two cases
are adopted to verify the causal inference and root cause diagnosis performance of the proposed method,
including a numerical case and the Tennessee Eastman benchmark process.
Keywords: root cause diagnosis; nonlinear process; causal inference; sparse adjacency forecasting;
nonlinear random feature

1. INTRODUCTION

Fault detection and diagnosis are of great significance to
ensure the production safety of industrial processes. In recent
years, with the rise of big data and intelligent manufacturing,
research on data-driven fault detection and diagnosis has
increasingly emerged (Li, Zhao, & Gao, 2017; Zhao, &
Huang, 2018; Zhao, Sun, & Tian, 2019; Yu, & Zhao, 2020;
Chai, & Zhao, 2020; Feng, & Zhao, 2020). However, the
current research on fault diagnosis focuses more on fault
isolation, that is, to find the process variables that are
significantly affected by the fault, but the root cause
diagnosis of the fault has not been discussed and studied in
depth.

The root cause diagnosis of process faults can be regarded as
a causal inference task. The process data collected within a
period of time after the occurrence of the fault are used to
infer the causal relationship between the variables, so that the
fault propagation pathways can be reflected. Granger
causality (Granger, 1969) is a typical bivariate causality
analysis method. The basic idea is that given two time series
x and y, if the introduction of previous information of x can
significantly enhance the prediction accuracy of y, then x is
said to be the Granger cause of y. To date, Granger causality
has been applied to root cause diagnosis of industrial
processes. Yuan et al. (2014) used Granger causality to
discover the root causes of plant-wide oscillations. Chen et al.
(2018) proposed the GPR-Granger method, which uses
gaussian process regression to replace the AR model in

conventional Granger causality for time series prediction to
overcome nonlinear and non-stationary problems. Liu et al.
(2020) combined Maximum Spanning Tree and Granger
causality to simplify causal inference results and facilitate the
root cause diagnosis.

In addition to Granger causality, Transfer entropy (TE)
(Williams, & Rasmussen, 1996) is another representative
method for root cause diagnosis (Duan et al., 2013; Lee et al.,
2020). TE is a causal inference method based on information
theory, which is a nonlinear root cause diagnosis method.
However, it requires the stationarity of the process variables.
Besides, the high computational complexity also brings
challenges to its application in real-time fault diagnosis.
Except for Granger causality and TE, dynamic Bayesian
network (DBN) is another root cause diagnosis method
(Gharahbagheri, Imtiaz, & Khan, 2017). Similar to TE,
dynamic Bayesian network is also limited by computational
complexity.

The methods described above can be divided into two
categories, including linear methods and nonlinear methods.
The causal inference method represented by Granger
causality is simple and efficient, and has good real-time
performance, but it cannot tackle with nonlinear situations.
Although nonlinear methods represented by GPR-Granger
and TE can capture causality from a nonlinear perspective,
while they are usually complex and require pairwise
calculations between process variables, which brings a huge
amount of calculation and significantly reduces the efficiency
of root cause diagnosis. How to maintain high computational



efficiency while extracting nonlinear causality is an urgent
problem for real-time root cause diagnosis.

To solve the above-mentioned problems, in this paper, a
novel causal inference method, termed sparse adjacency
forecasting (SAF) is proposed and applied for the root cause
diagnosis of nonlinear processes. SAF is essentially a
nonlinear time series prediction method. Drawing on the idea
of Granger causality, SAF aims to select other variables that
can significantly improve the prediction accuracy of each
variable, so as to extract causality. In SAF, a variable
adjacency matrix used to characterize causality is constructed.
Each variable performs weighted information fusion
according to this adjacency matrix, and then performs time
series prediction. By adding sparsity constraints to the
adjacency matrix, the adjacency relationship that has a
significant contribution to the prediction is selected, so that
the causal relationship is captured. Since SAF directly obtains
the adjacency matrix that characterizes the causality,
complicated pairwise calculations are avoided, thus
improving the efficiency of root cause diagnosis. The main
contributions of this paper are summarized as follows.

(1) A SAF model is proposed for causal inference of
multivariate time series. The causality is characterized by the
adjacency relationship matrix between variables, which
avoids pairwise calculations.

(2) An efficient root cause diagnosis strategy is proposed
based on the SAF model. By analyzing the adjacency
relationship between process variables, the propagation path
of the fault information can be obtained, thereby discovering
the root cause of the fault.

The remainder of this paper is organized as follows. The
Granger causality, Lasso Granger causality methods are
revisited in Section 2. Section 3 presents the proposed SAF
model in detail. In Section 4, experimental results are
presented to illustrate the performance of the proposed
method. Finally, the conclusion is summarized in Section 5.

2. PRELMINARIES

2.1 Granger causality

Granger causality is a typical causal inference method. Given
two time series x and y, if x is the cause of y, then the past
information of x can assist in the prediction of y, and vice
versa. Mathematically, two different autoregressive (AR)
models are established, one of which is a bivariate model:
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and the other is a reduced model:
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where ai,p and bp are the parameters of the two AR models, ε
and εr represent the prediction errors of the bivariate model
and the reduced model, respectively, and h is the time lag. If
the prediction residual of the bivariate model (ε) is

significantly less than that of the reduced model (εr), it means
that the past value of x is valid for the prediction of y. The
following F statistic is constructed:
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where RSS0 and RSS1 are the sums of squared residuals of the
reduced model and the bivariate model, and N is the sample
size. The null hypothesis is that the introduction of x cannot
improve the prediction accuracy of y. If the null hypothesis is
rejected with a confidence level α, then x is determined to be
the Granger cause of y.

2.2 Lasso Granger

Despite its simplicity, conventional Granger causality cannot
well tackle the causal analysis of multivariate time series. For
a multivariate time series with J variables, if simply perform
Granger causality test for each pair of variables, then the total
number of operations is as high as J(J-1). Besides, this
method does not take the interaction among multiple
variables into account, which may result in false causality.
The Lasso Granger method (Arnold, Liu, & Abe, 2007)
overcomes the above disadvantages through Lasso regression.
Given a multivariate time series 1 2,, , J   X x x x , Lasso
Granger build a prediction model for each variable xi as
follows:
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where ,ji p denotes the regression coefficient of xj(t-p) on
xi(t), and λ is the L1 penalty factor.

The Lasso regularization method has the effect of sparse
variable selection (Tibshirani, 1996), which tends to give
larger regression coefficients to key variables, while the
regression coefficients of other variables are 0. Hence, if

,ji p is equal to zero for each p, it means that xj has no
significant effect on the prediction of xi, that is, xj is not a
Granger cause of xi. Conversely, if there exists a p, such that

,ji p is not equal to zero, then xj “Granger cause” xi. The
Lasso Granger method establishes a regression model for
each variable, rather than for each pair of variables, which
significantly improve the computing efficiency.

3. METHODOLOGY

In this section, the proposed SAF model and its
corresponding root cause diagnosis strategy are introduced in
detail. SAF is a nonlinear method, and it can infer the causal
relationship between all variables only by modeling once.

3.1 The proposed SAF model

The schematic of the SAF method is shown in Fig. 1. The
input of the SAF model is a multivariate time series X with
dimensions (N×T), where N is the number of variables and T
is the number of sampling points.



SAF first uses an adjacency matrix A to linearly transform X,
which is calculated as:

f X AX (5)

where Xf is the fused feature matrix, matrix X and A are
respectively denoted as:
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Then, the i-th row vector of Xf can be calculated as:
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It can be found that this linear mapping is essentially a
weighted summation of each variable in X. The row vector of
the i-th row in the Xf matrix represents the result of the
weighted fusion of the i-th variable with other variables,
which is defined as the feature vector of the i-th variable.

In the next step, SAF uses each row vector xf(i) in Xf to
predict the future value xi(T+h) of the i-th variable xi. For a
simple linear case, linear mapping is often used for prediction.
Construct a linear weight matrix W with dimensions (T×N),
the prediction method is as follows：

p fX X W (9)

Then the i-th element xip on the diagonal of Xp can be
calculated as:
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It can be seen that xip is only calculated by each element of
the feature vector of the i-th variable, and does not contain
information from the features of other variables. Take the

vector of diagonal elements of Xp as the prediction result
ˆ ( )T hx , where h is the horizon parameter that is set
according to the time delay of the process.

For nonlinear processes, linear mapping is not applicable. In
this paper, drawing on the idea of broad learning system
(BLS) (Chen, & Liu, 2017), the nonlinearity is introduced by
adding random mapping nodes. For the fused feature matrix
Xf, the i-th mapping node matrix is calculated as:

( )i f i ig Z X W b (11)

where Wi and bi are randomly generated mapping matrices
and bias vectors, respectively, and g is a nonlinear mapping
function, its expression is:

( ) 1 / (1 )xg x e  (12)

These random mapping matrices and the original fusion
feature matrix Xf are concatenated to obtain a new matrix
with nonlinear features, that is:

1| | |n f m   X X Z Z (13)

where m is the number of mapping nodes. Then the future
value of the time series is predicted according to equation (9),
so that the nonlinear relationship is considered.

So far, it can be found that in both linear and nonlinear
versions of SAF, the prediction of each variable needs to fuse
information of other variables according to the adjacency
matrix A. According to equation (8), if the value of the
element aij in the i-th row and j-th column of matrix A is
relatively small, variable xj will not have a significant effect
to the prediction of xi. Similar to the Lasso Granger method,
if the sparsity constraint can be added to the elements in the
A matrix, the variables with significant predictive
contributions can be selected to represent the causality.
Hence, the optimization objective function of SAF is
designed as follow:
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where α is the sparse penalty coefficient.

In this way, if the variable xj has a significant contribution to
the prediction of xi, the aij coefficient will be relatively large,

Fig. 1. The schematic of the proposed SAF method



otherwise, aij will be small or even zero. Therefore, a causal
inference strategy can be designed based on the relative size
of aij. For a trained SAF model, calculate the mean value of
the absolute value of each row of the adjacency matrix A:
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where i represents the i-th row. For the variable xi, if the
coefficient aij in the matrix A with the j-th variable xj is
greater than μi, it means that the variable xj markedly
contributes to the prediction of xi, that means, xj is the cause
of xi, and vice versa. According to this rule, the causal
relationship between two variables can be divided into four
cases, which are listed in Table 1.

Table 1. Causal inference strategy of SAF method

Case ij ia  ji ja  Inference result

1 √ × xi is the cause of xj.

2 × √ xj is the cause of xi.

3 √ √ xi and xj are
mutually causal.

4 × × There is no causality
between xi and xj.

3.2 SAF-based root cause diagnosis strategy

According to the prediction mechanism and causal inference
strategy of the proposed SAF method, the causal relationship
between process variables can be extracted. The main steps
of SAF-based root cause diagnosis method are summarized
as follows.

Pretep: Establish fault detection and fault variable isolation
models for the process.

Step 1: Divide the collected fault process data with fixed
time lag and horizon to generate training samples. The time
lag can be selected according to the Akaike information
criterion (AIC) (Akaike, 1974).

Step 2: Train the SAF model and obtain the A matrix. Before
model training, the z-score method as shown below is
usually used for standardization:



x μx
σ

 (16)

where μ and σ represent the mean vector and the standard
deviation vector of the training samples, respectively.

Step 3: Infer the causality between process variables.
According to the trained A matrix, the mean value of the
absolute value of each row of the adjacency matrix A is
calculated, and the causal relationships are determined
according to the inference strategy in Table 1.

Step 4: Construct the causal map and draw a conclusion
regarding the root cause.

4. CASE STUDY

In this section, the root cause diagnosis performance of the
proposed SAF method is illustrated with a numerical example
and Tennessee Eastman process (TEP). The Lasso Granger
(LG) method and dynamic Bayesian network (DBN) are used
as representatives of linear and nonlinear methods to provide
comparisons.

4.1 Numerical example

In this case, a nonlinear process with 7 variables with known
causality is constructed as follows:
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where ԑ0(k) is the independent random sample from the
standard uniform distribution U (0,1) at the k-th sampling
point, and i (i=1, …, 6) are the independent Gaussian noises
sampled from the standard normal distribution N (0,1).
Obviously, t1 variable is the root cause.

The causal inference results of the proposed SAF method
with nonlinearity are presented in Fig. 2. It can be seen that
SAF correctly diagnosed the root cause t1, and the
propagation path of the information is basically consistent
with the real situation. The inference results of the two
comparison methods, LG and DBN, are shown in Fig. 3 and
Fig. 4, respectively. As shown in the figures, these two
methods cannot correctly diagnose the root cause. The LG
method is linear and cannot handle the nonlinear process in
this case well. Although the DBN method can tackle with
nonlinearity, it cannot overcome the non-stationary problem,
which causes it to mistake x6 as the root cause variable.

4.2 Tennessee Eastman process (TEP)

The TEP is a simulation system created based on an actual
chemical process of Eastman Chemical Company. In this
paper, IDV (1) fault case collected from the TEP is used to
verify the performance of the proposed method. This fault
leads to significant nonlinear and non-stationary
characteristics of the process. The root cause variables of the
fault are x1 and x44, and the specific propagation mechanism
of the fault can be found in (Chen, Yan, Yao, Huang, &
Wong, 2018). Refer to their previous work, the key fault
variables include {x1, x4, x7, x13, x16, x18, x19, x44, x50}.

The causal inference results of the proposed SAF method
with nonlinearity, LG method, and BN method are presented
in Fig. 5, Fig. 6 and Fig. 7, respectively. In the experimental
results, there are some confusing circular causality structures
in the causal map of the LG method, which makes it difficult
to determine the root cause. Besides, the DBN method



misjudges the root cause as the variable x7. In contrast, due to
its better adaptability to nonlinearity and non-stationarity, the
SAF method correctly infers the root cause variables x1 and
x44. What is more, the proposed SAF method more clearly
reflects the fault propagation path, which further verifies its
good performance in root cause diagnosis of nonlinear
processes.

(a)

(b)

Fig. 2. The causal inference results of the proposed SAF for
the numerical example. (a) causality matrix. (b) causality
map.

Fig. 3. The causal inference results of LG method for the
numerical example.

Fig. 4. The causal inference results of DBN method for the
numerical example.

(a)

(b)

Fig. 5. The causal inference results of the proposed SAF for
the TEP example. (a) causality matrix. (b) causality map.

(a)

(b)

Fig. 6. The causal inference results of the LG method for the
TEP example. (a) causality matrix. (b) causality map.



(a)

(b)

Fig. 7. The causal inference results of the DBN method for
the TEP example. (a) causality matrix. (b) causality map.

5. CONCLUSIONS

In this paper, a nonlinear causal inference method, termed
SAF is proposed and applied to the efficient root cause
diagnosis of industrial process faults. The performance and
efficiency of causal inference and root cause diagnosis are
improved through a sparse constrained adjacency matrix
mechanism and the introduction of nonlinear random features.
A numerical example, and the Tennessee Eastman
benchmark process are adopted to verify the performance of
the proposed method. Experimental results indicate that the
proposed SAF method can not only accurately extract the
causal relationship between nonlinear process variables and
reflect the root cause, but also improve the efficiency of
nonlinear causal analysis and root cause diagnosis.
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