
A Design Centering Methodology for
Probabilistic Design Space ?

Kennedy P. Kusumo ∗ James Morrissey ∗ Hamish Mitchell ∗

Nilay Shah ∗ Benôıt Chachuat ∗

∗ The Sargent Centre for Process Systems Engineering, Department of
Chemical Engineering, Imperial College London, London, UK.

Abstract: The use of mathematical models for design space characterization has become
commonplace in pharmaceutical quality-by-design, providing a systematic risk-based approach
to assurance of quality. This paper presents a methodology to complement sampling algorithms
by computing the largest box inscribed within a given probabilistic design space at a desired
reliability level. Such an encoding of the samples yields an operational envelope that can be
conveniently communicated to process operators as independent ranges in process parameters.
The first step involves training a feed-forward multi-layer perceptron as a surrogate of the
sampled probability map. This surrogate is then embedded into a design centering problem,
formulated as a semi-infinite program and solved using a cutting-plane algorithm. Effectiveness
and computational tractability are demonstrated on the case study of a batch reactor with two
critical process parameters.

Keywords: quality-by-design, probabilistic design space, sampling algorithm, design centering,
multi-layer perceptron

1. INTRODUCTION

The increasing pressure to continually improve pharma-
ceutical manufacturing practices has promoted the use of
process systems engineering techniques to support phar-
maceutical process development. One example is the use
of model-based techniques for characterizing a design
space in pharmaceutical quality-by-design (QbD) (Garćıa-
Muñoz et al., 2015). Such mathematical models carry
uncertainty, typically in the form of uncertain parameters.
Accounting for this uncertainty leads to the concept of
probabilistic design spaces (Peterson, 2008), in agreement
with the ICH quality guideline Q8 (R2) (Holm et al., 2017).

As a consequence of these developments, interest in numer-
ical tools capable of characterising a probabilistic design
space has grown significantly. Notice that the concept of
a probabilistic design space is akin to stochastic flexibil-
ity analysis (Straub and Grossmann, 1993; Pulsipher and
Zavala, 2019) in the process systems engineering literature.
Existing algorithms either approximate the design space
with a set of samples (Bano et al., 2018; Kusumo et al.,
2020) or try to inscribe a given shape inside the design
space of interest (Laky et al., 2019). This work concen-
trates on bridging the two.

An important aspect of sampling-based techniques is the
ability to encode the resulting samples into an operational
envelope (Samsatli et al., 1999) that can be conveniently
communicated to process operators and easily exploited.
Our approach entails the construction of a surrogate of
the probabilistic design space using machine learning tech-
niques, which provides an inexpensive way of predicting
the feasibility probability of any process operating points.
? Corresponding author: b.chachuat@imperial.ac.uk

In a second step, a design centering problem that embeds
this surrogate is solved to determine the largest box in-
scribed within the probabilistic design space at a desired
reliability level. The main advantage of communicating
a box as the operational envelope is that each process
parameter can be varied independently inside their feasible
ranges.

Design centering problems can be formulated as semi-
infinite programs (SIPs) (Hettich and Kortanek, 1993).
Effective solution techniques for SIPs include cutting plane
algorithms (Blankenship and Falk, 1976), which iteratively
solve a discrete relaxation of the SIP and a feasibility sub-
problem for checking where the semi-infinite constraints
are violated. This idea was recently extended by Mitsos
(2011), where a restriction of the SIP relaxation is solved
alongside the SIP relaxation and the feasibility problem to
ensure finite termination of the algorithm.

The rest of the paper is organized as follows: Sec. 2 re-
views the mathematical formulation of probabilistic design
spaces; the design centering methodology is detailed in
Sec. 3; computational results are showcased in Sec. 4 for
a batch reactor with two critical process parameters; and
final conclusions are drawn in Sec. 5.

2. BACKGROUND

Consider a mathematical model of a pharmaceutical man-
ufacturing process, built to predict critical quality at-
tributes (CQAs) of the product, s ∈ Rns for a given set
of critical process parameters (CPPs), d ∈ K within the
knowledge space, K ⊂ Rnd :

s = f (d,θ) (1)



The model f : Rnd × Rnθ → Rns depends on uncertain
parameters θ ∈ Rnθ , which could represent model pa-
rameter estimates, such as physical constants, regression
coefficients; or process uncertainties, such as disturbances
that affects the CQAs. We do not assume that f is given
in closed form, that is, it could be implicitly defined via
differential-algebraic equations or any black-box functions.
The process is subject to process constraints and CQA
limits, represented as a set of inequalities g(s,d,θ) ≤ 0.
Without loss of generality, s can be expressed in terms of
d and θ by inverting the model (Eqn. 1), thus leading to
the reduced inequalities:

G(d,θ) ≤ 0

A nominal design space (of the process) is defined as

Dnom = {d ∈ K : G(d,θnom) ≤ 0}
for some nominal value of the uncertain parameters θnom.
Such a design space ignores the uncertain nature of θ by
assuming a deterministic value θnom. Characterisation of
a nominal design space is likely to cause false negatives
or positives about the feasibility of a process, making it
unsuitable for regulated processes.

The focus herein is on probabilistic (or Bayesian) design
spaces. This framework considers θ as a random variable,
described by a probability density function p(θ), so the
feasibility probability of a CPP d is given by:

P [G(d, ·) ≤ 0 | p(θ)] =

∫
{θ:G(d,θ)≤0}

p(θ)dθ

In turn, the Bayesian design space at a desired reliability
level α ∈ (0, 1] is defined as:

Dα := {d ∈ K : P [G(d, ·) ≤ 0 | p(θ)] ≥ α}
Observe that Dα ⊇ Dα′ whenever α < α′. Consequently,
a higher reliability value α corresponds to higher conser-
vatism and thus a smaller design space. The trade-off is
that a higher α implies lower chance of false positives,
but higher chance of false negatives. A suitable choice
of α is largely process-specific in practice, but since false
positives pose a larger threat to quality assurance, most
practitioners tend to prefer higher α.

Sampling algorithms such as nested sampling (Kusumo
et al., 2020) approximate a Bayesian design space with
a set of Nd CPP samples, where each sample ds is as-
sociated with an (estimated) feasibility probability ps ≈
P [G(di, ·) ≤ 0 | p(θ)]. These samples and their corre-
sponding feasibility probabilities are denoted collectively
by D := [d1 · · ·dNd ] ∈ Rnd×Nd and P := [p1 · · · pNd ] ∈
RNd subsequently. A Bayesian design space Dα at a given
reliability level α comprises those CPP samples ds such
that ps ≥ α.

3. METHODOLOGY

In principle, the methodology described below may be used
in combination with any sampling algorithm. Our focus
throughout this paper is on an adaptation of the nested
sampling algorithm for design space characterization (NS-
DS) that was recently proposed by Kusumo et al. (2020).

NS-DS starts with a pre-specified number of live points
NL, uniformly sampled within K. The feasibility prob-
ability of each live point is estimated via Monte Carlo

simulation, by drawing a sample Sθ from the probability
distribution p(θ):

ps =
∑

(θ,ω)∈Sθ

I [G(ds,θ)]ω (2)

where the indicator function I[·] evaluates to 1 if G ≤ 0
and 0 otherwise; and ω denotes the weight associated to
each model parameter scenario θ in Sθ.
At each iteration, NS-DS then generates NP replacement
proposals. For instance, the proposals may be sampled
from an enlarged ellipsoid enclosing the current live points
(Mukherjee et al., 2006). Every time a proposal point ds is
generated, its feasibility probability ps is estimated using
Eqn. (2). If ps is greater than the lowest feasibility prob-
ability among all live points, pmin, the corresponding live
point dmin is replaced with ds. The replaced point becomes
a dead point and is recorded with its estimated feasibility
probability in separate set, then dmin and pmin are updated
accordingly. A termination criterion is checked after each
iteration, for instance if pmin is above the target reliability
α. Upon termination, NS-DS returns all current live points
and all recorded dead points as D, and their estimated
feasibility probabilities as P.

3.1 Surrogate Regression of Probability Map

The first step of our methodology entails the construc-
tion and training of a feed-forward multi-layer perceptron
(MLP) as a surrogate of the probability map % : K → [0, 1].

The MLP is trained using the CPP samples in D as
inputs, and their estimated feasibility probabilities in
P as outputs. Therefore, the input layer comprises nd
perceptrons, while the output layer contains a unique
perceptron whose activation state represents the predicted
feasibility probability. The MLP furthermore comprises
one hidden layer with nh perceptrons. All input and
output perceptrons have linear activation functions, and
all hidden perceptrons have sigmoidal activation functions.

An important pre-processing step before training is feature
scaling, whereby the range of each CPP is normalized.
This eliminates the MLP’s bias towards inputs with larger
magnitude, which could adversely affect the accuracy of
the MLP’s predictions. This unwanted bias may arise from
different units of measurement used for the CPPs.

In summary, the MLP surrogate presents the following
structure:

%(d) = a(3)(d,w(1),w(2), b(2), b(3))

a(3) =

nh∑
j=1

(
a
(2)
j w

(2)
j

)
+ b(3)

a
(2)
j = σ

(
nd∑
i=1

(
a
(1)
i w

(1)
i,j

)
+ b

(2)
j

)
, j = 1 . . . nh

a
(1)
i =

di − d̄i
σi

, i = 1 . . . nd

where a(3) is the activation state of the output perceptron,

a
(2)
j the activation state of the jth hidden perceptron,

a
(1)
i the activation state of the ith input perceptron, w

(1)
i,j

the weight between the ith input perceptron and jth



hidden perceptron, w
(2)
j the weight between the jth hidden

perceptron and the output perceptron, b
(2)
j the bias of

the jth hidden perceptron, b(3) the bias of the output
perceptron, d̄i the mean over all samples in D of the ith
CPP, and similarly σi the standard deviation of the ith
CPP. Lastly, the activation function σ : R → [0, 1] is
chosen as the following sigmoid function:

σ(x) =
1

1 + exp(−x)

Feed-forward MLPs were chosen over other regression
techniques due to their ability to describe highly nonlinear
relationships, making them a suitable choice for a wide
range of design space problems. In particular, feed-forward
MLPs with at least one hidden layers and sigmoid activa-
tion functions are known to be universal approximators of
continuous functions (Cybenko, 1989). A caveat is that
it may require a large number of perceptrons in that
hidden layer to meet a desired accuracy. We use nh = 64
perceptrons in the case study of Sec. 4, but this could
be increased as necessary or multi-layer MLPs could be
considered instead. It is also worth mentioning that MLPs
typically require large training data sets in order to be
effective. However, this is not a limitation here since the
training data is provided by the probabilistic design space
characterisation activity without further costs—with NS-
DS, this is easily controlled by increasing the number of
live points nL.

3.2 Design Centering Problem

The second step of our methodology entails the com-
putation of the largest box inscribed within the desired
probabilistic design space Dα.

The nd-dimensional box is parameterized by 2nd shape
parameters, e.g. grouped as lower range values dL ∈ Rnd
and upper range values dU ∈ Rnd on the CPPs. The design
centering problem problem can be stated as:

max
dL,dU

nd∏
i=1

(
dUi − dLi

)
(3)

s.t. %(d) ≥ α, ∀d ∈ [dL,dU ] (4)

We consider the box volume as the cost function (3), but
other measures such as the perimeter could be readily used
instead. Notice also that this problem falls into the class
of generalized SIP (GSIP) since the uncertainty set in the
semi-infinite constraint (4) is dependent on the decision

variables dL, dU . However, it is readily reformulated as an
SIP by normalizing each CPP as di(xi) := dLi +xi(d

U
i −dLi )

with xi ∈ [0, 1]:

max
dL,dU

nd∏
i=1

(
dUi − dLi

)
(5)

s.t. %(d(x)) ≥ α, ∀x ∈ [0, 1]nd (6)

We consider the cutting-plane (CP) algorithm by Blanken-
ship and Falk (1976) to solve the SIP (5,6). A pseudo-code
of this algorithm tailored to design centering in a design
space is presented below.

(1) Initialize Sx with the centroid xi = 0.5, i = 1 . . . nd.

(2) Solve the discretised SIP to global optimality:

max
dL,dU

nd∏
i=1

(
dUi − dLi

)
s.t. % (d (x)) ≥ α, ∀x ∈ Sx

If the problem is infeasible, terminate; else assign the
optimal point to dLopt,d

U
opt.

(3) Solve a feasibility problem for the semi-infinite con-
straint to global optimality:

min
x,δ

% (δ)

s.t. δi = dLopt,i + xi
(
dUopt,i − dLopt,i

)
, ∀i

x ∈ [0, 1]nd

Append the optimal point to Sx, and assign the
optimal solution value to popt.

(4) If popt ≥ α, terminate with dLopt, d
U
opt as the final

solution; else return to Step 2.

In practice, it is of paramount importance to solve the
feasibility subproblems to guaranteed global optimality,
otherwise the cutting-plane algorithm may violate the
semi-infinite constraint (6) upon termination. Solving the
discretized SIP subproblems to global optimality is also
desirable in order to ensure that dLopt,d

U
opt is a global

optimum of the design centering problem. A caveat with
the CP algorithm is it may not terminate finitely. This
could be circumvented by applying the improved SIP
algorithm by Mitsos (2011), where a restriction of the SIP
relaxation is solved alongside the SIP relaxation and the
feasibility problem to ensure finite termination. Another
approach, which is used herein, consists in adjusting the
termination condition in Step 4 to popt ≥ α− ε◦, where ε◦

can be the same as the convergence tolerance used in the
global solver for instance.

4. CASE STUDY: SEQUENTIAL REACTION

This case study investigates an isothermal batch reactor,
hosting two reactions in series:

2A −−→ B −−→ C

The two CPPs are the reactor temperature, T and the
batch time, τ . The differential equations (ODEs) governing
the concentrations cA, cB and cC during the batch are
given by:

ċA(t) = −2k1 exp

(
− E1

RT

)
cA(t)2

ċB(t) = k1 exp

(
− E1

RT

)
cA(t)2 − k2 exp

(
− E2

RT

)
cB(t)

ċC(t) = k2 exp

(
− E2

RT

)
cB(t)

where the kinetic parameters (E1, E2, k1, k2) are normally
distributed with mean values (2.5 × 103, 5 × 103, 6.409 ×
10−2, 9.938 × 103) and 1% standard deviations; and the
batch is initial loaded with A at a concentration of
CA(0) = 2 (mol L−1). Two design space constraints are
imposed on the purity (mole fraction) of the desired prod-
uct B at the end of the batch and on the profit per unit
time:

cB(τ)

cA(τ) + cB(τ) + cC(τ)
≥ 0.8,

100cB(τ)− 20cA(0)

τ + 30
≥ 128



The problem is to compute the largest box inscribed within
D0.55, the probabilistic design space at reliability level
α = 0.55. This reliability level was chosen because the
maximum predicted feasibility probability in this design
space is only 0.75. In many practical pharmaceutical pro-
cesses, the target reliability level will be higher. This will
mean that the practitioner needs to reduce the uncertainty
in the model parameters before being able to characterise
a design space suitable for a validated process, typically
via gathering more (informative) experimental data.

As a starting point, we assume that the practitioner has
characterised a probabilistic design space at reliability
levels up to α = 0.65, using NS-DS through the open-
source Python software DEUS (Kusumo et al., 2020). The
ODEs in the batch process model are integrated using
the open-source optimisation modelling language Pyomo
(Hart et al., 2011, 2017) and Pyomo.DAE (Nicholson et al.,
2018). The obtained point samples D and their estimated
feasibility probabilities P are illustrated in Fig. 1.

In the first step of the methodology, the MLP (1 hidden
layer with 64 perceptrons) is constructed using the open-
source Python library Keras (Chollet et al., 2015), the
high-level API to TensorFlow (Abadi et al., 2015). MLP
training is set to a maximum of 4000 epochs, with an
early termination condition of non-improving fit over the
last 500 epochs. In the second step, the design centering
problem is solved numerically using the global solver
BARON (Tawarmalani and Sahinidis, 2005) in GAMS,
using default parameters and subsolvers apart from setting
the relative convergence tolerance to 10−3.

Table 1. Computational performance metrics

Metric Value

MLP Training
Number of Epochs 4000
Training Time (min) 1 5.8

Design Centering
Number of Iterations 3
Solution Time (min) 2 5.5

1 on a single core of AMD Ryzen 5 2600x.
2 on a single core of AMD Opteron 6164.

4.1 Multilayer Perceptron Training

Fig. 2 presents the parity plot of the trained MLP for
the point samples shown in Fig. 1, where the scattered
points are translucent to portray sample density. It can be
seen that the sample density is higher towards the target
α = 0.65. This is a feature of NS-DS which is designed
to draw denser samples from reliability levels close to the
target α. Although there are a few point samples relatively
far from the parity line y = x in regions of low probability
feasibility, the simple MLP performs well on average, as
indicated by a mean absolute error (MAE) of 0.01. For
this simple case study, the MLP training used 4,000 epochs
and took just a few minutes to complete (Table 1).

An important consideration in choosing the MLP structure
is the interplay between the MLP accuracy, and the ap-
proximation error in estimating the feasibility probability
of each sample. The latter arises because the feasibil-
ity probability is estimated using Monte Carlo sampling,

Fig. 1. Scattered point samples D generated by NS-DS
with NL = 1000 live points and NP = 500 replace-
ment proposals. Colours denote the corresponding
feasibility probabilities P, estimated using Nθ = 1000
random samples. The computed largest hyperrectan-
gle inscribed within D0.55 is shown as solid black lines.
Dotted lines show the modified solution that ensures
a minimum temperature window of 10 K.

Fig. 2. Parity plot of the trained MLP. Red dotted line is
the parity line y = x, and scattered translucent blue
circles represent individual training samples.

making it highly sensitive to the number of uncertainty
scenariosNθ. For comparison, Fig. 3 shows the same design
space computed using Nθ = 100 uncertainty scenarios
only and fewer live points and replacement proposals. It
appears that both probabilistic design spaces are compa-
rable at lower reliability levels, yet become significantly
different at higher reliability levels. The predicted D0.65 is
significantly smaller with Nθ = 100 than with Nθ = 1000.
Even for the same number of scenarios Nθ, there could
be significant differences between two random samples.
In general, the approximation error will decrease and the
consistency between different random samples will improve
as Nθ increases. The MLP may also be useful in filtering
out some of this error, which highlights the importance of
limiting the complexity of the MLP to avoid overfitting.
Without careful consideration of the chosen uncertainty



Fig. 3. Scattered point samples D generated by NS-DS
with NL = 300 live points and NP = 200 replacement
proposals. Colors denote the corresponding feasibility
probabilities P, estimated using Nθ = 100 random
samples.

scenarios, arbitrarily increasing the number of perceptrons
or hidden layers in the MLP may backfire as the MLP
will start fitting the noise of the probability feasibility
estimates.

Another important aspect of MLP training is the density
and uniformity of samples in the CPP space. All sampling
algorithms produce an inner-approximation of the design
space, so there is always a chance that part of the feasible
region may be missed. As an example, Fig. 3 shows a
relatively sparse region in the middle. Here, the MLP plays
a role as an interpolant and makes predictions to “fill in
the blanks”. For a given sample density, uniformity of
the samples minimizes the likelihood for such regions to
exist. The NS-DS algorithm has a feature whereby sample
density increases towards the given target reliability level
whilst ensuring that the samples are also uniformly spread,
as illustrated in Figs. 1 & 3. Such a feature gives the MLP
a larger number of samples from a given target reliability
level, thus minimising the MLP error around it (for a given
computational budget).

4.2 Design Centering

Table 1 shows the overall time and number of iterations
taken to solve the design centering problem, for the MLP
trained on the point samples in Fig. 1. The feasibility
problems could be solved to global optimality within 10
seconds in each iteration of the cutting-plane algorithm.
However, a test global run of the relaxed optimisation
problem in the first iteration with BARON on default pa-
rameters took over one day to complete. Upon inspection
of the optimizer’s log files, we found that BARON could
identify a global optimum early on (within 20 seconds),
then most of the solution time was spent on branch and
bound to confirm the global optimality of the solution.
As a remedy, we implemented a time limit of 100 seconds
and took the best solution at termination. A consequence
of this restriction is that the computed box could be
suboptimal, that is, smaller. The alternative is to use a
local NLP solver, implying a much faster solution time.

Table 2. Computed box for the sequential
reaction case study

Critical Process Parameter dLi dUi

No Additional Constraints

Batch Time (min) 289.5 322.0
Temperature (K) 283.5 291.2

Minimum 10 (K) Window

Batch Time (min) 301.5 322.0
Temperature (K) 281.2 291.2

We found that IPOPT takes a few seconds to solve the
relaxed problems in all iterations, but it did not lead to
the same solution in this case. Because of this, the time
limit alternative was our preferred remedy as it reduces the
likelihood of erroneous results, essentially using BARON
as a multistart heuristic within the time limit.

Overlaid with the point samples D generated with NS-
DS and their feasibility probabilities P, Fig. 1 shows the
largest box inscribed within D0.55 as the region enclosed
within the solid lines. Notice that there are infeasible
points in the top left corner, i.e. sample points with
a feasibility probability below the target α. A likely
cause for this is the prediction accuracy of the MLP,
which could be precented by refining the MLP. Except for
this discrepancy, Fig. 1 shows that the methodology was
successful in computing the largest box inscribed within
the a probabilistic design space at a given reliability level.
The computed coordinates of this box are reported in
Table 2. The overlay in Fig. 1 also confirms that the locally
optimal solutions of the relaxed problems did not lead to
an overly conservative solution.

A practical concern that may come up is that three of
the four corners of the inscribed box lie on the boundary
of the chosen probabilistic design space D0.55. Some may
argue that considering these process parameters as safe
may be dangerous because there are errors introduced in
the various steps of the methodology. One example is the
MLP surrogate error being an imperfect encoding of the
real model. There is also uncertainty in the estimated
feasibility probability arising from the nature of Monte
Carlo simulations, as well as unavoidable modelling un-
certainties present in any model-based techniques. The
practical remedy is to be more conservative, i.e. to solve
the design centering problem for a probabilistic design
space with a reliability level α slightly higher than the
desired target.

Another important aspect is how sensitive the CPPs are
to disturbances. This issue is related to the formulation
of the most appropriate design centering problem. For
instance, assume that the CPPs T and τ are subject to
random variations equal to ∆T = ±5 K and ∆τ = ±5
min. The optimal box on Fig. 1 may be deemed unsuitable
since it provides a 32.5 min window for τ , but only a
7.7 K window for T . In such cases, it is possible to
impose additional constraints to achieve a more practical
operational box. For instance, the dotted lines in Fig. 1
show a box computed with an additional constraint to
ensure a minimum temperature window of 10 K. Notice
how this extra constraint alters both the volume and
position of the operating region.



5. CONCLUSIONS

Sampling algorithms constitute an important toolset to
support the model-based characterisation of a design space
in pharmaceutical quality-by-design. This paper has intro-
duced a two-step methodology to encode and communicate
the resulting sampling points into a set of independent
CPP ranges. The first step entails the construction of an
MLP as a surrogate of the probability map. This surrogate
is then embedded into a design centering problem that
seeks to inscribe the largest box within a design space of
a given reliability level, via the numerical solution of a
semi-infinite program using a cutting-plane algorithm.

The effectiveness and tractability of the methodology has
been demonstrated on a case study with two CPPs. The
MLP was found to play a central role in filtering the ap-
proximation error inherent to sampling-based techniques,
and care should be taken to avoid overfitting when con-
structing and training the MLP. Although the cutting-
plane algorithm proved effective in this low-dimensional
case study, there is no guarantee that it will terminate
finitely in general. For higher-dimensional design prob-
lems or more complex design space geometries, it might
become advantageous to implement the cutting-plane al-
gorithm by Mitsos (2011), whereby restricted right-hand
side subproblems are solved to enforce finite termination.
Another key challenge for the methodology is the difficulty
in performing global optimization on the trained MLP
using complete search methods; see, e.g., Schweidtmann
and Mitsos (2019) for a recent contribution in this area.
A possible alternative would be to explore the suitability
of other surrogate model structures, such as poynomial
functions and radial basis functions.

There may be advantages in inscribing more versatile
shapes into a design space, such as ellipsoids or polytopes
which have the potential of being a lot less conservative
than boxes. Conducting an in-depth analysis on various
measures of the inscribed shapes and possible scaling
strategies constitutes another interesting avenue for future
research. Finally, it would be interesting to investigate
design centering methodologies for problems presenting
non-connected design spaces.

ACKNOWLEDGEMENTS

This work is supported by Eli Lilly & Company through
the Pharmaceutical Systems Engineering Lab (Phar-
maSEL) program and by an EPSRC Prosperity Partner-
ship under grant EP/T005556/1.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow:
Large-scale machine learning on heterogeneous systems. URL
https://www.tensorflow.org/.

Bano, G., Facco, P., Bezzo, F., and Barolo, M. (2018). Probabilistic
design space determination in pharmaceutical product develop-

ment: A Bayesian/latent variable approach. AIChE Journal, 64,
2438–2449. doi:10.1002/aic.16133.

Blankenship, J.W. and Falk, J.E. (1976). Infinitely constrained
optimization problems. Journal of Optimization Theory & Ap-
plications, 19(2), 261–281. doi:10.1007/BF00934096.

Chollet, F. et al. (2015). Keras. https://keras.io.
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal

function. Mathematics of Control, Signals & Systems, 2(4), 303–
314. doi:10.1007/BF02551274.

Garćıa-Muñoz, S., Luciani, C.V., Vaidyaraman, S., and Seibert,
K.D. (2015). Definition of design spaces using mechanistic
models and geometric projections of probability maps. Or-
ganic Process Research & Development, 19(8), 1012–1023. doi:
10.1021/acs.oprd.5b00158.

Hart, W.E., Laird, C.D., Watson, J.P., Woodruff, D.L., Hacke-
beil, G.A., Nicholson, B.L., and Siirola, J.D. (2017). Pyomo–
optimization modeling in python, volume 67. Springer Science
& Business Media, second edition.

Hart, W.E., Watson, J.P., and Woodruff, D.L. (2011). Pyomo: mod-
eling and solving mathematical programs in python. Mathematical
Programming Computation, 3(3), 219–260.

Hettich, R. and Kortanek, K.O. (1993). Semi-infinite programming:
Theory, methods, and applications. SIAM Review, 35(3), 380–429.
doi:10.1137/1035089.

Holm, P., Allesø, M., Bryder, M.C., and Holm, R. (2017). Q8(R2).
In ICH Quality Guidelines, 535–577. John Wiley & Sons, Inc.,
Hoboken, NJ, USA. doi:10.1002/9781118971147.ch20.

Kusumo, K.P., Gomoescu, L., Paulen, R., Garciá Munõz, S., Pan-
telides, C.C., Shah, N., and Chachuat, B. (2020). Bayesian ap-
proach to probabilistic design space characterization: A nested
sampling strategy. Industrial & Engineering Chemistry Research,
59(6), 2396–2408. doi:10.1021/acs.iecr.9b05006.

Laky, D., Xu, S., Rodriguez, J.S., Vaidyaraman, S., Garćıa Muñoz,
S., and Laird, C. (2019). An optimization-based framework
to define the probabilistic design space of pharmaceutical pro-
cesses with model uncertainty. Processes, 7(2), 96. doi:
10.3390/pr7020096.

Mitsos, A. (2011). Global optimization of semi-infinite programs via
restriction of the right-hand side. Optimization, 60(10-11), 1291–
1308. doi:10.1080/02331934.2010.527970.

Mukherjee, P., Parkinson, D., and Liddle, A.R. (2006). A nested
sampling algorithm for cosmological model selection. The Astro-
physical Journal, 638(2), L51–L54. doi:10.1086/501068.

Nicholson, B., Siirola, J.D., Watson, J.P., Zavala, V.M., and Biegler,
L.T. (2018). Pyomo.Dae: a modeling and automatic discretization
framework for optimization with differential and algebraic equa-
tions. Mathematical Programming Computation, 10(2), 187–223.
doi:10.1007/s12532-017-0127-0.

Peterson, J.J. (2008). A Bayesian approach to the ICH Q8 definition
of design space. Journal of Biopharmaceutical Statistics, 18(5),
959–975. doi:10.1080/10543400802278197.

Pulsipher, J.L. and Zavala, V.M. (2019). A scalable stochas-
tic programming approach for the design of flexible sys-
tems. Computers & Chemical Engineering, 128, 69–76. doi:
10.1016/j.compchemeng.2019.05.033.

Samsatli, N., Papageorgiou, L., and Shah, N. (1999). Batch process
design and operation using operational envelopes. Computers
& Chemical Engineering, 23, S887–S890. doi:10.1016/S0098-
1354(99)80218-X.

Schweidtmann, A.M. and Mitsos, A. (2019). Deterministic global
optimization with artificial neural networks embedded. Journal
of Optimization Theory & Applications. doi:10.1007/s10957-018-
1396-0.

Straub, D.A. and Grossmann, I.E. (1993). Design optimization of
stochastic flexibility. Computers & Chemical Engineering, 17(4),
339–354. doi:10.1016/0098-1354(93)80025-I.

Tawarmalani, M. and Sahinidis, N.V. (2005). A polyhedral branch-
and-cut approach to global optimization. Mathematical Program-
ming, 103, 225–249. doi:10.1007/s10107-005-0581-8.


