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Abstract: Reinforcement learning is a branch of machine learning, where an agent gradually
learns a control policy via a combination of exploration and interactions with a system. Recent
successes of model-free reinforcement learning (RL) has attracted tremendous attention from
the process control community. For instance, RL has been successfully applied in very complex
control tasks (e.g., games such as chess or Go that contain large state spaces) and is shown to be
robust to uncertainties. These findings indicate that there is a significant potential to leverage
RL methods to improve the control of chemical processes. In this work, RL was applied to
a detailed and accurate simulation of an industrial polyol process. To manufacture the desired
product, the RL controller is required to achieve the target ending conditions determined by four
key parameters; meanwhile, economic factors are also considered in this process, including batch
reaction time and total feed amounts. The obtained results show a high consistency between
RL and the current optimal operating conditions. Additionally, an improvement opportunity
was identified by extending current control bounds of the manipulated variables. This work
illustrates that RL is capable of handling complicated industrial systems, even under realistic
operating constraints.
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1. INTRODUCTION

Reinforcement learning (RL), as one of the major machine
learning paradigms, has delivered numerous success stories
in the past decade. The origin of RL can be traced
back to Sutton (1985), which aims to solve the dynamic
optimization problem without the knowledge of an exact
mathematical model of the target environment. In 2013,
RL was first combined with deep neural networks by
Mnih et al. (2013) in the Atari game challenge and
achieved a similar level as a human player, which opened
the prelude of deep RL. Two years later, the AlphaGo
algorithm defeated one of the best human Go players,
Lee Sedol, and attracted attention from the global media.
After that, RL received tremendous interest in various
decision-making and control tasks, including robotic arm
controlling (Haarnoja et al. (2018)), behavior imitation
(Brys et al. (2015)), autonomous driving (Pan et al.
(2017)), and optimizer design (Li and Malik (2017)).

The objective of RL is to train a smart agent that can
automatically learn the optimal control policy by self-
exploration of the target system. Through exploration, the
agent can collect important data and learn the optimal
policy by maximizing the cumulative rewards from the
target system, which composes a data-driven decision-

making framework. RL has generated great interest from
the control community for process control applications.
Spielberg et al. (2019) utilized the actor-critic algorithm
to accomplish a setpoint control task for continuous pro-
cesses, which gives promising results through testing in
different systems. Ma et al. (2019, 2020) and Li et al.
(2018) presented the application of RL for the control
of polymerization reactions, demonstrating the capability
of RL for nonlinear chemical systems. Rather than di-
rectly replacing the entire control loop, the patent from
ExxonMobil (Badgwell et al. (2019)) demonstrates the
approach to incorporate DRL into the existing PID control
systems, which can adaptively tune the PID parameters
to improve control performance. In addition to control
applications, Petsagkourakis et al. (2020) and Zhou et al.
(2017) presented a RL application for process optimization
in chemical reactors.

The success of RL on above case studies provides the
opportunity to apply it on complex systems. In this work,
RL was applied to the control of a simulated polyol process
that mimics the behavior observed in the actual industrial
process. Compared to the aforementioned case studies, the
industrial polyol process faces many additional challenges
in reality. First, the success of the batch depends on
producing a polyol product that meets the specification



requirements. This is achieved when four key parameters
are within their desirable ranges at the end of a batch.
Additionally, economic benefits are maximized when the
batch time is reduced, given the same amount of total
feed. Therefore, this work focuses on the application of
RL in a simulated polyol process that takes into account
all the aforementioned challenges. A RL-based controller
is designed to guide the reaction into the desired ending
condition; meanwhile, the batch time is optimized to
achieve better economic benefits. The obtained results are
further verified and compared with the current optimal
operating conditions.

2. BACKGROUND

This section summarizes the history of RL development in
past decades, covering key concepts from the Markov deci-
sion process to value-based and policy-based approaches.
Besides these fundamental concepts, latest actor-critic al-
gorithms and critical improvements to RL are also pre-
sented in this section. The introduction of RL follows the
development path shown in Figure 1. It starts from the
definition of the Markov decision process (MDP) and then
different RL algorithms are addressed including value-
based, policy-based, and actor-critic methods. Addition-
ally, the multi-armed bandit in RL is discussed in this
section, including the epsilon-greedy approach, stochastic
policy, and entropy. Each of the above aspects of RL is
marked in different colors. Fundamental concepts of RL
such as MDP, value-based, and policy-based approaches
are colored in blue, and the recent development includ-
ing actor-critic methods and the multi-armed bandit are
colored in yellow.

Fig. 1. Summary of RL algorithm development

2.1 Markov Decision Process

The theoretical basis of reinforcement learning focuses on
the Markov decision process (MDP) (Bellman (1957)). In
a Markov process, a dynamic system is defined by two
components, the state S, and the transition probability P .
Specifically, the state S in the Markov process should fol-
low the Markov property that the conditional probability
distribution of future states only depends on the present
state, not on any past states, which is written as follows:

P (St+1|St) = P (St+1|S1, . . . , St) (1)

To formulate a decision-making objective of the Markov
process, the reward function R is introduced to evaluate

the return at each time, t with the state St. The optimiza-
tion objective can be written as:

Gt =

∞∑
k=0

γkRt+k+1 (2)

where γ is the discount factor and the value is usually set
in the range [0, 1]. Based on Equation 2, the state value
function V (s) is defined to evaluate the return at each
state, St:

V (s) = E[

∞∑
k=0

γkRt+k+1|St = s] (3)

Incorporated with the action (At) taken at each time step,
the action value function can be derived from Equation 3
as follows:

Q(s, a) = E[

∞∑
k=0

γkRt+k+1|St = s,At = a] (4)

In MDP, the action (At) is determined by the policy, π,
which is a distribution over actions given states and is
defined as follows:

At = π(St) (5)

Both value functions obey the Bellman equation.

2.2 Value-Based Methods

RL aims at finding optimal action sets for MDP. The value-
based approach (Bellman (1966); Bertsekas et al. (1995))
is the most straightforward method to solve this problem
by maximizing value functions. Thus, the optimal policy
can be written as follows:

π∗(s) = argmaxQ(s, a) (6)

In model-free RL, value functions are estimated by trials
and samples from the environment. Temporal difference
(TD) learning, proposed by Sutton (1988) is a widely used
method in RL for sampling and value evaluation, which
outperforms the Monte Carlo method in sample efficiency.
Based on this idea, Q learning (Sutton and Barto (2018))
is developed, where the action value function (Q function)
is used to determine the actions with the highest expected
returns. In Q learning, Q values can be stored in different
cells of the table corresponding to the state and action
values, which is then named as Q table method. To
improve the training efficiency of the Q table, particularly
the cases with high state and action dimensions, a deep
neural network is introduced to represent the Q function
instead of using the Q table approach. Such a method is
called deep Q network (DQN) Mnih et al. (2013), which
shows remarkable performance in Atari games.

2.3 Policy-Based Methods

Alternatively, the policy-based method is another ap-
proach for solving MDP with better action presentations.
Instead of learning the value functions and then selecting
predefined actions accordingly, the policy-based method
aims at learning the policy directly. The policy can be
represented by a neural network with a set of parameters
θ, denoted as π(a|s; θ). To find the optimal policy, policy



gradient (Sutton and Barto (2018); Sutton et al. (2000)) is
used to train the policy network, which is given as follows:

∇J(θ) = Eπθ[∇lnπ(a|s; θ)Qπ(s, a)] (7)

Nevertheless, the Q function is not explicit in the policy-
based method. In the REINFORCE approach developed
by Williams (1992), the Q function is approximated
through the Monte-Carlo method using samples from each
episode to update the parameters, θ, where the policy
gradient can be written as:

∇J(θ) = Eπθ[Gt∇lnπ(a|s; θ)] (8)

where Gt is the score function obtained from one episode
to approximate the value function.

3. METHOD

In this work, an actor-critic RL method, named soft actor-
critic (SAC) Haarnoja et al. (2018) was used as the control
framework for the simulated polyol process. The actor-
critic RL methods were developed to further improve
RL’s learning efficiency, which combine the advantage
of both value-based methods and policy-based methods.
The actor-critic approach consists of two parts: the value
network, and the policy network. The value network is the
same as in the value-based approach for value function
representation, which is called “critic”. Parameters of the
value network are usually updated by the mean squared
error between the predicted value and the sampled value
from the environment. The policy network is utilized for
generating actions, which is called “actor”. In SAC, an
entropy term is considered in the loss function to regulate
the randomness of the policy distribution (Mnih et al.
(2016); Haarnoja et al. (2018)), which encourages the
random exploration of the environment.

Due to the long time dependence of the batch process, it
can hardly satisfy the Markov property. To address this
partial observation issue, the memory-based RL frame-
work (Heess et al. (2015); Peng et al. (2018)) is adopted
for both of the actor and critic networks, which uses long-
short term memory (LSTM) recurrent neural network to
integrate historical information. The architecture of the
policy network and the value network is illustrated in Fig-
ure 2. Such two branch architecture is adopted from Peng’s
work Peng et al. (2018), which shows great performance
comparing to other structures. After tuning the size of
hidden layers, the dimension number is set as 64 for both
the fully connected layer and the LSTM layer.

As an off-policy RL method, SAC uses a replay buffer
to store states, actions, rewards, and recurrent states for
training. The value network (critic) is updated by the
mean squared error between the predicted Q value, Qp
with the target Q value Qt.

Lq =
1

n

n∑
i=1

(Qp −Qt)2 (9)

where the target Q value is calculated from sampled data
incorporating with entropy loss. The entropy term in the
target value function encourages the RL agent to achieve
a better exploration performance.

Qt = r(si, ai) +Q(si, ai)− α log π(ai+1|si+1) (10)

(a)

(b)

Fig. 2. Demonstration of the LSTM RL framework, (a)
LSTM-based policy network, (b) LSTM-based value
network. FC refers the fully connected layer with a
nonlinear activation function. LSTM refers the long
short-term memory network. A, S, and Q represent
the action, state and value for RL.

The policy network (actor) is updated by the following loss
function:

Lπ = − 1

n
(α log π(ai|si)−Q(si, ai)) (11)

Figure 3 illustrates the training cycle of the RL controller.
The training of the RL agent starts from its interaction
with the reaction environment, which generates data that
is subsequently stored in a replay buffer. Once enough sam-
ples are accumulated in the replay buffer, the two networks
can be updated by backpropagating the loss functions. The
trained agent is evaluated in a testing environment. The
stochastic policy is used in the training phase for better
exploration, while during model evaluation, the policy
network becomes deterministic. After each episode, the
training environment is reset for the next iteration.

4. CASE STUDY

The case study used in this work is a simulation of an
industrial polyol process. In this batch polymerization
process, epoxides (ethylene oxide (EO) and propylene
oxide (PO)) are the key ingredients catalyzed by KOH
in a batch reactor. The procedure of this process can be
specified as follows. A low molecular weight alcohol is
first mixed with the catalyst in the liquid phase. Then,
monomers (EO and PO) are fed into the liquid phase with
given rates. The reaction temperature is controlled by a
heat exchanger, and the reactor pressure is controlled by
a vent system control valve. The rigorous model of the
process can be referred to Nie et al. (2013)’s work.



Fig. 3. Training cycle of RL

The objective of this process is to achieve the ending
conditions that determine that the product is within
specifications, while also minimizing the reaction time.
In this process, the ending condition is determined by
four key parameters: the unreacted oxide, two quality
parameters, and a safety parameter. These parameters at
the end of the batch ensure product quality and process
safety. Besides the constraints at the end of the batch,
there is another constraint on the total feed amounts of
EO and PO. Due to the proprietary reasons, the detailed
numerical values for this process are not disclosed.

Based on this polymerization process, the training envi-
ronment for the RL controller can be designed. The three
manipulated variables are the EO flow, PO flow, and tem-
perature, where the total feed amount of EO and PO are
limited. Once the allowed amount of EO and PO are used,
no further EO and PO are fed to the reactor. A shaped
reward function is defined to train the RL controller, which
is given as follows:

r =


c/t if achieving target condition

−
4∑
i=1

d(si, starget), else

(12)

where c is a positive constant, t is the time step, d is the
distance function, and s are the four key parameters men-
tioned previously. The rewards value is regulated by the
time step to differentiate the early and late achievement
of the ending condition. A high value is given for early
convergence, which encourages the RL agent to guide the
system into the desired conditions as early as possible. The
states of the RL controller include the four key parameters,
and some other measurements such as pressure, molecular
weights, etc. Additionally, distances from the target value
of the four key parameters, as well as the available EO
and PO amounts are incorporated as states of the RL
controller. Thus, a total of 13 state measurements is used
in the RL controller.

5. RESULTS

This section presents the results of applying RL to the sim-
ulated polyol process. The training of the SAC controller
follows the procedure in Figure 3. The evaluation curve

shown in Figure 4 indicates that the RL agent can learn
the control policy in about five thousand episodes, where
positive averaged rewards can be observed. To avoid the
drop in rewards after five thousand episodes, the optimal
RL policy is saved at the episode (4700) with the highest
rewards value.

Fig. 4. Training curve of RL on the polyol process

Figure 5 illustrates the learned result, which is also com-
pared with the computed optimal recipe from Nie et al.
(2013)’s work and historical operation data from plants.
The RL controller has a consistent optimum as the others,
which provides similar control trajectories. In Figure 5, SP
is the abbreviation of safety parameter, QP is the abbre-
viation of quality parameter, URO represents unreacted
oxide, EOFRAC is the EO fraction, and MW is the molec-
ular weight. The red dashed lines in the figure represent
the target condition of key parameters. Achieving all of
them indicates a preferred product grade and the end of
the reaction. Although the temperature profile is slightly
different in the beginning, the EO and PO flows are highly
similar to the known optimum as well as the operation
profile from the plant. The responses of key parameters
shown in Figure 5a also indicate this similarity, where key
parameters from RL achieve the target condition at the
same time as the others.

In the current reaction system, it seems that the exist-
ing recipe has already achieved the optimal performance.
Therefore, to find a possible improvement for future reac-
tion design, the upper bounds of three manipulated vari-
ables are extended from the original design. The optimized
results obtained by RL are summarized in Figure 6. The
improvement of each key parameter is indicated in Figure
6, where the ending time is determined by the last key
parameter (QP 1) to meet the ending condition. In this
test, the reaction time to achieve the target condition
is reduced by 18% compared to the original setup. The
strategy used by the RL agent is to increase feed rates of
reactants EO and PO into the reactor with a necessary
digestion time between each feed. In this sense, the result
obtained by RL suggests a possible improvement direction
that the batch time of the polyol process can be reduced
by increasing inlet flow rates of reactants.



(a)

(b)

Fig. 5. Performance comparison on polyol process among
RL with known optima and real plant operation in
normalized scales

6. CONCLUSION

This work applied RL in the optimal control of an indus-
trial polyol process. The final product of the polyol process
is determined by four key parameters, and meanwhile the
reaction time of each batch should be reduced to obtain
better economic benefits. The soft actor-critic algorithm
was adopted in the polyol process to achieve such control
objectives. Results in this work illustrate that RL can
achieve similar performance as the traditional optimiza-
tion techniques. RL also helps to understand how certain
control parameters can affect the overall process through
the changes in rewards. A scenario of increased feed rates is
verified in RL, and the overall result is consistent with our

(a)

(b)

Fig. 6. Optimization results of RL using extended upper
bounds on manipulated variables and its comparison
with other two methods

prior knowledge, which gives us the confidence to apply
it further in other processes. In this study, RL shows
a promising performance in solving complex industrial
control problems, and we expect to see further applications
of RL in the chemical industry.
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