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Abstract: Air separation systems are crucial in the production of oxygen, which has gained
particular relevance during the COVID-19 outbreak. Mechanical ventilation can compensate
respiratory deficiencies along with the use of medical oxygen in vulnerable patients infected with
this disease. In this contribution, a many-objective simulation-based optimization framework
is proposed for determining eleven decision variables for the operation of an air separation
unit. The framework combines the capabilities of the process simulator PRO/II with a Python
environment. Three objective functions are optimized together towards the construction of a
3-D Pareto front. Results provide insightful information regarding the most adequate operating
conditions of the unit, including the definition of an operational window rather than a single
operational point.

Keywords: Many-objective optimization, 3-D Pareto front, Cryogenic air distillation,
Operational window.

1. INTRODUCTION

Governments and the healthcare sector worldwide have
struggled during the COVID-19 outbreak in 2020. At the
peak of infected cases some cities have experienced the
scarcity of oxygen supply. Medical oxygen is prescribed
to patients through mechanically ventilated devices at
the intensive care units aiming for the patient’s recovery
(Whittle et al., 2020). In this context, this infectious dis-
ease has risen the attention towards oxygen supply facil-
ities. A cryogenic air separation unit (ASU) is employed
to separate air into its principal constituents, primarily
oxygen (O2), nitrogen (N2) and argon (Ar). However, these
products might vary in their purity, phase and produced
quantities.

ASUs are well studied systems that usually consist of
three sections: compression, refrigeration, and separation.
In this context, Zhu et al. (2001) implemented a low-order
dynamic model for a cryogenic distillation column utilized
mainly for N2 purification using the process simulator
HYSYS. Jiang et al. (2003) examined the optimization
of a pressure-swing absorption (PSA) system for air sep-
aration tailoring optimization algorithms. Huang et al.
(2009) proposed a nonlinear model predictive control for
adjusting the operating conditions of a PSA system and for
responding to variations in the product demand. Searching
for design improvements, Manenti et al. (2013) studied the
process intensification of an ASU using the commercial
simulator PRO/II. The main aims in this work were to
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improve the O2 purity, the recycle of the rich Ar stream
and to evaluate the feasibility of producing energy. Aneke
and Wang (2015) analyzed the implementation of heat
recovery cycles with different configurations at the com-
pression stage for enhancing the energy efficiency of the
system. Negrellos-Ortiz et al. (2018) studied the dynamic
optimization of a cryogenic ASU using a derivative-free
optimization strategy and the simulation package ASPEN
Dynamics. Regarding improvements in the compression
stage, Tesch et al. (2017) evaluated the integration of
LNG regasification into air separation processes. In this
case, an exergy and an economic analysis were carried out
using the process simulator ASPEN Plus. Even though the
aforementioned contributions have addressed simulation-
based approaches, the utilization of many-objective op-
timizations has not been reported in the literature. The
advantage of these optimization strategies is that the set
of Pareto-optimal points permits to define operational
windows based on the resultant decision variables.

In this contribution, a simulation-based many-objective
optimization approach is proposed for determining eleven
key decision variables of an ASU while optimizing three
conflicting objectives. The simulation model incorporates
a compression train located upstream the ASU. In our
practice, the process simulator PRO/II and a Python envi-
ronment are integrated following the guidelines introduced
by Jones et al. (2019). Herein, the three objective functions
are the annualized cash flow (CF ), the efficiency of the
Rankine Cycle at the compression stage (ef), and the
capital expenditures (CAPEX) of the facility. The first
two objectives are maximized while the third objective



is minimized using a high-level evolutionary optimiza-
tion algorithm for many-objective problem formulations
known as the reference vector-guided evolutionary algo-
rithm (RVEA) (Cheng et al., 2016). The achieved results
provide guidance regarding the most adequate operating
conditions of the integrated system in which an operational
window for each decision variable is determined based on
a 3-D Pareto front.

2. ASU PROCESS DESCRIPTION

The production of oxygen starts with a pre-treatment
stage. In this section all the impurities, including carbon
dioxide and water, are removed for avoiding operational
inconveniences, such as the formation of hydrates down-
stream the process. This stage is typically carried out using
molecular sieve adsorbers (Castle, 2002).

Thereafter, the pressure of the air stream increases to
607.95 kPa. To achieve this condition, three compressors
arranged in series, are incorporated (C-101/102/103). An
average compression ratio of 2:1 is set for each unit.
The outlet temperature of the process stream is main-
tained in approximately 295 K by the heat exchangers
(E-101/102/103). In this contribution, a recovery Rankine
cycle is implemented for converting the adsorbed heat,
generated by the compression of air, into electricity. The
assumed efficiency of the equipment in this section is 80%.
The proposed arrangement aims to reduce the energy
consumption of the facility while promoting an efficient
operation of the system (Singla and Chowdhury, 2019).

The compressed air is split into two streams. In this sense,
10% is sent to the compressor C-201 and the remainder
to the multi-stream heat exchanger E-201. After the heat
exchange occurs, the first stream enters to the expander
C-202 and reduces its pressure to 150 kPa. The produced
energy due to the pressure drop is used by the compressor
C-201 considering a 90% efficiency of the expander.

The top pressure of the high-pressure column (T-201)
is set at 600 kPa. A concentration of 35% of O2 is
obtained in the stream at the bottoms of this column.
Regarding the design of the column, a total condenser
is considered. The overhead stream is directed to the
low-pressure column (T-202) which operates at 150 kPa.
This stream works as the reflux of the column T-202.
The selected arrangement benefits the relative volatility
between O2 and N2 in the unit. As part of the heat
integration process, the overhead stream of the column
T-202, which corresponds to the produced N2, enters to
the the multi-stream heat exchanger E-202 and then to
the E-201. Moreover, the product obtained in the bottoms
stream of the T-202 has an O2 concentration above 99%.
The residual Ar is removed by the side column T-203 which
has a condenser that operates at 150 kPa. This column
receives the bottoms product of the T-201 and a stream
derived from the stage 44 of the column T-202.

The process flow diagram of the system is illustrated in
Figure 1. This diagram includes the compression section
and the ASU. The system is simulated using the com-
mercial process simulator PRO/II in steady-state. The
high-resolution model incorporates quality constraints to
ensure that the products comply with desired quality

standards such as the degree of purity. In addition, to
simulate and calculate the multi-stream exchanger E-202,
two units were required as well as the incorporation of ref-
erence streams. The path of each flow stream is traceable
within the process, facilitating further analyses. Finally,
the pseudo-streams on each distillation column permit
to incorporate the energy integration of the whole heat
exchange network.

Fig. 1. Process flow diagram of the air separation unit
including the compression system.

3. MANY-OBJECTIVE OPTIMIZATION
FRAMEWORK

3.1 Optimization formulation

In this work, three objective functions are considered.
The first two objectives are maximized f1(x) and f2(x),
while the third objective f3(x) is minimized. We define
the optimization problem as

max
x

[f1(x), f2(x)],min
x

f3(x), (1)

subject to

h(x) = 0,
g(x) ≤ 0,

xLB ≤ x ≤ xUB ,

where, the equality constraints are denoted by h(x) and
are intrinsically included in the process simulation. The
inequality constraints correspond to g(x) and are taken
into account when verifying the convergence of the simu-
lation as well as design constraints. x ∈ R11 is the vector
of decision variables constrained between lower and upper
bounds.

The first objective function f1(x) is the CF (x), which
is calculated by subtracting the operational expenditures



(OPEX(x)) of the process from the generated revenues,
this is defined by

f1(x) ≡ CF (x) =

P∑
i=1

ciFi(x)−OPEX(x). (2)

The revenues are calculated summing the product between
the price, ci, and the flow rate, Fi(x), of each produced air
constituent i = 1, . . . , P . In this case, we consider three air
constituents, O2, N2 and Ar, i.e. P = 3. The OPEX(x) is
defined below in Eq. (5).

The efficiency ef(x) at the compression stage of the ASU is
the second objective function f2(x). The ef(x) is the ratio
between the work generated by the expander, Wexp(x),
and the sum of the heat removed by the heat exchangers
at the compression, Qhex,j(x), with j = 1, 2, . . . , q, in this
case q = 3. A generic equation is defined next

f2(x) ≡ ef(x) =
Wexp(x)∑q

j=1 Qhex,j(x)
. (3)

Finally, the CAPEX(x) corresponds to the third objective
function and denotes the capital investment required for
the facility. The CAPEX(x) is calculated by summing the
cost bare module (CBM (x)) of each rotatory and static
equipment e. The total summation is multiplied by 1.18
times the ratio between the chemical engineering plant cost
index (CEPCI) of 2019 and a base year (2001), producing
the following expression

f3(x) ≡ CAPEX(x)

= 1.18

(
E∑

e=1

CBM,e(x)

)
CEPCI2019
CEPCIbase

. (4)

The OPEX(x), used in Eq. (2), considers the 18% of
the CAPEX(x), the raw material costs (RMC) and the
utility cost (UC(x)), this is

OPEX(x) = 0.18CAPEX(x)
+ 1.23 (RMC + UC(x)).

(5)

The prices of the products as well as the cost of air
conditioning are listed in Table 1. The UC(x) and the
parameters for computing the CAPEX(x) of each equip-
ment were obtained from Turton et al. (2018).

Table 1. Prices of products and raw materials

Process stream Price units

O2 155.06 $/Ton
N2 86.51 $/Ton
Ar 195 $/Ton
air (pre treatment) 10.0 $/Ton

Table 2 shows, for each of the eleven decision variables,
their respective lower and upper bounds, and the physical
units, when it applies. Here, TE−101/102/103 correspond to
the outlet hot product temperature of the heat exchangers
E-101, E-102 and E-103, respectively. LxE1/2 are the liquid
fraction of the streams entering stages 1 and 28 of the

column T-202, respectively. ∆Tdew is the hot product tem-
perature rise above the dew point of the stream entering
stage 33 of the column T-202. Fcool is the flow rate of the
coolant at the compression stage. R1/2 are the ratio of the
coolant flows that split before entering the heat exchangers
E-101, and E-102, respectively. Since R3 is defined by the
equation R3 = 1−R1−R2, it is not considered as a decision
variable. PC−104 is the discharge pressure of C-104, and
PP−101 is the discharge pressure of P-101.

Table 2. Upper and lower bounds of the deci-
sion variables of the ASU system.

Decision variables xLB xUB units

TE−101 288 303 K
TE−102 288 303 K
TE−103 288 303 K
LxE1 0.8 1.0 -
LxE2 0.41 0.71 -
∆T,dew 3.0 5.0 K
Fcool 4.0 6.0 kmol/s
R1 0.1 0.4 -
R2 0.1 0.4 -
PC−104 150 250 kPa
PP−101 900 1100 kPa

3.2 Evolutionary many-objectives optimization framework

Unlike one-objective optimizations, many-objective opti-
mizations include conflicting objectives. Usually, it is not
possible to find a single point capable of optimizing si-
multaneously all the objective functions. In this sense, a
typical approach to solve such problems is to combine all
the objectives into a single scalar function by introducing
weights. However, the magnitude of these weights depends
on an expert opinion in terms of the importance given to
each conflicting objective.

As an alternative approach, a set of optimal solutions can
be obtained. This set of solutions is refereed as the Pareto-
optima points, which are non-dominated solutions, mean-
ing that no objective can be improved without penalizing
at least another one. The Pareto-optima points delimit the
Pareto front (PF), which is a boundary between feasible
and infeasible solutions. In this work, the PF is a surface
because there are three objectives.

Evolutionary algorithms exhibit suitable properties to
obtain reasonable solutions for highly nonlinear prob-
lems. The reference vector-guided evolutionary algorithm
(RVEA) (Cheng et al., 2016) combines the characteristics
required to tackle the proposed many-objective optimiza-
tion problem. The following description of the algorithm
is essentially a summary from Cheng et al. (2016).

The RVEA is guided by a set of predefined reference
vectors, which are used to decompose the original opti-
mization problem into single-objective sub-problems for
searching a preferred subset of the PF. The partition of the
objective space using a set of reference vectors generates
several small sub-spaces, while an elitism selection strat-
egy is utilized in each subspace. A scalarization approach
works as the selection criterion for quantifying the distance
from the solutions to the ideal point, and its closeness to
the reference vectors. This allows a balance between diver-
sity and convergence. The RVEA has the characteristics of



other decomposition-based approaches when the reference
vectors are uniformly generated to cover the whole PF.
The definition of a central vector and a radius allow a
precise preference articulation of the reference vectors.
To obtain a set of uniformly distributed solutions in the
objective space, the algorithm uses a strategy for adapting
the reference vectors according to the distribution of the
candidate solutions. In this sense, the RVEA possesses
the ability of approximating the Pareto-optimal solutions
specified by the predefined reference vectors when the PF
allocates in the whole objective space.

The different steps of the RVEA are summarized in the
following algorithm:

Input: Given a population size N , maximum number
of generations kmax, a set of unit reference vectors
V0 = [V0,1, ..., V0,N ]

Output: Final population Pkmax

Initialization:
Generate the initial population P0 with N random
individuals
LOOP Process
while k < kmax do

Qk ← offspring-creation(Pk)
Pk ← Pk ∪Qk

Pk+1 ← ref.-vector-guided-selection(k, Pk, Vk)
Vk+1 ← ref.-vector-adaptation(k, Pk+1, Vk, V0)
k ← k + 1

end while

For more details regarding the RVEA algorithm, see Cheng
et al. (2016) and the references therein. In our practice,
the selected parameters of the optimization algorithm
are a population of 88 individuals, 20 generations and 3
iterations in total.

The communication between the Python environment and
the commercial process simulator PRO/II takes place
through the Python-COM interface (Jones et al., 2019).
The Python for Microsoft Windows extensions package
known as pywin32 allows accessing Microsoft Window’s
Component Object Model (COM) to control other Mi-
crosoft applications from Python. Once the communica-
tion is established, the PRO/II COM server grants the ac-
cess to read and write in the objects and streams contained
in the process simulation. The ability of manipulating the
simulation model permits the iterative evaluation of the
high-resolution model in the PRO/II simulator.

The framework for handling the coupling between the
PRO/II simulator and the Python environment is depicted
in Figure 2. The Python environment contains the many-
objective evolutionary optimization algorithm, the con-
flicting objective functions and the problem constraints.
Moreover, the values of the decision variables, set as in-
puts, are sent through the Python-COM interface to the
process simulation in PRO/II. With the provided inputs,
the simulation runs. Thereafter, the obtained operating
conditions from the simulation return to the Python envi-
ronment for calculating the optimization objectives.

4. RESULTS

To test the performance of the proposed framework, com-
putational experiments are carried out. The packages

Fig. 2. Framework with the main elements for evolutionary
many-objective optimization of an ASU simulation
using the coupling of Python and PRO/II simulator.

PRO/II Process Engineering 10.2 (64 bit) and Spyder
(Python 3.7) are utilized. We perform the experiments in
a laptop PC Intel Core™ i7-8565U CPU @ 1.80GHz with
16.00 GB of installed RAM. In terms of computational
time, the evaluation of the first generation takes 0.17
hours (619.14 seconds) and in total the many-objective
optimization requires 12.27 hours (44178.35 seconds).

The resultant 3-D relationship of the optimization objec-
tives is portrayed in Figure 3. Here, the colored circles
represent the PF, and the smaller grey circles are the
remainder obtained feasible solution points. In addition,
the blue circles show results that exhibit a positive cash
flow while the red circles represent a negative cash flow.
This visualization introduces the PF as a surface (colored
points) emphasized at a higher cash flow and where the
trade-off between the three conflicting objectives can easily
be observed.

Fig. 3. 3-D solutions. All circles represent feasible solu-
tions. The colored circles correspond to the PF. The
red points denote a negative CF (x), while the blue
points represent a positive CF .

To facilitate the visualization of the relationship between
the objectives, 2-D projections of the results are included
in Figure 4. Here, Figure 4 (a) illustrates the CAPEX(x)



vs. ef(x). Clearly, the efficiency is directly proportional to
the CAPEX(x), meaning that at higher capital invest-
ments the efficiency of the Rankine Cycle at the com-
pression section increases as well. For further improving
the ef(x) other coolants for the heat exchangers could be
evaluated, and a more detailed modelling of the equipment
could be performed. Moreover, Figure 4 (b) shows the
relationship between the CAPEX(x) and CF (x). At the
PF, it is no clear the relationship between the objectives,
but those that show a less required capital investment and
a higher cash flow appear to be interesting for determin-
ing the optimal operational window. Finally, Figure 4 (c)
portrays the relationship between the ef(x) and CF (x).
Again there is not a clear trend, but the upper east corner
contains mainly the PF and shows a higher CF (x) at
good efficiencies of the Rankine cycle. The visualization
in different perspectives of the proposed conflicting ob-
jectives facilitates the understanding and the influence of
such objectives at the PF. These results resemble a good
decision-making support-tool for the establishment of a
suitable operational window for the ASU.

For analyzing further the set of Pareto-optimal points at
the PF and with the objective of establishing an optimal
operational window, only the solutions that show a cash
flow above 16.0 MM USD per year, an efficiency above 6%
and a CAPEX(x) below 43.0 MM USD are selected for a
detailed assessment. Even though the introduced selection
is arbitrary, it aims to favor the CF (x) as a main objective
while considering adequate and reasonable values for the
other objectives. In this context, the decision-maker will
always seek to achieve a good trade-off between all the
conflicting objectives. The four selected optimal points
along with their objective function values and decision
variables are enlisted in Table 3.

Table 3. Selected results allocated at the PF
with a cash flow above 16.0 MM USD per
year, an efficiency above 6% and a CAPEX(x)

below 43.0 MM USD.

Objectives Case 1 Case 2 Case 3 Case 4 units

CF 16.28 16.46 17.61 17.66 MM $/Y
ef 6.0 6.2 6.1 6.2 -
CAPEX 42.97 42.99 42.97 43.00 MM $
Variables Case 1 Case 2 Case 3 Case 4 units

TE−101 280.9 280.7 280.5 280.7 K
TE−102 302.0 303.0 301.6 303.0 K
TE−103 280.8 280.4 280.8 280.6 K
LxE1 1.00 1.00 1.00 1.00 -
LxE2 0.70 0.70 0.71 0.71 -
∆T,dew 3.32 3.45 3.32 3.24 K
Fcool 4.36 4.03 4.35 4.03 kmol/s
R1 0.30 0.22 0.30 0.30 -
R2 0.39 0.40 0.39 0.39 -
PC−104 161.7 187.4 156.5 189.4 kPa
PP−101 1079.8 1027.7 1070.8 1077.9 kPa

Regarding the outlet temperatures of the heat exchangers
at the compression section, in all cases, the results are
consistent, but different among them. This implies that
even though their set-points must be considered indepen-
dent, its operation should follow the systems’ policy. The
liquid fractions of the streams entering the column T-
202 are consistent as well in all the cases. Moreover, the
rise above the dew point shows a very small operational
window between (3.24, 3.45) K.

(a)

(b)

(c)

Fig. 4. 2-D projections of the feasible solutions. Colored
circles represent the PF. The red points resemble a
negative CF (x), and the blue points show a positive
CF (x). Plots labeled as (a), (b) and (c) correspond
to the solutions for ef(x) vs. CAPEX(x), CF (x) vs.
CAPEX(x), and CF (x) vs. ef(x), respectively.



The last five decision variables focus on the compression
section and the loop that contains the cooling fluid. In
this context, the flow rate of the coolant as well as its
distribution to the pipelines, before entering the heat
exchangers E-101/102/103, shows variability. In terms of
Fcool, Case 1 and Case 3 are similar, the same as Case 2
and Case 4, giving an operational window of (4.03, 4.35)
kmol/s. Additionally, the ratios for distributing the cooling
fluid to the E-101/102/103 show differences. If we choose
the highest CF (x) as a design/operating scenario (Case 4)
and its respective Fcool, it would be important to consider
the ratios of Case 2 as well because both cases exhibit a
similar flow rate. Consequently, to overcome changes in the
operation, the selection of an adequate control architecture
at the compression section would be beneficial. Finally,
the discharge pressure of P-104 shows a range between
(156.5, 189,4) kPa, and the discharge pressure of P-101
shows a range between (1027.7, 1079.8) kPa. These results
show flexibility in the operation of the ASU and provide
guidance on the selection of the equipment required.

5. CONCLUSION

In this work, a many-objective optimization framework,
coupling the functionalities of Python libraries with the
process simulator PRO/II, is implemented and tested
for an ASU which focuses on the production of oxygen.
The proposed framework is capable of achieving insightful
results for establishing a reasonable operational windows
for the studied system. In our practice, a simulation-based
approach permits the exploration and exploitation of the
solution domain towards the construction of a Pareto
Front (PF) surface.

A trade-off between objectives is observed in the 3-D visu-
alization of the PF, and the 2-D projections of the results
make easier the efforts of decision-makers for reaching final
conclusions. Even though in our case study the CF (x)
was favored during the selection, the other two objectives
provide important guidance in determining the best re-
sults as well. The construction of the PF shows important
advantages, especially when compared with other multi or
many-objective approaches in which a weighted definition
of the objective function is proposed. The selection of such
weights depends on an expert opinion and sometimes on
trial and error efforts.

Future work in the topic includes the incorporation of un-
certainty to the system parameters and variables, the ex-
pansion of the ef(x) objective function and the evaluation
of other available many-objective optimization algorithms.
Because in our practice the ASU is considered as a whole
system (including the compression section), independent
studies could provide also a better direction on the proper
arrangement of the decision variables. Finally, surrogate
based optimization alternatives can be explored to improve
the computational time.
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