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Abstract: This paper presents a robust economic Model Predictive Control (EMPC) formula-
tion for discrete-time uncertain nonlinear systems. The proposed controller not only ensures that
the closed-loop system is robust to disturbances, but also ensures that the economic performance
does not deteriorate in the presence of the disturbances. The key idea is to have the controller
track a robust control invariant subset of the state space with specified economic properties at all
times, and within the zone optimize the process economics. To this end, we introduce the notion
of risk factor in the controller design and provide an algorithm to determine the economic zone
to be tracked. The risk factor determines the conservativeness of the controller. Our proposed
controller is computationally less demanding as it only makes use of the system model without
disturbances. A nonlinear CSTR example is presented to demonstrate the performance of the
proposed formulation.
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1. INTRODUCTION

Nonlinear Model Predictive Control (MPC) with general
objective known as economic Model Predictive Control
(EMPC) has received significant attention in recent times.
The objective function (which may not necessarily be
quadratic) of EMPC generally reflects some economic per-
formance criterion such as profit maximization or heat
minimization, which is in contrast with tracking or sta-
bilizing MPC where the objective is a positive definite
quadratic function. The integration of process economics
in the control layer makes EMPC of interest in many
areas especially in the process industry. As such, there has
been a significant number of applications of EMPC (Liu
et al. (2015); Decardi-Nelson et al. (2018); Zhang et al.
(2020); Griffith et al. (2017)). To address stability and
computational issues, several formulations of EMPC have
been proposed (Angeli et al. (2011); Liu and Liu (2016);
Ellis et al. (2014)).

It is worth mentioning that majority of current results
on EMPC focused on deterministic systems without con-
sidering the presence of uncertainties or disturbances.
Uncertainties are unavoidable in real world applications
and arise as a result of imperfect models or unmeasured
disturbances. The presence of uncertainties in the control
system can result in performance degradation and/or loss
of feasibility which can lead to loss of stability. Moreover,
it is not fully understood how the presence of disturbances
or uncertainties affect EMPC. In the context of stabilizing
MPC, several different concepts have been introduced to
address the problems arising from the presence of uncer-
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tainties (See Mayne (2016) for a survey on robust and
stochastic MPC as well as their associated challenges).

However, as pointed out in Bayer et al. (2014), simply
transferring robust MPC techniques into an EMPC frame-
work could result in poor economic performance. This is
due to the fact that robust MPC techniques have been de-
signed to reject all disturbances to achieve its desired goal
which may not be the case for EMPC. This is because some
disturbances can lead to better economic performance. To
this end, some results on robust EMPC has been proposed.
Lucia et al. (2014) presented a robust EMPC formulation
based on scenario tree approach. Tube-based formulations
with and without stochastic information have also been
proposed in Bayer et al. (2014, 2016). The above formula-
tions are either computationally demanding or restrictive
since they inherit robust MPC techniques. Thus, simple
robust EMPC formulations which does not compromise or
hinder the performance of EMPC are desired.

In this work, we present a novel EMPC formulation for
controlling constrained nonlinear systems subject to un-
measured but bounded disturbances. The proposed formu-
lation incorporates economic risk in the controller design
using the concept of zone control. The concept of zone con-
trol is not new. Zone MPC have been reported in several
areas such as diabetes treatment (Grosman et al. (2010)),
anaemia management (McAllister et al. (2018)), control
of building heating systems (Privara et al. (2011)), control
of irrigation systems (Mao et al. (2018)) and coal-fired
boiler-turbine generating system (Zhang et al. (2020)).
In the context of MPC literature, zone control is often
dismissed as a trick to avoid feasibility issues and has
received less attention in terms of theoretical analysis. A
recent exposition on the stability analysis of MPC with



generalized zone tracking (Liu et al. (2019)) paves the
way for further applications of zone control. Our idea is to
drive the states of the system to a zone which is a robust
control invariant subset of the state space with specified
economic properties. By creating a zone objective, the
desired closed-loop economic performance in the presence
of uncertainties can be specified in the controller design
using a tuning parameter known as a risk factor. We
demonstrate the effectiveness of the proposed controller
using a nonlinear chemical process example.

2. PROBLEM SETUP

In this work, we consider finite dimensional discrete-time
nonlinear process systems of the form

x(t+ 1) = f̂(x(t), u(t), w(t)) (1)

which can be further decomposed into the form

x(t+ 1) = f(x(t), u(t)) + g(x(t), w(t)) (2)

In Equations 1 and 2, x ∈ Rn is the system state, u ∈ Rm

is the control input and w(t) ∈ Rp denotes the disturbance

affecting the system at the current time t ∈ I≥0. Also, f̂
is the nonlinear system with disturbances, f is the process
system without disturbances and g is the mismatch caused
by the presence of disturbances. The system state and
input vectors are restricted to be in the coupled non-empty
compact convex sets of the form

(x(t), u(t)) ∈ Z ⊆ X × U (3)

and the disturbance vector is bounded, i.e. w(t) ∈ W for
all t ∈ I≥0. The sets U and W are required to contain
the origin in their interior. We assume that the functions
f : Rn×Rm → Rn and g : Rn×Rp → Rn are continuous.

The primary control objective is to find a stabilizing
feedback control law u(t) = µ(x(t)) that renders the
closed loop system (2) feasible and minimizes the average
economic cost over the infinite horizon T

lim sup
T→∞

1

T

T−1∑
t=0

`e(x(t), u(t)) (4)

where le : Rn × Rm → R is a general economic cost
function which may not necessarily be quadratic and
positive definite with respect to an equilibrium point.

As a result of the presence of the disturbances, it is in gen-
eral difficult to determine the control inputs. One concep-
tual approach to determine the optimal feedback control
law is to solve a min-max optimization problem (Mayne
(2016)). While this approach is conceptually appealing, it
suffers from high computational demand which makes it
impractical to implement. In this paper, we propose an
EMPC scheme based on zone tracking and the nominal
model. The zone to be tracked can be considered as an
economic trust region where the controller ensures that
the system states stay inside all the times. This makes
our proposed approach similar to other trust-region based
approaches such as the Lyapunov-based EMPC techniques
(Heidarinejad et al. (2012)). However, our formulation in-
troduces economic risk factor in the controller design thus
implicitly considers an upper bound on the asymptotic
average performance of the closed-loop system.

3. ROBUST EMPC FRAMEWORK

In this section, we present the proposed EMPC algorithm
that tracks an economic zone to ensure that the dynamics
of (2) is restricted to an economic zone whenever possible
and within the zone optimize the process economics.
Thus, we transform the EMPC problem to tracking an
economically viable zone (irrespective of the disturbances).

Let us first assume that such an economic zone has been
created and is denoted as Xe. The procedure to create such
an economic zone will be discussed in Section 4. We first
define (xs, us) as the economically optimal steady state in
the target economic zone Xe. That is

(xs, us) = arg min `e(x, u) (5a)

s.t. x = f(x, u) (5b)

(x, u) ∈ Xe × U (5c)

Without loss of generality, we assume that (xs, us)
uniquely solves the steady state optimization problem.

3.1 Robust Economic MPC formulation

With information about the current state x(t), our pro-
posed controller uses the nominal model

z(k+1) = f(z(k), v(k)), z(0) = x(t), k = 0, . . . , N−1
(6)

to find a control sequence v = {v(0), . . . , v(N − 1)}
and associated state sequence z = {z(0), . . . , z(N)} that
minimizes the cost function

VN (x(t),v) =

N−1∑
k=0

`e(z(k), v(k)) + `z(z(k)) (7)

over the prediction horizon of N time steps. Here, z(t) ∈
X ⊆ Rn and v(t) ∈ U ⊆ Rm are the nominal state vector
and computed control input vector respectively. Also, `z
is a zone tracking penalty term which is defined as:

`z(z) = min
zz

c1(‖z − zz‖1) + c2(‖z − zz‖22) (8a)

s.t. zz ∈ Xe (8b)

with c1 ∈ R≥0, c2 ∈ R≥0 being weights on the l1 norm
and the squared l2 norm respectively, and zz is a slack
variable. The zone tracking cost characterizes the devia-
tion of the system states from the zone. Thus, our EMPC
optimization problem is a multi-objective optimization
problem which seeks to first minimize the deviation of the
system’s states from Xe as well as minimize the economic
objective. Once the system states enter the economic zone,
the zone tracking penalty vanishes and the economic cost
is optimized. To ensure that the zone is given a higher
priority, large weights on the zone penalty are used. The
presence of the l1 norm ensures that the economic zone is
exactly tracked.

At each sampling time, the following dynamic optimization
problem PN (x(t)) is solved:

min
v

VN (x(t),v) (9a)

s.t. z(k + 1) = f(z(k), v(k)), k = 0, . . . , N − 1 (9b)

z(0) = x(t) (9c)

z(k) ∈ X, k = 0, . . . , N − 1 (9d)

v(k) ∈ U, k = 0, . . . , N − 1 (9e)

z(N) = xs (9f)



In the optimization problem above, Equation 9c is the
initial state constraint, Equation 9f is a terminal equality
constraint and Equations 9d and 9e are the constraints on
the state and inputs respectively.

Remark 1. Our proposed robust EMPC formulation is
not restricted to only pointwise terminal constraints. The
terminal equality constraint in (9) can be relaxed in
the current formulation to a much larger terminal set
which is robust control invariant. However, if steady state
operation is the best operating strategy for the process,
then appropriate terminal cost and terminal set that
ensures closed-loop stability needs to be obtained. For ease
of exposition, we opted for pointwise terminal constraint
in our formulation.

The solution of PN (x(t)) denoted v∗ gives an optimal
value of the cost V 0

N (x(k)) and at the same time u(t) =
v∗(0) which is injected into (2). The prediction horizon
is shifted forward by one sampling time once information
about x(t + 1) is known and the optimization problem
PN (x(t+ 1)) is solved to find u(t+ 1).

An input sequence v is termed feasible for initial state
x(t) if the corresponding state sequence z generated by
the nominal system z(k + 1) = f(z(k), v(k)) with initial
condition z(0) = x(t) together satisfy the constraints of
the optimal control problem. We denote the feasibility
region of (9) by ZN i.e.

ZN = {(z(0),v)|∃z(1), . . . , z(N) : z(k+1) = f(z(k), v(k))

∈ Z,∀k ∈ IN−10 , z(0) = x(t), z(N) = xs}
The projection of ZN onto Rn is defined as the set of
admissible states XN i.e.

XN = {z|∃u ∈ U : (z, u) ∈ ZN}

3.2 Recursive Feasibilty

While the use of only the nominal model makes our
proposed robust EMPC formulation computationally at-
tractive, the presence of disturbances may compromise
the feasibility of the optimization problem of (9). This
must therefore be addressed. It is easy to show that the
optimization problem (9) is recursively feasible for the
nominal system (see Liu and Liu (2018)). However, since
the disturbances are not considered in the optimization
problem, constraint satisfication of the initial state is not
guaranteed even if the initial optimization problem is fea-
sible. Hence the problem may become infeasible at some
point in time. Since infeasibility is caused by the presence
of hard state constraints, one approach is to relax them to
soft constraints as done in Yang et al. (2015). This is the
approach we use in this work to ensure feasibility of the
optimization problem at all times t ∈ I≥0.

4. ECONOMIC ZONE

In the previous section, we have presented a robust EMPC
formulation with a ficticious zone objective. Thus, the
ability of our proposed controller to perform as expected
hinges on effective determination of the economic zone
Xe to be tracked. The question on how to approapriately
select the economic zone still remains. In this section, we
introduce the concept of risk factor in the controller design

and present an algorithm for determining the economic
zone Xe for our proposed controller.

4.1 Risk Factor

While the proposed controller is general, one has to de-
termine an economic zone which ensures stability without
compromising on the process economics. To proceed with
the discussion, let us recall the following definitions in set
invariance theory (Blanchini (1999)):

Definition 2. (Positively invariant set). A set Ω ⊂ X is
said to be a forward or positively invariant set of the
system x+ = f(x) if for every x ∈ Ω, f(x) ∈ Ω.

Definition 3. (Robust control invariant set). A set Ω ⊂ X
is said to be a robust control invariant set (RCIS) for
system (1) and constraint set (3) if for every x ∈ Ω, there
exist a feedback control law u = µ(x) ∈ U such that Ω is

forward invariant for the closed-loop system f̂(x, u, w) for
all w ∈W .

The idea is to determine the economic zone as a subset
of the robust control invariant subset of the state space
X with desired economic features. This way, not only will
tracking the economic zone ensure the process operates
with desired economic performance, but it will ensure
stability of the process system. To this end, we introduce
the concept of risk factor δ ∈ R in the determination of the
economic zone. The risk factor is a scalar tuning parameter
which determines the size of the economic zone Xe. This
intend determines the conservativeness of the controller.
The larger the value, the larger the size of Xe and the
less conservative the controller and vice versa. This implies
that the higher the value, the more risky decisions we allow
the controller to make.

4.2 Economic Zone Determination

The algorithm for determining the economic zone builds
on the graph-based robust control invariant set algorithm
developed by Decardi-Nelson and Liu (2021). In the algo-
rithm, the state space is quantized with the help of finite
covering, C = {B1, . . . , Bl}, of the state spaceX. The finite
covering C is a collection of closed sets known as cells or
boxes Bi, i = 1, . . . l, such that

X ⊆ ∪Bi∈CBi (10a)

Bi ∩Bj = ∅, ∀Bi, Bj ∈ C with i 6= j (10b)

Following the quantization, the system dynamics is ap-
proximated using a directed graph. Graph investigations
are then carried out on the directed graph to determine
the cells that make up the largest robust control invariant
set. We denote by Cr the cells that approximate the largest
RCIS. The algorithm for determining the economic zone
Xe is summarized in Algorithm 1.

Algorithm 1. Determination of economic zone

1: Input: g, U , W , `e, Cr, δ
2: Output: Xe

3: Initialize Ce as empty array
4: for B in Cr do
5: if ∀x ∈ B∃u ∈ U : `e(x + g(x,w), u) ≤ δ∀w ∈ W

then Add B to Ce
6: end if
7: end for



8: Xe ← ∪B∈CeB
9: return Xe

The choice of the selection criterion in Algorithm 1 stems
from the fact that every state within the robust control
invariant set is a potential initial state as well as a potential
end state after one time-step. We focus on the latter since
our proposed controller does not consider the disturbances.
Hence, for any potential end state given by the nominal
system, we know that the disturbance will be applied in the
real system. By considering the effect of the disturbance on
the states within the economic zone, we want to guarantee
that the economic performance of the closed-loop system
is bounded above by the risk factor δ. It is easy to see
that as the risk factor increases, the economic zone will
essentially converge to the largest robust control invariant
set of (1) contained in X.

5. ILLUSTRATIVE EXAMPLE

In this section, we demonstrate the efficacy of our proposed
controlled using a chemical process. We describe the chem-
ical process example used in our analysis. Subsequently, we
consider the impact of the risk factor on the asymptoptic
economic performance of our proposed controlled and then
finally compare the performance of our proposed controller
to that of tracking MPC and traditional economic MPC.

5.1 Process Description and Simulation Settings

Consider a well-mixed continuously stirred tank reactor
(CSTR) where a first-order irreversible reaction of the
formA→ B takes place. Since the reaction is endothermic,
thermal energy is supplied to the reactor through a heat-
ing jacket. Assuming constant volume reaction mixture,
the following nonlinear differential equations are obtained
based on energy balance and component balance for reac-
tant A:

dCA

dt
=

q

V
(CAf − CA)− k0 exp(− E

RT
)CA (11a)

dT

dt
=

q

V
(Tf − T ) +

−∆H

ρCp
k0 exp(− E

RT
)CA

+
UA

V ρCp
(Tc − T ) (11b)

where CA and T denote the reactant concentration and
temperature of the reaction mixture in mol/L and K
respectively, Tc denotes the temperature of the coolant
stream in K, q denotes the volumetric flow rate of the inlet
and outlet streams of the reactor in L/min, CAf denotes
the concentration of reactant A in the feed stream, V
denotes the volume of the reactor, k0 denotes the reaction
rate pre-exponential factor, E denotes the activation en-
ergy, R is the universal gas constant, ρ is the density of the
reaction mixture, Tf is the temperature of the feed stream,
Cp is the specific heat capacity of the reaction mixture,
∆H is the heat of reaction and UA is the heat transfer
coefficient between the cooling jacket and the reactor. The
values of the parameters used in the simulations are listed
in Table 1.

The control objective is to minimize the concentration of
reactant A (i.e. maximize the concentration of reactant
B) in the reactor while keeping the temperature of the

Table 1. Table of parameter values

Parameter Unit Value

q L/min 100.0
V L 100.0
cAf mol/L 1.0
Tf K 350.0
E/R K 8750.0
k0 min−1 7.2 × 1010

−∆H J/mol 5.0 × 104

UA J/min ·K 5.0 × 104

cp J/g ·K 0.239
ρ g/L 1000.0

reactor within 348K and 352K. Thus, the cost function is
multi-objective and is given by

`e(x, u) = CA +

10 × (348.0 − T )2 if T < 348.0

0 if 348.0 ≤ T ≤ 352.0

10 × (352.0 − T )2 if T > 352.0

(12)
This can be achieved by manipulating the temperature of
the coolant Tc.

Remark 4. Our proposed robust EMPC formulation is
not restricted to only process control problems with zone
objectives. The proposed controller is applicable to process
control problems without a zone objective as well. It is
only a coincidence that our example already has a zone
objective.

The nonlinear model of (11) is discretized using a step-
size h = 0.1 min to obtain a discrete-time nonlinear state
space model of the form

x(t+ 1) = f(x(t)) + g(x(t))u(t) + h(x(t))w(t) (13)

where x = [CA, T ]T is the state vector, u = Tc is the
input and w = [CAf , Tf ]T is the disturbance vector.
The input and disturbances are subject to the following
constraints: 285.0 ≤ u ≤ 315.0, 0.9 ≤ w1 ≤ 1.1 and
348.0 ≤ w2 ≤ 352.0. The disturbances are assumed to
be uniformly distributed in the constraints.

In the simulations, unless otherwise stated, the control
horizons and sampling times of all controllers are T = 20
and h = 0.1 respectively. The values of c1 and c2 were both
set at 1000.0. We assume that all the system states are
measureable and that the optimal input can be computed
in one sampling time. To ensure that the comparison
is fair, the simulation is run for 10000 time steps. The
initial state for the simulations is fixed at [0.5, 350.0]T .
The models used in both the plant and the controller are
the discretized versions of (11).

5.2 Effects of Risk Factor

We first investigate the effects of the risk factor on the
closed-loop system. This was conducted by determining
the economic zones for different risk factors. This is shown
in Figure 1. As can be seen, the size of the economic zone
increases as the risk factor increases. This is due to the fact
that by increasing the risk factor, more states are allowed
to form part of the economic zone which agrees well with
the cell selection criterion in Algorithm 1.

Following this we compare the closed-loop performance of
the system with different economic zones or risk factors
and their corresponding average economic performance
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values. This is shown in Figures 2 and 3. It can be seen in
Figure 2 that the best steady state cost in the economic
zone decreases as the risk factor increases. This because
while the effect of uncertainties is implicitly considered
in the economic zone, its effects is not considered in the
steady state optimization. Hence, as expected in economic
terms, the higher the risk taken, the better the poten-
tial yield. Therefore, only the best potential benefit is
obtained.

However, the closed-loop performance is very different
from the best steady state results. It can be seen in Figure
3 that as the risk factor increases, the average closed-loop
performance decreases up to a certain risk factor where it
increases sharply. This is due to the fact that the effect of
the disturbances are being considered in the closed-loop
system. This conforms well in economic terms since the
higher the risk taken the greater the potential for economic
gain or loss. Thus, for different set of disturbance sequence,
it is possible to obtain a very high gain. A lower risk
value therefore determines how conservative a controller
should be. This shows that our proposed controller should
be carefully tuned to ensure that the risk is not too large
to result in poor average economic performance. One way
to make better decision about the risk is to incorporate
the probability distribution of the disturbances into the
selection of the risk factor.

5.3 Comparison with Tracking MPC and EMPC

Following the analysis of the effects of the risk factor
on the controller performance, we compare our proposed
controller with risk factor of 20.0 to that of conven-
tional EMPC and tracking MPC. The tracking MPC
is made to track the best steady state point with re-
spect to the economic objective without the zone tracking
terms. The steady state values with and without the eco-
nomic zone are (xs, us) = ([0.476 351.367]T , 299.592) and
(xs, us) = ([0.465 352.000]T , 299.412) respectively. The
tracking MPC quadratic cost is given as follows
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Fig. 2. Effect of risk factor on the best steady state cost
in the economic zone
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Fig. 3. Effect of risk factor on the asymptotic average
performance of our proposed controller

`(x, u) = |x− xs|Q + |u− us|R (14)

where Q =

[
1.0 0.0
0.0 1.0

]
is the weight on the states and

R = 0.0 is the weight on the input. The selected tuning
parameters

The results of the comparison is shown in Table 2. As
can be seen, our proposed controller gave a lower average
economic cost compared to the tracking and the conven-
tional EMPC. To understand why this is so, Figure 4
has been provided. Figure 4 shows the state, input and
economic trajectories of the closed-loop system under the
three controllers. It can be observed that our proposed
EMPC forces the system to operate at a temperature
below the 352.0K thus allowing room for the disturbances
to occur without any significant effects on the economics.
This results in a fairly stable process economics. The two
other controllers on the other hand, does not consider the
disturbances and therefore operate close to 352.0K. Thus,
the effects of the disturbances causes the system to operate
in an expensive zone which results in a much higher cost.



Table 2. Average economic cost for the differ-
ent controllers

Controller Average cost

Tracking MPC 0.53149
Conventional EMPC 0.53153

Proposed EMPC 0.47143
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Fig. 4. State, input and economic cost profiles of the
CSTR process under tracking MPC (blue), conven-
tional EMPC (red) and our proposed EMPC (yellow)

6. CONCLUDING REMARKS

In this work, we have proposed a robust economic model
predictive control framework for general nonlinear systems
which essentially ensures that the asymptotic average
performance of the closed-loop system does not deteriorate
in the presence of disturbances. They key idea is to
bind the operation of the system under the proposed
controller in a subset of the state space which is not only
robust control invariant but also has desired economic
properties. To achieve this, a ficticious zone tracking term
is added to the economic objective resulting in a multi-
objective optimization problem. With a large penalty
on the zone, the controller seeks to keep the states of
the system in the economic zone whenever possible and
within the zone, optimize the process economics. The
concept of risk factor is introduced in the controller design
and algorithm for determining the economic zone is also
presented. The simulation results demonstrate the efficacy
of our propopsed approach.
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