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Abstract: A dissipativity-based observer design for a class of cell population balance models is
presented and evaluated using experimental data. The population balance model is described by
a partial integro-differential equation coupled with an ordinary differential equation for a batch
bioreactor with biomass measurement via an optical density sensor. The dissipative observer
is proven to exponentially converge in the first moment of the cell size distribution and the
substrate concentration in the absence of modeling and measurement errors. The theoretical
results are evaluated using experimental data from a 2 liter lab-scale reactor for anaerobic
yeast fermentation on glucose using nitrogen gas supply, showing a good performance of the
dissipativity-based estimation scheme.
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1. INTRODUCTION

Mass-balance based macroscopic models representing the
total biomass and substrate in the reactor are typically
unsegregated and unstructured [Schügerl and Bellgard
2000]. Models including detailed information about cell-
internal metabolism are called structured models, while
those providing explicit information about the cell size (or
mass) distribution are called segregated models. Cell size
population models [Villadsen 1999, Daoutidis and Henson
2002] are thus segregated bioreactor models that offer
explicit information about how a cell culture evolves on a
microscopic scale by considering explicit cell division rate
functions that are experimentally validated using cell size
distribution measurements or microscopic image analysis.
These models also provide the typical mass-balance in-
formation on a macroscopic scale after building the first
moments of the distribution [Daoutidis and Henson 2002]
and are naturally represented in form of partial integro-
differential equations coupled with ordinary differential
equations. Process monitoring with explicit cell size dis-
tribution information is time and cost intensive due to
the need of a particular measurement device, or time con-
suming and/ or imprecise when using microscopic image
analysis. Furthermore, the explicit inclusion of cell size
distribution measurement in an existent monitoring sys-
tem is considerably more involved than using macroscopic
data, like the optical density, which is typically measured
on–line and is directly correlated with the total biomass
in the reactor.

This motivates the question whether it is possible to build
a simple extension for a classical optical-density based
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monitoring system to additionally provide reliable on–line
information about the cell size distribution over a batch
process. This problem is addressed in this study.

While the observer design problem for unsegregated mod-
els has been addressed, e.g., using high-gain observers
[Gauthier et al. 1992], asymptotic observers [Dochain
et al. 1992, Dochain 2003], dissipativity-based observers
[Moreno 2005, Schaum and Moreno 2006] and interval
observers [Moisan et al. 2009, Goffaux et al. 2009], only
recently the observer design problem for segregated models
has attained more focus (see [Schaum and Jerono 2019]).
In the mathematically related area of crystal growth mod-
els several studies have been reported based on finite-
dimensional and moment-based model approximations in
combination with Luenberger and high-gain observers
[Motz et al. 2008, Bakir et al. 2006] as well as different
Kalman Filter concepts [Mesbah et al. 2011]. In contrast to
early-lumping, where the resulting convergence properties
depend directly on the employed approximation method,
late-lumping design approaches enable to exploit the prop-
erties of the distributed parameter model directly and
yield observation schemes that can be implemented using
different kind of numerical approximation algorithms, like
the finite-difference, the finite elements or finite volume
methods, maintaining the mathematically rigorous conver-
gence properties.

In the present study the late-lumping observer design
problem for cell population balance models with biomass
measurement (via on–line optical density measurement)
is addressed using a dissipativity-based approach. Expo-
nential convergence of the proposed observer in the first
moment of the cell size distribution and the substrate
concentration is shown for the nominal case, i.e. when no
measurement and modeling errors are present. The main



contribution of the paper consists in (i) extending the dissi-
pative observer design discussed in [Moreno 2004, Schaum
and Moreno 2006] to the class of cell population balance
models, and (ii) presenting an experimental evaluation of
the theoretical findings.

The paper is organized as follows. In Section 2 the problem
is stated mathematically. Basic notions from dissipativity
theory are summarized in Section 3. The exponential
convergence assessment for the dissipative observer is
presented in Section 4. The experimental validation of
the observer is presented in Section 5. Conclusions and
an outlook to future studies are presented in Section 6.

NOTATION

The space of absolutely integrable functions v : [a, b] ⊂
R → R so that

∫ b

a
|v(m)|dm < ∞ is denoted by L1(a, b).

The Sobolev space of weakly differentiable functions v ∈
L1(a, b) with first derivative in L1(a, b) is denoted by
H1(a, b). For a vector x ∈ Rn its norm is denoted by
‖x‖ =

√
xᵀx, where xᵀ denotes the transposed of x. The

set of non-negative real numbers is denoted by R+.

2. PROBLEM STATEMENT

Consider the following class of cell population models [Vil-
ladsen 1999, Mhaskar et al. 2002, Daoutidis and Henson
2002, Mantzaris and Daoutidis 2004]

∂tn(m, t) = −Y ∂m[r(m, s)n(m, t)]− Γ(m, s)n(m, t)

+ 2

∫ m+

m

Γ(µ, s)p(µ,m)n(µ, t)dµ
(1a)

ṡ(t) = −
∫ m+

0

r(m, s)n(m, t)dm (1b)

n(m+, t) = 0 (1c)

n(m, 0) = n0(m), s(0) = s0 (1d)

y(t) = b(t) =

∫ m+

0

mn(m, t)dm (1e)

with the cell mass m ∈ [0,m+], time t ≥ 0, cell mass
distribution n : [0,m+] × [0,∞) → R+, yield coefficient
Y , substrate concentration s ∈ [0, s+], cell growth rate
function r : [0,m+] × [0, s+] → R+, cell division rate
Γ : [0,m+] × [0, s+] → R+, partition probability density
function p : [0,m+]× [0,m+]→ R+ with p(µ,m) denoting
the probability that by division of a cell of mass µ a cell
of m is produced, and the measurement y given by the
total biomass b in the reactor which corresponds to the
first moment of the distribution n. Note that in virtue of
its definition, p has the property that

∀µ ≤ m : p(µ,m) = 0. (2)

In the sequel consider the case of a linear dependency
of r on the cell mass m as discussed in [Mantzaris and
Daoutidis 2004], i.e.

r(m, s) = ρ(s)m, (3)

with specific growth rate ρ : [0, s+] → R+ as well as the
case that the division rate Γ(m, s) is proportional to the
cell growth rate in the sense that

Γ(m, s) = γ(m)mρ(s). (4)

The existence, uniqueness and positivity of solutions in
L1(0,m+)×R+ for the equation set (1) has been shown in
[Beniich et al. 2018]. Furthermore, for the subsequent anal-
ysis the following result provides some useful background.

Lemma 1. The set [0, s+] is positively invariant for the
substrate concentration, i.e., for all s0 ∈ [0, s+] it holds
that s(t) ∈ [0, s+] for all t ≥ 0.

Proof: Considering r(m, s) = ρ(s)m with ρ(0) = 0, it
holds for s = 0 that ṡ|s=0 = 0 and for s = s+ that
ṡ|s=s+ = −ρ(s+)β ≤ 0 for all real numbers β ∈ R+. In
consequence the vector field at s ∈ {0, s+} does not point
outwards, implying that for any s0 ∈ [0, s+] the associated
solution s(t; s0) is contained in [0, s+] for all t ≥ 0. 2

For the class of cell population balance models (1) the
observability and detectability properties in the first mo-
ment have been characterized in [Schaum and Jerono 2019]
(cp. also [Schaum et al. 2005] for the unsegregated case),
showing that for a monotonic growth rate the reactor
in batch operation is observable in the first moment of
the distribution and non-observable and non-detectable
for non-monotonic growth rates. While in [Schaum and
Jerono 2019] an asymptotic-like observer was built for a
continuous reactor operation, here the case of a batch
operation is considered with a monotonic growth rate,
ensuring the reactor observability in the first moment and
a dissipativity-based observer with correction scheme in
both states is designed. For this purpose some important
concepts and results from dissipativity theory are summa-
rized next.

3. RELEVANT NOTIONS AND RESULTS FROM
DISSIPATIVITY THEORY

In this section a short review is provided of the relevant
notions and results from dissipativity theory that are used
later for the design of an exponentially convergent observer
for the first moment of the cell size distribution. More
detailed discussions of this subject can be seen in the
seminal texts [Willems 1972a,b, Hill and Moylan 1980,
Brogliato et al. 2007]. In what follows consider a non–
linear feedback loop of a non–linear input-output system
described in the Euclidean state-space Rn

ẋ = f(x,ν), t > 0, x(0) = x0 (5a)

σ = Hx, t ≥ 0 (5b)

ν = ψ(σ), t ≥ 0, (5c)

with x(t) ∈ Rn for t ≥ 0, f : Rn × Rp → Rn a vector
field that is continuously differentiable with respect to
both arguments, H ∈ Rq×n and ψ : Rq → Rp. It is
assumed that ψ is sufficiently well behaved to ensure
existence of a unique solution x : [0,∞) → Rn so that
x(0) = x0. For the input-output system (5a),(5b) without
the feedback (5c) an input function ν : [0,∞) → Rp is
called admissible, if for all x0 ∈ Rn a unique solution to
(5a) exists. Accordingly, for the state at time t ≥ 0 denote
x(t) = x(t;x0,ν) with x(0;x0,ν) = x0. The set of all
admissible inputs is called U .

Definition 1. The input-output system (5a),(5b) is called
dissipative with respect to the supply rate ω : Rp ×
Rq → R, if there exists a positive semi-definite storage
function S : Rn → R so that for all x0 ∈ Rn and admissible
inputs ν ∈ U it holds that



S(x(t;x0,ν))− S(x0) ≤
∫ t

0

ω(ν(τ),σ(τ))dτ. (6)

If S ∈ C1(Rn,R), then this can equivalently be written as

∂xS(x)f(x,ν) ≤ ω(ν,σ). (7)

In the following only the case of differentiable storage
functions is considered.

Definition 2. For a given triplet (Q,S,R) with Q ∈
Rn×n, Q = Qᵀ, S ∈ Rn×p, R ∈ Rp×p, R = Rᵀ the input-
output system (5a),(5b) is called (Q,S,R)-dissipative, if it
is dissipative with respect to the quadratic supply rate

ω(ν,σ) =

[
ν
σ

]ᵀ [
Q S
Sᵀ R

] [
ν
σ

]
. (8)

It is called (Q,S,R)-strictly state dissipative, if there exists
a constant κ > 0 so that

∂xS(x)f(x,ν) ≤ ω(ν,σ)− κ‖x‖2 (9)

with ω given by (8).

For the static map (5c) the following definition is useful.

Definition 3. A static map ψ : Rq → Rp is called
(Q,S,R)-dissipative, if ω(σ,ψ(σ)) ≥ 0 for all σ ∈ Rq.

Particular examples of static dissipative maps are given by
scalar sector non–linearities ϕ : R → R with ϕ ∈ [k1, k2]
(see e.g. [Khalil 1996]), meaning that

(k2σ − ϕ(σ))(ϕ(σ)− k1σ) ≥ 0, ∀σ ∈ R, (10)

given that the preceding inequality can be rewritten as

−ϕ2(σ) + (k1 + k2)ϕ(σ)σ − k1k2σ
2 ≥ 0.

This implies that the map ϕ is (−1, (k1 + k2)/2,−k1k2)
dissipative.

Using these concepts, the following stability results are
obtained (see, e.g., [Willems 1972b, Hill and Moylan 1980,
Brogliato et al. 2007]) ensuring the asymptotic and expo-
nential stability of the equilibrium solution x = 0 for (5).
For completeness the short proof is provided here.

Lemma 2. Consider the feedback system (5). Let the map
ψ be (Q,S,R) dissipative. If the input-output system
(5a), (5b) is (−R,−Sᵀ,−Q) strictly state dissipative with
positive definite storage function S : Rn → R then the
solution x = 0 is asymptotically stable.

Proof: Let the assumption of the lemma hold true and
denote by s(t) = S(x(t)) the value of the storage function
S at time t ≥ 0 with x(t) being the solution of (5)
evaluated at time t. It holds true that for all t > 0

ṡ(t) = ∂xS(x(t))f(x(t),ν(t))

≤ ω(ν(t),σ(t))− κ‖x(t)‖2

= ω(ψ(σ(t)),σ(t))− κ‖x(t)‖2.
By assumption it holds true that

ω(ψ(σ),σ) =

[
ψ(σ)
σ

]ᵀ [−R −Sᵀ

−S −Q

] [
ψ(σ)
σ

]
= −

[
σ

ψ(σ)

]ᵀ [
Q S
Sᵀ R

] [
σ

ψ(σ)

]
≤ 0,

given that ψ is (Q,S,R)-dissipative. In consequence, for
all t ≥ 0 one has

ṡ(t) = ∂xS(x(t))f(x(t),ν(t)) ≤ −κ‖x(t)‖2 < 0,

implying that S is a Lyapunov function and thus the
asymptotic stability of x = 0 follows in virtue of Lya-
punov’s direct method. 2

In addition to this result, the following one gives explicit
conditions for exponential stability by restricting the class
of storage functions (see also, e.g., [Moreno 2004, 2005]).

Corollary 1. Let the assumptions of Lemma 2 hold true,
and let S be such that there are constants 0 < α1, α2 ∈ R
so that

α1‖x‖2 ≤ S(x) ≤ α2‖x‖2 (11)

holds true for all x ∈ Rn. Then the solution x = 0 is
globally exponentially stable and it holds that

‖x(t)‖2 ≤
√
α2

α1
e

−κ
2α2

t‖x0‖2, ∀ t ≥ 0.

Proof: Let s(t) = S(x(t)) for t ≥ 0 as in the proof of
Lemma 2. From the assumptions of the corollary it follows
that for all t > 0

ṡ(t) = ∂xS(x(t))f(x(t),ν(t))

≤ −κ‖x(t)‖2 ≤ − κ

α2
S(x(t)) = − κ

α2
s(t)

with s(0) = S(x0). It follows from the comparison princi-

ple [Khalil 1996, Lemma3.4] that s(t) ≤ s(0)e−
κ
α2

t for all
t ≥ 0. This in turn implies that

‖x(t)‖2 ≤ 1

α1
S(x(t)) ≤ 1

α1
S(x0)e−

κ
α2

t ≤ α2

α1
‖x0‖2e−

κ
α2

t

holds true for all t ≥ 0. The result follows by taking square
roots on both sides of the inequality. 2

Considering quadratic storage functions, i.e., S(x) =
xᵀPx with P = P ᵀ � 0 the preceding results can be
further specified as shown, e.g., in [Moreno 2004, 2005,
Schaum and Moreno 2006] and exploited in the following
section for the design of an exponentially convergent
observer.

4. DISSIPATIVE OBSERVER DESIGN

Consider the following observer with Luenberger-like
simulator-corrector structure

∂tn̂ = −Y ∂m[r(m, ŝ)n̂]− Γ(m, ŝ)n̂

+ 2

∫ m+

m

Γ(µ, ŝ)pn̂dµ− lb(ŝ)

(∫ m+

0

mn̂dm− y

)
(12a)

˙̂s = − (ρ(ŝ) + ls(ŝ))

∫ m+

0

mn̂dm+ ls(ŝ)y (12b)

for t > 0, m ∈ (0,m+) with initial condition n̂(·, 0) = n̂0 ∈
L1(0,m+), ŝ(0) = ŝ0 ∈ R+ and boundary condition

n̂(m+, t) = 0, t ≥ 0. (12c)

In (12) lb, ls : R+ → R denote the observer gains which
depend on the estimated substrate concentration ŝ(t) ∈
R+ at time t ≥ 0.

Theorem 1. Consider the cell population balance model
(1) with a monotonically increasing function ρ : R+ → R
and the observer (12). Assume that

∫m+

0
mndm ≥ β∗ > 0

as well as s(0) ∈ [0, s+]. Denote by b̃(t) the first moment
of the associated cell size distribution estimation error



ñ(·, t) = n̂(·, t) − n(·, t) at time t ≥ 0 and introduce the
substrate estimation error s̃(t) = ŝ(t)− s(t). Let

k1 := min
s∈[0,s+]

∂sρ(s), k2 := max
s∈[0,s+]

∂sρ(s) (13a)

so that 0 < k1 < k2, and let Q = −1, S = (k1 +
k2)/(2β∗), R = −k1k2/β

∗. If there exist p0, p2 > 0, p1 <√
p0p2 and λb > 0 so that for 0 < κ < −R it holds true

that

λb >
1

2(p0p2 − p2
1)

(
p2(r + κ)(p0Y − p1)2

R+ κ+ (S + p1Y − p2)2
+ p2κ

)
,

(13b)

then x̃(t) = [b̃(t), s̃(t)]ᵀ exponentially converges to zero
as t→∞ provided the observer gains are chosen as

lb(ŝ) = Y ρ(ŝ) + λb, ls(ŝ) = −ρ(ŝ) +
p1λb
p2

. (13c)

Proof: Consider the observation errors ñ(·, t) = n̂(·, t) −
n(·, t) ∈ L1(0, 1), s̃(t) = ŝ(t) − s(t) ∈ R for t ≥ 0 and the
first moment of the error distribution

b̃ =

∫ m+

0

µñdµ. (14)

According to mass conservation the total mass is not
influenced by cell division [Mantzaris and Daoutidis 2004,
Schaum and Jerono 2019] so that for t > 0

˙̃
b = Y ρ(s+ s̃)(b+ b̃)− Y ρ(s)b− lb(ŝ)b̃
˙̃s = −

(
ρ(s+ s̃)(b+ b̃)− ρ(s)b

)
− ls(ŝ)b̃

and b̃(0) = b̃0, s̃(0) = s̃0. Note that

ρ(s+ s̃)(b+ b̃)− ρ(s)b = ρ(ŝ)b̃+ (ρ(s+ s̃)− ρ(s)) b.

Introduce for s̃ ∈ R
ϕ(s̃; s) = ρ(s+ s̃)− ρ(s), ϕ(0; s) = 0, ∀ s ∈ R+,

so that for t > 0
˙̃
b = (Y ρ(ŝ)− lb(ŝ)) b̃+ Y bϕ(s̃; s) (15a)

˙̃s = − (ρ(ŝ) + ls(ŝ)) b̃− bϕ(s̃; s). (15b)

For the non–linearity ϕ, by virtue of the mean value
theorem, it holds true that for all s̃ ∈ R there exists
η ∈ (0, 1) such that

ϕ(s̃; s) = ∂s̃ρ(s+ ηs̃)s̃

for all s ∈ [0, s+]. With k1, k2 as in the statement of the
theorem it follows that for a given β > 0 the non–linearity
ϕ(·; s) satisfies

(k2s̃− ϕ(s̃;σ)β) (ϕ(s̃;σ)β − k1s̃) ≥ 0 ∀s̃ ∈ R,
for all σ ∈ [0, s+], implying that ϕ(· ; s) is contained in
the sector [k1/β, k2/β] (see (10)), uniformly in σ ∈ R+. In
consequence, considering β > β∗ > 0 it follows that ϕ(·; s)
is (Q,S,R)-dissipative with

Q = −1, S =
k1 + k2

2β∗
> 0, R = −k1k2

β∗
< 0 (16)

uniformly in s ∈ [0, s+]. Further note, that for b(0) ≥
β∗ it holds that b(t; b0, s) ≥ β∗ for all t ≥ 0 and

s : [0,∞) → [0, s+]. Introducing x̃ = [b̃, s̃]ᵀ, the error
dynamics (15) for the first moment can be written in form
of the interconnection (5) as

˙̃x = AL(ŝ)x̃+ gν, t > 0, x̃(0) = x̃0 (17a)

σ = hᵀx̃, t ≥ 0 (17b)

ν = ϕ(σ; s)b, (17c)

with

AL(ŝ) =

[
Y ρ(ŝ)− lb 0
−ρ(ŝ)− ls 0

]
, g =

[
Y
−1

]
, h =

[
0
1

]
which can be viewed as an interconnection of the linear
dynamical subsystem (17a), (17b) parameterized by ŝ :
[0,∞) → R and the static non–linear feedback map (17c)
parameterized by s : [0,∞)→ [0, s+], b : [0,∞)→ [β∗,∞),
which is (Q,S,R)-dissipative uniformly in s as discussed
above.

In virtue of Corollary 1 it follows that if the linear subsys-
tem is uniformly (−R,−S,−Q)-strictly state dissipative
with a positive definite storage function S the exponential
stability of x̃ = 0 follows if there are 0 < α1 < α2 so
that (11) holds true. For this purpose consider a quadratic
storage function S : R2 → R with

S(x̃) = x̃ᵀP x̃, P = P ᵀ � 0 (18)

so that α1, α2 can be chosen as the minimum and maxi-
mum eigenvalues of P , respectively, as long as P has simple
eigenvalues. A straight forward calculation, substituting
(18) into (7) with f(x̃, ν) = AL(ŝ)x̃ + gν, shows that
the linear subsystem (17a), (17b) is (−R,−S,−Q)-strictly
state dissipative with respect to the storage function S if
and only if for all ζ ∈ [0, s+] it holds that

˙̃xᵀP x̃+ x̃P ˙̃x

= (AL(ζ)x̃+ gν)
ᵀ
P x̃+ x̃ᵀP (AL(ζ)x̃+ gν)

≤
[
σ
ν

]ᵀ [−R −S
−S −Q

] [
σ
ν

]
− κ‖x̃‖2

=

[
x̃
ν

]ᵀ [−Rhhᵀ − κI −Sh
−Shᵀ −Q

] [
x̃
ν

]
,

or equivalently, if the following linear matrix inequality
(LMI)[
Aᵀ

L(ζ)P + PAL(ζ) +Rhhᵀ + κI Sh+ Pg
Shᵀ + gᵀP Q

]
� 0 (19)

has a feasible solution P for some gain vector l = [lb, ls]
ᵀ.

Given the particular structure of (17) and writing the
matrix P as

P =

[
p0 p1

p1 p2

]
, p0, p2 > 0, p0p2 > p2

1,

where the last two inequalities ensure the positive definite-
ness of P , the LMI (19) becomes[
2p0(Y ρ(ζ)−lb)−2p1(ls+ρ(ζ)) + κ ? ?
p1(Y ρ(ζ)− lb)− p2(ls + ρ(ζ)) R+ κ ?

p0Y − p1 S + p1Y − p2 Q

]
� 0,

where ? represents symmetric entries. Choosing lb, ls as in
(13c) this LMI further simplifies to−2λb

(
p0 −

p2
1

p2

)
+ κ 0 p0Y − p1

0 R+ κ S + p1Y − p2

p0Y − p1 S + p1Y − p2 Q

 � 0.

With q = −1 according to (16), it follows by using
the Schur complement [Dym 2007] that the preceding
inequality holds true if (13b) is satisfied. 2

Remark 1. Note that by choosing λb in (13b) sufficiently
large, the main condition of Theorem 1 can always be
satisfied. Note further that the conditions are potentially
conservative. The derivation of less restrictive dissipation
inequalities will be addressed in future studies.



5. EXPERIMENTAL VALIDATION

The yeast fermentation was carried out in a 2 liter (l) lab-
scale reactor under the following process conditions:

Temperatur Tp = 25◦C, aeration QN2 = 0.1vvm

pH = 5.5, stirrer speed ns = 750rpm, s(0) = 8.496g/l

Nitrogen gas supply was used to supress aerobic metabolic
pathways. Optical Density (OD) measurements were taken
on–line at 600 nm wavelength with an identified correla-
tion biomass according to b = 8.4851 OD. Glucose and
ethanol measurements are evaluated off–line at discrete
time instances.

5.1 Cell distribution measurements

The cell size was measured using the Casy TT cell counter
and cell analyser from Omni Life Science (OLS). This
yields a cell size probability distribution over Ny = 400
channels with

yn,r,i(t) =

∫ i∆r

(i−1)∆r

nr(r, t)dr, ∆r =
r+

N
,

where nr is the cell size distribution and r+ the maximum
considered cell radius. Since the cell population model (1)
is based on the cell density functions with respect to mass,
the raw measurements of the cell analyser have been first
transformed to the mass domain leading to measurements
yn,m,i, i = 1, . . . , Ny using a uniform mass density per
volume of 44.6801 · 104 g/l, identified on the basis of the
first moment of the cell size distribution compared with
biomass dry weight measurements. A filtered version ỹn
of the distribution was then further processed. In order
to determine the cell distribution density function with
respect to mass, the inverse trapezoidal rule was used to
determine the cell density function n at mi+1 by

n(mi+1, t) =
2

∆m
ỹn,m,i(t)− n(mi, t), (20)

for i = 1, . . . , Ny − 1 with ∆m = m+/Ny. From this high-
resolution distribution over Ny channels a low resolution
version yn was obtained for identification and comparison
purposes using standard interpolation in Matlab.

5.2 Observer evaluation

To illustrate the performance of the dissipative observer a
comparison with an open-loop simulation, i.e., without any
measurement injection, is carried out for the experimental
data and erroneous initial condition. The observer is set up
as in (12) with the following functions and parameters. The
specific growth rate function is considered as a monotonic
Monod kinetics

ρ(s) =
k0s

ks + s
.

Following [Mantzaris and Daoutidis 2004], γ and p are
defined as

γ(m) = min{max{0, α(m−m0)}, γ+}

p(µ,m) =
1

B(x, z)

1

µ

(
m

µ

)x−1(
1− m

µ

)z−1

B(x, z) =
Γf (x)Γf (z)

Γf (x+ z)

where Γf is the Gamma-function (i.e. the extension of the
factorial on the real numbers). The observer is set with
the initial condition

n̂0(m) =
0.225

(m+)2
sin
(
π
m

m+

)4

, ŝ(0) = 10,

and implemented by means of a finite-difference approxi-
mation with N = 50 collocation points, backward differ-
ences and a trapezoidal quadrature rule. The remaining
parameters read

(k0, ks) = (2.966h−1, 0.7g/l), Y = 0.181, x = z = 5,

m+ = 1.5 · 10−10g, α = 1.5011 · 109, γ+ = 5.4182 · 1011

λb = (m+)−2, p0 = p2 = 1, p1 = 8(m+)2.

The time responses of the first moment, i.e., the total
biomass, and substrate together with their estimates are
shown in Figure 1 in comparison to an open-loop sim-
ulation starting at the same initial condition. It can be
seen that the open-loop simulation provides an erroneous
estimate that in particular provides a wrong prediction of
the harvest time – i.e., the time at which the batch should
be ended and the products should be withdrawn – of about
8 h while the dissipative observer adequately converges at
about 7 h and can thus be used to obtain a more reliable
prediction of the harvest time, which is about 10 h.
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Fig. 1. Top: Measured (red) and estimated (black) total
biomass of the distribution. Bottom: actual (stars)
and estimated (black line) substrate concentration.

Snapshots of the cell size distribution estimates using
the dissipative observer (black continuous line) and open-
loop simulations (blue dashed line) are compared with
the measurements (red dotted line) at different times in
Figure 2. It can be clearly seen how the measurement
injection of the first moment corrects the pure prediction
model and yields a good convergence behavior within a
small uncertainty band in about 7 h in spite of potential
modeling and measurement uncertainties.

6. CONCLUSIONS

A dissipative observer for estimating the cell size dis-
tribution and substrate concentration in a batch reactor
has been designed. Using the on–line measurement of the
total biomass via the optical density and adaptive observer
correction gains the exponential stability of the observer in
the nominal case (i.e., without modeling and measurement
errors) has been rigorously established using Lyapunov’s
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Fig. 2. Snapshots of the cell size distributions: measured
(continuous red line), dissipative observer based es-
timate (continuous black line) and open-loop simula-
tion (dotted blue line).

direct method based on dissipativity theory. The proposed
observer performance has been experimentally evaluated
in a lab-scale setup showing a good convergence behavior
with robustness against potential modeling and measure-
ment uncertainties.
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