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Abstract: In this paper, we present a filtering and smoothing scheme for process variables
characterized by a hidden monotonic trend. The proposed method models the transition
probability distribution of the hidden monotonic trend as a closed skew normal distribution and
the observed data is assumed to have a Gaussian noise added onto this monotonic trend. The
objective is to extract the monotonic trend given the noisy observations. The proposed method
has advantages in process monitoring applications involving processes driven by a monotonic
trend where vanilla Kalman filter may not be the apt option. The proposed method has been
verified on an industrial dataset of a hot lime softener process to detect the fouling buildup.
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1. INTRODUCTION

Systems driven by a hidden monotonic trend (HMT) are
a common occurrence in industrial processes. Quantities
such as catalyst activity, equipment health factors (or
equipment damage), certain types of fouling buildup, etc
are monotonic. This monotonic trend may not be apparent
in the datasets of such processes which makes monitoring
such processes challenging. Hence one needs to extract the
HMT from the observed data.

In regression approaches, such problems are formulated
as optimization problems with monotonicity constraints.
But for online applications, a linear dynamic model with
a hidden monotonic model is more desirable (Gorinevsky
(2004)). In these approaches, the state evolution is as-
sumed to happen according to a monotonic random walk
model and the output is assumed to be corrupted with
Gaussian noise. Gorinevsky (2004) assumed an exponen-
tial distribution for the process noise as it has positive sup-
port and solved it as a quadratic programming problem.
The same model was later solved in a moving horizon esti-
mation framework in Samar et al. (2004) and Gorinevsky
(2008). A Gamma process where the process noise follows a
gamma distribution could be used for monotonic trending
(van Noortwijk (2009)). Such hidden gamma process mod-
els are used to predict health factors in manufacturing and
the filtering of such signals is implemented using a particle
filter (Susto et al. (2018), Schirru et al. (2010)).

An important aspect of choosing a distribution for fil-
tering and smoothing problems apart from the physical
relevance is the ease of implementing the prediction and
update steps. That is, if the distribution remains the same
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or is tractable in the prediction and update (Bayesian
inference) steps which are crucial to obtain recursive es-
timates. Gaussian distribution has this nice property of
”closedness” while adding two Gaussian variables (pre-
diction step) and while doing posterior inference (update
step). But a Gaussian random walk model does not give
monotonic signals. In this paper, we explore the usage of
closed skew normal distribution (CSN) to model the HMT
and propose a smoothing scheme for a CSN process.

González-Farıas et al. (2004) proposed the CSN distri-
bution which is a distribution with five parameters and
as the name suggests is a skewed distribution. Similar to
the Gaussian distribution, CSN has properties such as the
linear transformation of a CSN is a CSN, and the posterior
distribution in Bayesian inference is a CSN if the likelihood
and prior are CSN. These properties allow the derivation
of recursive filtering schemes for CSN processes. Naveau
et al. (2005) derived a skewed filtering method when the
observation noise is Gaussian and the states followed CSN.
Karimi et al. (2010) derived Bayesian inversion equations
for the case where likelihood and prior are CSN. Rezaie
and Eidsvik (2014) discusses the implementation of CSN
filtering for linear dynamic systems and propose ensemble
KF with CSN distribution for nonlinear dynamic systems.
Rezaie and Eidsvik (2016) propose a skewed unscented
Kalman filter for nonlinear systems. Arellano-Valle et al.
(2019) proposed a filtering and smoothing scheme for a
linear model with Gaussian process noise and CSN noise
for observations. The CSN filtering schemes have been
applied to cases such as tracking velocity and position
of a body entering the atmosphere (Rezaie and Eidsvik
(2016)), saturation estimation in a petroleum reservoir
using seismic data (Rezaie and Eidsvik (2014)), etc. Most
of the applications are found in statistics literature and



practical implementations in process systems engineering
are scarce.

In this paper, we present a method to extract the HMT
from the observed noisy data. The HMT evolves as a
CSN distribution and the output noise is assumed to be
Gaussian. The key issue in practical implementations of
filtering equations for a CSN process is the problem of
blowing up of the dimensionality of the skewness term. We
address this issue by approximating the high-dimensional
skewness term as a low-dimension one at each time of
the forward pass. For the backward smoothing pass, as
far as we know, analytical expressions for the case where
the hidden state evolves as a CSN process have not been
derived. As will be shown later, such a derivation is
not possible with low-dimension approximation of a CSN
and we propose an importance sampling-based scheme for
smoothing. Although approaches such as constrained state
estimation based methods, or density truncation based
constrained estimation (Simon and Simon (2010)) may
be used to achieve our objective, we work with a CSN
process. The CSN distribution is parametrized by five
parameters giving a more flexible representation of the
involved distributions. Also, the density truncation may
not give good results for the monotonic trend process case
if the observation model noise variance is high.

We apply the proposed method on an industrial hot lime
softer(HLS) process to detect and monitor the fouling
buildup. The rest of the paper is organized as follows.
Section 2 discusses preliminaries regarding the CSN distri-
bution and state estimation. The proposed model and the
state estimation method is presented in section 3. Section
4 presents the case studies and the section 5 discusses the
conclusions.

2. PRELIMINARIES

In this section, we revisit the CSN distribution and the
overall procedure of state estimation.

2.1 Closed skew normal distribution

The CSN distribution can be described in terms of a
Gaussian variable and an associated Gaussian variable
with truncated observations (González-Farıas et al. (2004),
Iversen (2010)). Let us consider an n dimensional variable
s and q dimensional v which jointly follow a Gaussian
distribution.[

s
v

]
∼ Nn+q

([
µs

µv

]
,

[
Σs Γsv

Γvs Σv

])
. (1)

Let x be defined as [s|v ≥ 0]. Hence we have

p(x) = p(s|v ≥ 0) =
p(v ≥ 0|s) p(s)

p(v ≥ 0)
=

(1− Φq(0;µv,Σv))−1(1− Φq(0;µv|s,Σv|s))Nn(x;µs,Σs),
(2)

with

µv|s = µv + ΓvsΣ
−1
s (s− µs); Σv|s = Σv − ΓvsΣ

−1
s Γsv.

(3)

Here, Φq(.;µ,Σ) represents a q dimensional cumulative
distribution function (cdf) with mean µ and covariance

Σ. The distribution in (2) has a Gaussian term multiplied
by a Gaussian cdf. The cdf term causes the skewness in the
distribution. Equation (2) can be generalized to define the
probability distribution function (pdf) of CSN as follows

p(x) = CSNn,q(x;µ,Σ,Γ, ν,∆)

= Φq(0; ν,∆ + ΓΣΓ′)−1 Φq(Γ(x− µ); ν,∆) Nn(x;µ,Σ).

Here µ and Σ(n × n) are the mean and covariance of the
Gaussian part. It is to be noted that these are not the true
mean and covariance of the CSN distribution. Γ(q × n) is
called the skewness parameter. ν and ∆(q × q) are the
mean and covariance of the cdf part. It is to be noted that
when Γ = 0, CSN reduces to a Gaussian distribution.

2.2 State estimation

A hidden Markov process is characterized by two proba-
bility distributions: the state transition probability distri-
bution p(xt|xt−1) and the observation probability distri-
bution p(yt|xt). The estimation of the states x given the
observations y is performed recursively in two passes. The
forward called the filtering pass includes prediction and
update steps, and the backward pass is called smoothing
(Särkkä (2013)). The pdf calculations in these three steps
are summarized as follows.

Prediction:

p(xt|Yt−1) =

∫
p(xt|xt−1) p(xt−1|Yt−1) dxt−1 (4)

Update:

p(xt|Yt) =
p(yt|xt) p(xt|Yt−1)∫
p(yt|xt) p(xt|Yt−1) dxt

(5)

Smoothing:

p(xt|YT ) =

∫
p(xt+1|xt)p(xt|Yt)∫
p(xt+1|xt)p(xt|Yt) dxt

p(xt+1|YT ) dxt+1

(6)

Here Yt = [y1, y2, . . . , yt] is a collection of measurements
till time t and T > t is a future time instant for t.

3. MONOTONIC HIDDEN TREND ESTIMATION

The proposed approach models the state transition prob-
ability of the HMT as a CSN.

3.1 Model

Trend extraction models usually contain two equations:
one to model the latent variable (8) and the other for the
output (7). We proposed to add a third one in the form of
(9) as shown below.

yt = xt + vt (7)

xt = xt−1 + et (8)

rt = wt (9)

Here vt ∼ N (0, σ2
v) is white noise and is uncorrelated with

et and wt. Noises et and wt are Gaussian but are heavily
correlated with a correlation coefficient ρ close to 1. We
assume same variance of σ2

e for both et and wt. With these
assumptions, we have[

xt
rt

]
∼ N2

([
xt−1

0

]
,

[
σ2
e ρσ2

e

ρσ2
e σ2

e

])
. (10)
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Fig. 1. The pdf of CSN at different values of ρ.

Here, we give the modeling and estimation procedure for a
monotonically increasing signal. Extension to a monoton-
ically decreasing one is straightforward. Since we want to
have an increasing monotonic nature for the latent variable
xt, we want to calculate the probability p(xt|xt−1, rt ≥ 0).
If we condition the transition probability on rt ≥ 0, a
high ρ means, et ≥ 0 with a great chance, hence making
xt ≥ xt−1. We can write p(xt|xt−1, rt ≥ 0) as

p(xt|xt−1, rt ≥ 0) =
p(rt ≥ 0|xt−1, xt) p(xt|xt−1)

p(rt ≥ 0|xt−1)
. (11)

We can see that

p(xt|xt−1) = N (xt;xt−1, σ
2
e), (12)

p(rt ≥ 0|xt−1) = p(rt ≥ 0) = 0.5 = Φ(0; 0, σ2
e). (13)

The pdf p(rt ≥ 0|xt−1, xt) can be calculated using (3) as

p(rt ≥ 0|xt−1, xt) =1− Φ(0; ρ(xt − xt−1), σ2
e(1− ρ2)))

=Φ(ρ(xt − xt−1); 0, σ2
e(1− ρ2))). (14)

Substituting (12),(13) and (14) in (11), we get that

p(xt|xt−1, rt ≥ 0) = CSN1,1(xt;xt−1, σ
2
e , ρ, 0, σ

2
e(1− ρ2)).

(15)
The transition pdf hence is a CSN with the skewness
parameter as ρ. Since ρ is set to be close to 1, the
resulting distribution is positively skewed ensuring that
the mean of xt|xt−1 is greater than zero. Fig. 1 shows
the pdf p(xt|xt−1, rt ≥ 0) for ρ = 0, 0.9 and 0.9999. For
ρ = 0, we get the Gaussian distribution. As ρ increases
and tends towards 1, the skewness increases and when it
reaches 0.9999, it almost resembles a truncated Gaussian
distribution with truncation below mean. This ensures
that xt > xt−1 resulting in a monotonic trend. For the
observation model, we have

p(yt|xt) = N (yt;xt, σ
2
v). (16)

Equations (16) and (15) together define the system.

3.2 Filtering

Once the pdfs are set up, the next task is to perform state
estimation. The first step is the forward pass of filtering
which contains the prediction and update steps.

Prediction step: To begin, let us assume that at time t
we have

p(xt−1|Yt−1) =CSN1,1(xt−1;xt−1|t−1,Σt−1|t−1,

Γt−1|t−1, νt−1|t−1,∆t−1|t−1) (17)

with the dimension of Φ being 1. Since p(xt|xt−1, rt ≥ 0)
is CSN1,1(xt;xt−1, σ

2
e , ρ, 0, σ

2
e(1− ρ2)), using (4), we have

p(xt|Yt−1, rt ≥ 0) =

∫
p(xt|xt−1, rt ≥ 0)p(xt−1|Yt−1)dxt−1

=

∫
CSN1,1(xt; . . . ) CSN1,1(xt−1; . . . ) dxt−1. (18)

The prediction step equations for the case where the prior
and the transition pdf are CSN are given in Rezaie and
Eidsvik (2014) and the readers are requested to refer
to this paper for the detailed equations. Applying these
equations for our model, we get

p(xt|Yt−1, rt ≥ 0) =

CSN1,2(xt;xt|t−1,Σt|t−1,Γt|t−1, νt|t−1,∆t|t−1). (19)

with

xt|t−1 = xt−1|t−1; Σt|t−1 = Σt−1|t−1 + σ2
e ;

Γt|t−1 =

[
Γt−1|t−1Σt−1|t−1Σ−1

t|t−1

ρσ2
eΣ−1

t|t−1

]
; νt|t−1 =

[
νt−1|t−1

0

]
;

∆t|t−1 =

[
∆11

t|t−1 ∆12
t|t−1

∆21
t|t−1 ∆22

t|t−1

]
. (20)

Here,

∆11
t|t−1 =∆t−1|t−1 + Γt−1|t−1Σt−1|t−1Γt−1|t−1−

Γt−1|t−1Σt−1|t−1Σ−1
t|t−1Σt−1|t−1Γt−1|t−1,

∆22
t|t−1 =σ2

e − ρ2σ4
eΣ−1

t|t−1,

∆12
t|t−1 =∆21

t|t−1 = −Γt−1|t−1Σt−1|t−1Σ−1
t|t−1ρσ

2
e . (21)

We can see that the dimension of the skewness part gets
increased by 1 in the prediction step. This will blow-up
with t which will make the calculation of the moments
of CSN difficult. Hence we need to approximate the two-
dimensional skewness with a one-dimensional term. This
will be shown after the update step.

Update step: Using (5) and ignoring terms without xt,
we have

p(xt|Yt, rt ≥ 0) ∝ N (yt;xt, σ
2
v) N (xt;xt|t−1,Σt|t−1)×

Φ2(Γt|t−1(xt − xt|t−1); νt|t−1,∆t|t−1).
(22)

Note that in the above equation we have a product of two
Gaussians N (yt|xt) and N (xt). Using the Bayesian rule
expressions for Gaussians, we can write this as

N (yt;xt, σ
2
v) N (xt;xt|t−1,Σt|t−1) =

N (yt;xt|t−1, σ
2
v + Σt|t−1)×

N (xt|t−1 +Kt(yt − xt|t−1), (1−Kt)Σt|t−1).
(23)

where Kt = Σt|t−1/(Σt|t−1 +σ2
v). Using (23), we can write

the posterior probability of our case as

p(xt|Yt, rt ≥0) ∝ N (xt;xt|t,Σt|t)

× Φ(Γt|t−1(xt − xt|t−1); νt|t−1,∆t|t−1), (24)

with xt|t−1 + Kt(yt − xt|t−1) = xt|t and (1 −Kt)Σt|t−1 =
Σt|t. Also, we need to readjust the skewness term to make
it a CSN. This can be done as

Φ(Γt|t−1(xt − xt|t−1 + xt|t − xt|t); νt|t−1,∆t|t−1) =

Φ(Γt|t−1(xt − xt|t); νt|t−1 − Γt|t−1(xt|t − xt|t−1),∆t|t−1).
(25)
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Note that in the update step the dimension of the skew-
ness term has the remained same as the noise model is
Gaussian. We now have

p(xt|Yt, rt ≥ 0) = CSN1,2(xt;xt|t,Σt|t,Γt|t, νt|t,∆t|t).
(26)

where

xt|t = xt|t−1 +Kt(yt − xt|t−1); Σt|t = (1−Kt)Σt|t−1;

Γt|t = Γt|t−1; νt|t = νt|t−1 − Γt|t−1(xt|t − xt|t−1);

∆t|t = ∆t|t−1. (27)

Issue of dimensionality: As we see in the prediction step,
the dimensionality of Φ() in CSN increases by one at every
time instant. To avoid the blowing up of dimensionality,
we reduce it to 1 at the end of the update step. As pointed
out in Rezaie and Eidsvik (2014), how to best make such
approximations needs more research. However, for our case
where we need to reduce the dimensionality from 2 to 1.
We propose a simple procedure which is summarized in
the following steps.

(1) Say we have a two-dimensional cdf given for a one-
dimensional x as follows.

Φ

([
Γ1

Γ2

]
(x− µ);

[
ν1

ν2

]
,

[
∆11 ∆12

∆21 ∆22

])
. (28)

Generate the cdf as a function of x
(2) Find the values of x when Φ is 0.8413, 0.5 and 0.1587.
(3) Set the new parameters of the cdf as Γ# = 1, ν# =

x(Φ=0.5) − µ and ∆# = (x(Φ=0.8413) − x(Φ=0.1587))
2 ×

0.25. Set Γt|t = Γ#, νt|t = ν# and ∆t|t = ∆#

The above steps reduce the dimensionality of cdf from 2
to 1. This approximation works well for a good range of Γ,
ν and ∆. Once such approximation is depicted in Fig. 2.

Estimating the moments of CSN: At the end of the
approximation step, we would have a CSN with a one-
dimensional cdf term. We would then need to find the
moments of the distribution to get the estimate of the
states. The mean and covariance of the CSN pdf with one-
dimensional cdf are given as

x̂t|t = xt|t + Σt|tΓt|tη; η =
N (0; νt|t,∆t|t + Γt|tΣt|tΓt|t)

Φ(0; νt|t,∆t|t + Γt|tΣt|tΓt|t)

P̂t|t = Σt|t + Σ2
t|tΓ

2
t|tΛ− Σ2

t|tΓ
2
t|tη

2; Λ =
ηνt|t

∆t|t + Γt|tΣt|tΓt|t
(29)

Here x̂t|t and P̂t|t are the mean and covariance of the
approximated posterior CSN distribution.

3.3 Smoothing

In this step, we move backward estimating the pdf of the
state given all the available observations in accordance
with (6) with an added condition of rt ≥ 0. For compact
notations, we leave out denoting this. As we see from
this equation, there are two steps involved in deriving the
smoothing equations. First we need to calculate the pdf
p(xt|xt+1, YT ) by Bayesian inversion using p(xt|Yt) as prior
and p(xt+1|xt) as the likelihood. Then we need to perform
calculations similar to the prediction step in (4).

The Bayesian inversion can be performed similar to the
update step. To keep the dimensionality to one, we take
p(xt|Yt) = N (xt; x̂t|t, P̂t|t) which is a Gaussian with the
actual mean and variance of CSN. The Bayesian inversion
step leads to the following results.

p(xt|xt+1, Yt) ∝ p(xt+1|xt)p(xt|Yt). (30)

Plugging the respective pdfs and proceeding similar to
(22)-(25), we get

p(xt|xt+1, Yt) = CSN(xt, µ
∗
t ,Σ

∗
t ,Γ
∗
t , ν
∗
t ,∆

∗
t ). (31)

µ∗t = x̂t|t + Ct(xt+1 − x̂t|t); Σ∗t = (1− Ct)Σt|t;

Γ∗t = −ρ; ν∗t = −ρ(xt+1 − µ∗t ); ∆∗t = σ2
e(1− ρ2). (32)

Here, Ct = Σt|t/(Σt|t+σ
2
e). We can see that ν∗t is a function

of xt+1. As a result of this, the smoothing equation would
look as follows.

p(xt|YT ) =

∫
N ()Φ(. . . ν∗t (xt+1))

Φ(. . . ν∗t (xt+1))
p(xt+1|YT

) dxt+1. (33)

Because of ν∗t being a function of xt+1, we have a cdf term
in the denominator which is a function of xt+1. This term
makes the integration difficult. Hence, recursive smoothing
equations cannot be derived easily. We hence resort to
an importance sampling-based method for the smoothing
step.

Importance sampling: Let f(x) be a function whose
expected value is to be found according to a distribution
p(x). With a sampling approach, we can estimate it as

E[f(x)] =

∫
f(x) p(x) dx =

1

N

N∑
i=1

f(x(i)); x(i) ∼ p(x).

(34)

However, if we cannot sample from p(x), we can generate
samples from a sampling distribution q(x) (from which
sampling can be done easily) and then proceed as follows.

E[f(x)] =

∫
f(x)

p(x)

q(x)
q(x)dx =

∫
w(x)f(x)q(x) d(x)

(35)

Now, we can consider f(x)w(x) as the function and q(x)
as the distribution. We have

E[f(x)] =
1

N

N∑
i=1

w(x(i))f(x(i)); x(i) ∼ q(x). (36)

Smoothing via importance sampling: At t = T − 1 we
have



p(xT−1|YT ) =

∫
CSN(xT−1|xT , YT )× CSN(xT |YT ) dxT .

(37)

Since, sampling from CSN is difficult (and later we
would have a mixture CSN for p(xt|YT )), we sample from

q(xT |YT ) = N (xT ; x̂T |T , P̂T |T ), where x̂T |T and P̂T |T ) are
the means of the posterior CSN at the end of update step
calculated according to (29). We now have

p(xT−1|YT ) =
1

N

N∑
i=1

w
(i)
T CSN(xT−1|x(i)

T ), (38)

where

w
(i)
T =

CSN(x
(i)
T |YT )

N (x
(i)
T ; x̂T |T , P̂T |T )

; x
(i)
T ∼ q(xT |YT ). (39)

Equation (38) is a mixture of CSN distributions and the
moments can be estimated as weighted moments of each
CSN. Hence we have

x̂T−1|T =
1

N

N∑
i=1

w(i)x̂
(i)
T−1|T ,

P̂T−1|T =
1

N

N∑
i=1

w(i)(P̂
(i)
T−1|T + (x̂

(i)
T−1|T )2 − (x̂T−1|T )2).

(40)

For the next time step, we would have

p(xT−2|YT ) =

∫
CSN(xT−2|xT−1, YT )p(xT−1|YT ) dxT .

(41)

Since p(xT−1|YT ) is a mixture CSN, we will sample from

N (xT−1; x̂T−1|T , P̂T−1|T ). The resulting weights would be

w
(i)
T−1 =

1
N

∑N
j=1 w

(j)
T CSN(x

(i)
T−1|x

(j)
T )

N (x
(i)
T−1; x̂T−1|T , P̂T−1|T )

;x
(i)
T−1 ∼ q(xT−1|YT )

(42)

This means p(xT−2|YT ) is a mixture of CSN pdf and we
continue the process till we reach p(x1|YT ). We can observe
that p(xt|xt+1, Yt) is a CSN with negative skewness. Since
p(xt|YT ) is a weighted sum of CSN distributions all with a
negative skewness, if ρ is selected to be close to 1, we will
have x̂t|T < x̂t+1|T .

4. CASE STUDIES

We demonstrate the effectiveness of the proposed method
on two case studies: a simulation case study and an
industrial one related to a hot lime softener process (HLS).

4.1 Simulation case study

This case study is to demonstrate that the proposed
method is able to extract monotonically increasing func-
tion. In this case study, we generated 250 samples of a
sigmoid function as the HMT x. The sigmoid function is
as follows

xt = 10/(1 + exp(−0.08 ∗ (t− 125))). (43)

The observed output yt is generated by adding Gaussian
noise to xt. We implement the proposed method on this
data to extract the monotonic xt and compare it with
Kalman filter (KF) results. Fig. 3 depicts the extracted
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Fig. 3. Comparing the extracted signals (top figure) and
their rate of change (bottom figure) against the orig-
inal sigmoid function.

signals and their rate of change using KF and the proposed
method. It is clear that the proposed method is able to
extract the monotonic signal well and the KF one has a
few unnecessary oscillations. For processes with monotonic
drifts, the rate of change of the monotonic drift also would
be of interest. In such cases, KF might give misleading
results with negative rates, while the monotonic signals
will not. Also, for a given RMSE with the original sigmoid,
monotonic signals are smoother than the ones obtained
from the KF enabling easier and more accurate monitoring
of the process.

4.2 Fouling prediction in hot lime softener process

The data in this case study is obtained from an industrial
HLS unit. HLS is used to soften the produced water before
sending it to a steam generator in a steam-assisted gravity
drainage process. Produced water is mixed in a tank with
certain chemicals and is sent to filters to remove suspended
solids. Fouling deposition occurs in the pipeline between
the HLS tank and the filters. The approach is based on
the Darcy-Weisbach equation for flow through a pipe:

(F/
√

∆P )0.8 ∝ A. (44)

where F is the flowrate, ∆P is the pressure drop across the
pipe and A is the cross-section area available for the flow.
During fouling, the cross-section area A decreases gradu-
ally, and hence the quantity (F/

√
∆P )0.8 which will be re-

ferred to as the flow-coefficient, also decreases. Therefore,
we may monitor the flow coefficient for fouling buildup.
However, monitoring the flow coefficient as such is not
reliable and apparent as it is noisy. Hence we need to filter
the noises to isolate the trend. As mentioned in Alsadaie
and Mujtaba (2017), fouling rates can be classified as
linear, falling rate, asymptotic, and sawtooth nature. The
first three are monotonic while the sawtooth behavior is
monotonic initially but starts oscillating after some time
because of the flushing away of the deposited material.
Flushing away usually happens when there is sufficient
deposition of fouling and hence can be an indicator of
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Fig. 4. The original and the filtered flow coefficient (top
figure). The error between KF and the monotonic
trend is monitored to detect fouling (bottom figure).

sufficient fouling buildup. The proposed method can be
applied to all these categories to detect fouling.

In the HLS process, we observe the saw-tooth nature of
fouling. If we fit a monotonic trend to a saw-tooth curve,
it becomes easier to detect the saw-tooth nature, hence the
beginning of fouling. Based on this rationale, we propose
the following steps for a fouling monitoring scheme.

(1) Calculate the flow coefficient. Smoothen this using the
KF to get the red curve in the top figure of Fig. 4.

(2) Implement the proposed method on the calculated
flow coefficient to get the monotonic trend (blue curve
in the top figure of Fig. 4).

(3) Calculate the error between the red and the blue
curves and monitor it.

In the initial phases of fouling, there is steady deposition.
Hence the error between the monotonic curve and the red
curve will be small. As the sawtooth nature starts, the
monotonic trend will not be able to track the periodic
increasing trends. Hence the error increases. Based on
trial and error, one can set a threshold to the error and
detect when the saw-tooth behavior starts which is an
indicator of sufficient fouling buildup. We have used the
Kalman filtered signal to calculate the error with the
monotonic trend because using the calculated coefficient
directly results in very noisy errors making deductions
difficult. From Fig. 4 we can see that the proposed scheme
has successfully issued a warning of fouling at about mid
of 2017 before a rapid deterioration of the flow coefficient.
Despite the usage of importance sampling, given that there
is only one dimension of x, the method can be applied for
both online and offline trend visualization.

5. CONCLUSION

The proposed method for extracting the HMT models the
hidden signal as a CSN distribution. Similar to Gaussian
distribution, filtering schemes have been developed for
CSN in literature and we have proposed a smoothing

scheme based on importance sampling. The efficacy of
the proposed methods has been demonstrated in two case
studies encouraging further exploration of CSN hidden
Markov models for analyzing industrial datasets.
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