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Abstract: Industrial processes are large scale, highly complex systems. The complex flow of mass and 
energy, as well as the compensation effects of closed-loop control systems, cause significance cross-
correlation and autocorrelation between process variables. To operate the process systems stably and 
efficiently, it is crucial to uncover the inherent characteristics of both variance structure and dynamic 
relationship. Long-term dependency slow feature analysis (LTSFA) is proposed in this paper to overcome 
the Markov assumption of the original slow feature analysis to understand the long-term dynamics of 
processes, based on which a monitoring procedure is designed. A simulation example and the Tennessee 
Eastman process benchmark are studied to show the performance of LTSFA. The proposed method can 
better extract the system dynamics and monitor the process variations using fewer slow features. 
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1.  INTRODUCTION 

 Modern industrial processes are large scale, highly 
complex systems with many units and equipment. A large 
number of measurements are set to monitor process operation, 
and much process data is automatically collected. To operate 
the process systems stably and efficiently, developing process 
models based on process data to describe the process 
characteristics is crucial. The process data has two distinctive 
characteristics. The first is the serious collinearity caused by 
mass and energy balances and the compensation effects of the 
closed-loop control systems. Secondly, the process system 
always shows significant time-dependent characteristics. For 
instance, a transition process would occur while state 
switching due to the long settling time. Similarly, oscillations 
would occur after a disturbance introduced because of recycle 
streams, heat integrations, and other connections of materials, 
energy, and information (Shardt et al., 2012).  
 Multivariate statistical process monitoring (MSPM) 
approaches have been extensively studied to deal with the 
above two problems (Qin, 2012). The most widely used 
method is principal component analysis (PCA) (Gajjar, 
Kulahci, & Palazoglu, 2018; Wise, Ricker, Veltkamp, & 
Kowalski, 1990), which extracts uncorrelated lower 
dimensional latent variables to concisely describe the main 
variance structure of the process observation space. 
Independent component analysis (ICA) recovers the 
independent latent variables from complex process data by 
leveraging high order moment information (Kano, Tanaka, 
Hasebe, Hashimoto, & Ohno, 2003). For the description of 
time-dependent characteristics, dynamic PCA (DPCA) 
performs the standard PCA on the augmented data with time 
lags to extract process dynamics (Ku, Storer, & Georgakis, 
1995). However, it fails to decouple the dynamics and static 
variance information. Slow feature analysis (SFA) is used to 

concurrently monitor the process by describing the stationary 
distribution and dynamic behaviours separately (Shang et al., 
2015). However, assuming the standard Markov property, 
namely that the one-step time dependency is sufficient, limits 
the performance of the standard SFA and has to be improved 
in the same way as DPCA in practice.  
 Thus, this paper proposes a new long-term dependency 
slow feature analysis (LTSFA) method that can extract longer 
time dependencies for the design of a process monitoring 
method. This approach is validated using a simulated example 
and the Tennessee Eastman process. 

2.  LINEAR SLOW FEATURE ANALYSIS 

 Given an m-dimensional ergodic observation signal 
𝒙𝒙(𝑡𝑡) = [𝑥𝑥1(𝑡𝑡) ⋯ 𝑥𝑥𝑚𝑚(𝑡𝑡)], SFA seeks to find a latent signal 
𝒔𝒔(𝑡𝑡) = [𝑠𝑠1(𝑡𝑡) ⋯ 𝑠𝑠𝑘𝑘(𝑡𝑡)]⊤  with the slowest variation, also 
named slow features (SFs), to describe its time varying 
characteristics (Wiskott & Sejnowski, 2002), that is, 
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where ( )jg 

 is the input-output function that needs to be 
found, 



 is the temporal averaging operator, and ( )s t  is the 
first-order derivative or difference with respect to time and can 
be approximated for discrete time series as 

( ) ( ) ( )1s t s t s t≈ − −
 (2) 

 Objective (1) uses the average squared temporal 
difference to define the signal slowness. Constraints 1) and 2) 
simplify the problem without loss of generality, and constraint 



 
 
 

     

2) avoids the trivial solution 𝑠𝑠𝑗𝑗 = constant. Constraint 3) 
guarantees that the SFs are statistically uncorrelated so that 
they carry different information. It also implicitly implies that 
the extracted SFs are sorted by their slowness. In the linear 
case, the input-output function set 𝒈𝒈 = �𝑔𝑔𝑗𝑗(∙)�

𝑗𝑗=1
𝑘𝑘

 is a linear 
transformation 

( ) ( )( ) ( )t t t= = Ps g x x  (3) 

where [ ]1 2 k, , ,=P p p p


 is the parameter matrix. 

 For a mean centred signal ( )tx , due to 
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the objective function of SFA is equivalent to the following 
formulation with the same constraints, that is, 

( ) ( )max 1j js t s t −
p

 (5) 

 Using Lagrange multipliers, this optimization problem 
can be translated into the generalized eigenvalue 
decomposition (GED) problem, that is 
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where jλ  is the generalized eigenvalue of matrix pair

( ) ( )( )1 , 0C Cx x , and ( )C τx  is the symmetric version of the 
-stepτ  autocovariance matrix of ( )tx  defined as 

( ) ( ) ( ) ( ) ( )( )1
2

C t t t tτ τ τ≡ − + −x x x x x   (7) 

3.  LONG-TERM DEPENDENCY SFA 

3.1.  Optimization problem for long-term dependency SFA  

 From Equation (4), it can be concluded that minimizing 
the average squared temporal difference of SF is equivalent to 
maximizing its one-step lagged autocorrelation. However, in 
practical systems, one-step lagged autocorrelation is far from 
sufficient to describe the dynamics, especially manufacturing 
processes with typical long-term dependency. Hence, it is 
necessary to improve SFA to possess long-term dependency 
modelling ability. 
 From a predictability perspective, the long-term 
dependency can be represented as 
( ) ( ) ( ) ( )1 21 2 lŝ t s t s t s t lβ β β= − + − + + −

 (8) 

where l  is the maximum time delay. Thus, the objective of the 
long-term dependency SFA can be formulated as 
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where ( )sC τ  and ( )C τx  are defined as in Equation (7). Let 
𝐗𝐗 = [𝒙𝒙(1) ⋯ 𝒙𝒙(𝑁𝑁 + 𝑙𝑙)] be the total sample collection of 
( )tx . Construct the following matrices 

( ) ( ) f1 1, , 1ori i i N i l= + − = +  X x x   (10) 

[ ]1 1l lτ τ+ + −=A X X , [ ]1 1l lτ τ+ − +
=B X X  

where { }1 2, , ,lτ ∈ 

 is the time delay. Then, the -stepτ  
covariance matrix can be written as 
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Substituting Equation (11) into Equation (9), gives 
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where [ ]1 2 l=A A A A

, [ ]1 2 l=B B B B

, 

{ }1 2diag , , , lβ β β=Λ Ι Ι Ιβ . 
Then, the optimization objective of LTSFA can be rewritten as 
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where constraint 1) guarantees that the extracted SFs have unit 
variances to avoid the trivial solution. It is clear that LTSFA 
will reduce to SFA if the time delay is set to one. 
3.2.  Algorithm for long-term dependency SFA  

3.2.1. Analysis of the optimization formulation 

 Introducing Lagrange multipliers pλ  and βλ , Equation 
(13) can be converted into 

( ) ( )+1 11 1p l lJ βλ λ+= − + −AΛ B X Xp p + p p β β    
β  (14) 

Taking derivatives with respective to p  and β , and setting 
them to zero, gives 

+1 12 2 0p l l
Jδ λ

δ += − =AΛ B X Xp p
p

 
β  (15) 

( ) [ ]( )1 2 0l
J

β
δ λ
δ

= ⊗ ⊗ − =Ι Γ Γ B Ap p β
β



   (16) 

where ⊗ is the Kronecker product, and iΓ  is a selection 
matrix: 

{ }1

1,
diag , , , , ,

0,i j l j

j i
j i

δ δ δ δ
=

= =  ≠
Γ Ι Ι Ι 

 (17) 

 Premultiplying Equations (15) and (16) by 𝒑𝒑⊤  and 𝜷𝜷⊤ 
respectively, the relationship 2pJ βλ λ∗ = =  can be obtained 
from  

+1 12 2 2 2p p l l Jλ λ ∗
+= = =X X AΛ Bp p p p   

β  (18) 



 
 
 

     

( ) [ ]( )
( )

12 2 l

J

β βλ λ

∗

= = ⊗ ⊗

=

Ι Γ Γ B A

AΛ B AΛ B

β β β p p

= p p = p p



  

   
β β

 (19) 

From Equations (15) and (18), the optimal value of Equation 
(13) J ∗  is the largest generalized eigenvalue of the matrix 
pair 

( ) ( ) ( )+1 1
1

, , 0
l

x x
l l C Cτ

τ

β τ+
=

 =  
 
∑AΛ B X X 

β  

The optimal solution ∗p  is the corresponding generalized 
eigenvector. However, p  and β  are coupled together and thus 
cannot be solved using analytical methods. 
3.2.2. Iterative solution for one slow feature 

 Let ( ) ( )s t t= x p  be the SFs at time instant t, then we 
can form the following data matrices, 

( ) ( )1 for 1, , 1i is i s i N i l= + − = = +   Xs p 

   (20) 

[ ]1 1l l−=S s s s




, [ ]1 1l l−=Z X X X

 
where iX  is defined as in Equation (10). Then, Equation (15) 
can be rewritten as 
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Thus, we have 

( ) ( )( )+1 1 +1 1p l l l lλ + ++ ⊗X X X S Z Ip = β β s
 †

 (22) 

where ( ) †
 is the Moore-Penrose inverse. Equation (16) can be 

rewritten as  
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Then, the iterative solution is: 
(1) Scale X  to zero mean and unit variance. 
(2) Initialize p with a random unit vector. 
(3) Iteratively solve p and β until the objective function J 

converges to the optimal value, that is, 
= Xs p , := ss s 

 

1l+= Sβ s
 , := ββ β 

 

( ) ( )( )+1 1 +1 1l l l l+ ++ ⊗X X X S Z Ip = β β s


 †
 

1 11
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=
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If the predefined stopping condition is fulfilled, the 
obtained p and β are the optimal solution corresponding 
to the SF. 

3.2.3. Multiple slow feature extraction through matrix 
deflation  

 After the first SF is obtained, the next one can be 
extracted by applying Step (3) in Section 3.2.2 to the residual 
data excluding the previous SF information. The residual data 
can be obtained by matrix deflation 

≡ −X X qs  (24) 

where the loading vector = Xsq s s
 is the solution of   

Fmin −X qs 

  (25) 

 Iteratively performing the above procedure can obtain all 
the k  SFs in the descending order of slowness or 
predictability. The different SFs are orthogonal to each other, 
which is the same as in the standard SFA. 
3.2.4. Model developed for historical slow feature extraction 

and prediction  

 After all the SFs have been extracted, the optimal 
projection vectors, loading vectors, and regression weights are 
collected as 

[ ]1 k=P p p


, [ ]1 k=Q q q


, [ ]1 k=Φ β β


. 

Let ( )iX  be the residual data matrix after the i-th deflation, 
( )1 =X X  and ( ) ( )( )i i

i= Xs p


 be the -thi  SF, the observation 

space can be divided using Equation (24) into the SF subspace 
and residual subspace  

( )( ) ( )( ) ( ) ( )1 1 1
1 + + + +k k k

k
+ += =X X Q S Xq s q s

 
   (26) 

where ( ) ( )1 k =  S s s  is the k  SFs of the historical data 

X , and is also a set of the orthogonal basis of the SF subspace. 
Since the residuals ( )1k+X  belong to the nullspace of the 
projection matrix P , we have 

( )( )1k+− = =X P SQP X P 0


     (27) 

Hence, the historical SF model is  

( ) 1−
=S X P QP    (28) 

For an observation ( )tx , its projection onto SF subspace is 

( ) ( ) ( )1
t t

−
= PQ Ps x  (29) 

 Given the historical data ( ) ( )1t t l= − +  X x x , 
the one-step ahead prediction model can be obtained as 

( ) ( ) ( ) ( ) ( )
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1
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1 1 1
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k
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where ( ) ( ) ( ) ( ) ( )1i i is t s t l = − + s 


, ( )vec   is the 

column vectorization operator, 
( )( ) ( )( ){ }1diag k=SΛ s s

 
 is a blocked diagonal 



 
 
 

     

matrix deduced from S , and S  is the slow feature matrix of 
X , that is, 

( ) ( ) ( )( )11 k − = = S X P QPs s


    (31) 

Furthermore, one-step ahead observation can be predicted by 
( ) ( )1 1ˆ ˆt t+ = +Qx s  (32) 

 In summary, the detailed procedure of long-term 
dependency SFA algorithm is given in Table 1. 

Table 1: The algorithm for LTSFA 

Input: ( ) ( )1 N l= +  X x x ,

( ) ( ) ( )1 mt x t x t=   x 


 

1. Scale X  to zero mean and unit variance 
2. Initialize p  with a random unit vector 
3. Iterate the following steps until convergence to 

obtain the optimal parameter pair ( ),∗ ∗p β : 

1） = Xs p , := ss s 

 

2） Form the data matrices:  
( ) ( )1 for 1, , 1i i i N i l= + − = +  X x x  , 

( ) ( )1 for 1, , 1i s i s i N i l= + − = +  s  


, 

[ ]1l=S s s


 , [ ]1l=Z X X  

3） 1l+= Sβ s
 , := ββ β 

 

4） ( ) ( )( )+1 1 +1 1l l l l+ += + ⊗X X X S Z Ip β β s


 †  

5） 
1 11

1
l l

l

lJ τ τ
τ

β
+ ++ −

=

= =∑ Ss s s β
   

4. Collect ∗p  , ∗β  into [ ]1 k=P p p

 , 

[ ]1 k=Φ β β

  
5. Data matrix deflation. 

1） := −X X qs , where = Xsq s s
 

2） Collect q  into [ ]1 k=Q q q

  

Return to Step 3 to extract the next SF until all k  
SFs have been obtained. 

6. SF extraction of historical observation X  

( ) 1−
=S X P QP   , ( ) ( ) ( )1

t t
−

= PQ Ps x  

7. One-step prediction given historical data 
( ) ( )1t t l= − +  X x x  

1） ( ) ( )1 vecˆ t + = SΛ Φs  , where 

( )( ) ( )( ){ }1diag k=SΛ s s

 
, 

( ) ( ) ( )( )11 k − = = S X P QPs s


    

2） ( ) ( )1 1ˆ ˆt t+ = +Qx s  

3.2.5. Determining the hyperparameters  

 The model construction of LTSFA needs to determine 
two hyperparameters: the number of SF k  and dynamic order 
l . In machine learning, the data set is always split into three 
subsets: training set, validation set, and test set. The model 
performance of each pair of hyperparameters is validated by 
the validation set after model training using the training set to 
select the optimal hyperparameters with the best performance. 
 For LTSFA, after all k  SFs have been extracted, the 
residual ( )1k+X  is expected to be white, and thus the 
autocorrelation and cross-correlation for nonzero lags will be 
approximately zero. The 95% confidence interval (CI) of the 
correlations (Shardt, 2015) will be used to verify model 
performance. The optimal hyperparameters correspond to the 
least violation for the 95% CI. 

4.  LTSFA-BASED PROCESS MONITORING  

4.1.  Observation-space partition 

 The residual after performing LTSFA on the observation 
is essentially white. However, it contains a static structure, 
which can be further explored using standard PCA. Hence, the 
observation space can be decoupled into a slow feature 
subspace, a static principal component subspace, and a 
residual subspace, that is, 

( )1+ + +k+= =X Q S X Q S WT E      (33) 

where [ ]1 r=W w w  is the loading matrix and 

( )( )1k+=T X W


 is the score matrix of the principal 

components. The number of static principal components is 
determined by the method of the cumulative percentage of 
variance (CPV) (Valle, Li, & Qin, 1999). 
4.2.  Process monitoring indices design 

 After partitioning the space, we can monitor the 
variations in the subspaces to detect abnormal situations using 
Hotelling’s 2T  and the squared prediction error (SPE), that is, 

( ) ( )1 12
dT

− −
= PQ P P QPs s = x x      (34) 

( )( ) ( )1 12 1 1k k
sT + +− −= =Ω WΩ Wt t x x


   (35) 

( ) ( )1 2kSPE += = −Ι WWe e x 

   (36) 

where { }1
1 diag r, ,
N

λ λ= =Ω T T 

  and iλ  is the 

eigenvalue of ( ) ( )( )1 1k k+ +X X


. The above three indices 

actually monitor the stationary variations in the subspaces. The 
dynamic behaviour anomaly can be detected by using the 
innovation as 

2 1
v v v vT −= P Λ Pv v   (37) 

 where ( ) ( ) ( )ˆt t t= −v s s  is the innovation and 

( ) ( ) v v vt t = P Λ Pv v   is the singular value decomposition of 
the innovation covariance. 



 
 
 

     

 Under an assumption of a Gaussian distribution, the 
control limits for the indices can be determined as follow given 
a significance level α  (Chiang, Russell, & Braatz, 2000; Qin, 
2003) 

( ) ( )2 2 2
d d kT T α α≤ =χ   (38) 

( ) ( )( )
( ) ( )2 2 1 +1

s s r ,N r

r N N
T T F

N N r
α α−

−
≤ =

−
 (39) 

( ) ( )2
hSPE SPE gα α≤ = χ  (40) 

( )( )
( ) ( )2 1 +1

v k ,N k

k N N
T F

N N k
α−

−
≤

−
 (41) 

where χ𝑘𝑘2  and χℎ2  are χ2-distribution with k  and h  degrees of 
freedom, 𝐹𝐹𝑟𝑟,𝑁𝑁−𝑟𝑟 and 𝐹𝐹𝑘𝑘,𝑁𝑁−𝑘𝑘 are F-distributions with r and N-r, 

k and N-k degrees of freedom, 2

1
g θ

θ= , 
2

1

2
h θ

θ= , and 

1

m
j

j i
i r

θ λ
= +

= ∑ for 1, 2j = . If the indices of an observation 

exceed the control limits, then it is considered that a fault has 
occurred. 

5.  CASE STUDIES 

5.1.  Simulation example 

 A second-order autoregressive model is designed  

1 1 2 2t t t t

t t t

− −= + +
 = +

A A
B

s s s v
x s e

 (42) 

1

2

0.7904 0 0
0 0.5026 0
0 0 0.7904

0.1004 0 0
= 0 0.3026 0

0 0 -0.2104

 
 =  
  
 
 
 
  

A

A

 

-0.8207 0.5970 0.0253
-0.8164 -0.4752 -0.6769
-0.9511 -0.5484 0.2549
-0.3652 -0.5081 0.4817
0.6245 0.7796 0.7808

 
 
 
 =
 
 
  

B  

where ( )5 20 0 5t N , .∈ Ιe    and ( )3 20 0 5t N , .∈ Ιv    are 
independent and identically distributed random processes. 
 Three thousand data samples are generated and split into 
training, validation, and test set with 2000, 500, and 500 data 
samples respectively. Using the method described in Section 
3.2.5, the hyperparameters are determined as l = 2 and k = 3. 
The autocorrelation and cross-correlations of the original data 
𝒙𝒙(𝑡𝑡) and residual 𝒙𝒙�(𝑡𝑡) are shown in Figure 1 and Figure 2. It 
can be seen that the dynamics of the data, which is indicated 
by both autocorrelation and cross-correlation with nonzero 
delays, is filtered by LTSFA. Figure 3 is the residual 
correlations of the standard SFA. Assuming a maximum time 
delay of 20 samples, the percentage of times a point lies 

outside the 95% CI was 3.2% for LTSFA SFs, but 40.4% for 
the standard SFA. The correlations of the latent variables 𝒔𝒔(𝑡𝑡) 
and the innovation 𝒗𝒗(𝑡𝑡) in Figure 4 show that LTSFA can also 
uncover the dynamics of the latent states, while the standard 
SFA does not give an explicit expression of latent state 
dependency.  

 

Figure 1: Autocorrelation and cross-correlation of ( )tx  

 

Figure 2: Autocorrelation and cross-correlation for the 
LTSFA residual  

 

Figure 3: Autocorrelation and cross-correlation for the 
standard SFA residual 

Figure 4: Correlations for left ( )ts and right innovation ( )tv  

5.2. Tennessee Eastman process benchmark 
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 The Tennessee Eastman process (TEP) is a widely used 
benchmark in process control (Downs & Vogel, 1993). The 
revised version is adopted in this study (Lyman, Georgakis, & 
engineering, 1995). It contains 12 manipulated variables 
(XMV (1-12)) and 41 measurement variables which consist of 
22 process variables (XMEAS (1-22)) and 19 quality variables 
(XMEAS (23-41)). In this paper, we use 11 manipulated 
variables (XMV (1-11)) and all 22 process variables. Five 
hundred normal samples sampled at 3-min intervals are used 
to train the models. The hyperparameters of LTSFA are 
determined as 𝑙𝑙 = 3 and 𝑘𝑘 = 19. The dynamic SFA provided 
in reference (Shang et al., 2015) is built to compare the 
monitoring results. The optimal hyperparameters of dynamic 
SFA are selected as 𝑑𝑑 = 2  and 𝑞𝑞 = 0.55 . The monitoring 
results of LTSFA can give more detailed information of the 
process variations. For instance, Figure 5 shows that the 
variation of IDV(4) mainly occurs in the SF subspace and the 
residual subspace, while the static principal component 
subspace is less affected. Figure 6 shows that the anomaly 
caused by the high-frequency oscillation of IDV(14) can also 
be monitored in the SF subspace immediately. Furthermore, 
LTSFA only uses 19 SFs, while the dynamic SFA 46. Thus, 
the dynamic SFA may not be able to perform dimension 
reduction, especially in the case of large delays. 

 

Figure 5: Monitoring results for IDV(4) using left LTSFA 
and right the dynamic SFA 

 

Figure 6: Monitoring results for IDV(14) using left LTSFA 
and right the dynamic SFA 

6. CONCLUSIONS 

 This paper presented a new model called LTSFA to 
overcome the Markov assumption of the original SFA and 
improve the long-term dynamics modelling ability. The 
objective of LTSFA is established based on a high-order 
regressive model and an iterative algorithm is developed to 
solve the objective. In addition to the better dynamic 
modelling capability, LTSFA also gives an explicit expression 
of the long-term temporal dependency of latent states. A 
process monitoring strategy is developed using this approach. 
It is tested on a simulated example and the Tennessee Eastman 

process. It is shown that the proposed method can better extract 
the system dynamics and give more detailed process variations 
using fewer slow features than the standard SFA and the 
dynamic SFA methods. Further work will consider extending 
the results to nonlinear systems. 
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