Aani, S.A., Haroutounian, A., Wright, C.J., and Hilal, N. (2018). Thin lm nanocomposite (TFN) membranes modi ed with polydopamine coated metals/carbonnanostructures for desalination applications. Desalina- tion, 427, 60{74. doi:https://doi.org/10.1016/j.desal. 2017.10.011. URL http://www.sciencedirect.com/ science/article/pii/S0011916417319793. Abbas, A. (2005). Simulation and analysis of an industrial water desalination plant. Chem. Eng. Pro- cess., 44(9), 999{1004. doi:https://doi.org/10.1016/j. cep.2004.12.001. URL http://www.sciencedirect. com/science/article/pii/S0255270105000097. A.H. Haidari, S.G.J. Heijman, and W.G.J. van der Meer (2018a). E ect of spacer con guration on hydraulic conditions using PIV. Sep. Purif. Tech- nol., 199, 9{19. doi:https://doi.org/10.1016/j.seppur. 2018.01.022. URL http://www.sciencedirect.com/ science/article/pii/S1383586617336948. A.H. Haidari, S.G.J. Heijman, and W.G.J. van der Meer (2018b). Optimal design of spacers in reverse osmosis. Sep. Purif. Technol., 192, 441{456. doi: https://doi.org/10.1016/j.seppur.2017.10.042. URL http://www.sciencedirect.com/science/article/ pii/S1383586617324188. A.H. Haidari, S.G.J. Heijman, W.S.J. Uijttewaal, and W.G.J. van der Meer (2019). Determining effects of spacer orientations on channel hydraulic conditions using PIV. J. Water Process Eng., 31, 100820. doi:https://doi.org/10.1016/j.jwpe.2019. 100820. URL http://www.sciencedirect.com/ science/article/pii/S2214714418303696. Alhseinat, E. and Sheikholeslami, R. (2012). A completely theoretical approach for assessing fouling propensity along a full-scale reverse osmosis process. Desalination, 301, 1{9. doi:https://doi.org/10.1016/j.desal.2011.12. 014. URL http://www.sciencedirect.com/science/ article/pii/S0011916411010344. A.R. Da Costa, A.G. Fane, and D.E. Wiley (1994). Spacer characterization and pressure drop modelling in spacer- lled channels for ultra ltration. J. Membr. Sci., 87(1), 79{98. doi:https://doi.org/10.1016/0376-7388(93) E0076-P. URL http://www.sciencedirect.com/ science/article/pii/0376738893E0076P. Avlonitis, S., W.T. Hanbury, and Boudinar, M. (1991). Spiral wound modules performance. An analytical solution, part I. Desalination, 81(1), 191{208. doi: https://doi.org/10.1016/0011-9164(91)85053-W. URL http://www.sciencedirect.com/science/article/ pii/001191649185053W. Proceedings of the Twelfth International Symposium on Desalination and Water Re-use. Belfort, G. and Guter, G.A. (1972). An experimental study of electrodialysis hydrodynamics. Desalination, 10(3), 221{262. doi:https://doi.org/10.1016/S0011-9164(00) 82001-9. URL http://www.sciencedirect.com/ science/article/pii/S0011916400820019. Bird, R.B. (2002). Transport phenomena . Applied Me- chanics Reviews, 55(1), R1{R4. doi:10.1115/1.1424298. URL https://doi.org/10.1115/1.1424298. Bouchard, C.R., Carreau, P.J., Matsuura, T., and Sourirajan, S. (1994). Modeling of ultra ltration: Predictions of concentration polarization e ects. J. Membr. Sci., 97, 215{229. doi:https://doi.org/10.1016/0376-7388(94) 00164-T. URL http://www.sciencedirect.com/ science/article/pii/037673889400164T. C.C. Zimmerer and Kottke, V. (1996). E ects of spacer geometry on pressure drop, mass transfer, mixing behavior, and residence time distribution. Desalination, 104(1), 129{134. doi: https://doi.org/10.1016/0011-9164(96)00035-5. URL http://www.sciencedirect.com/science/article/ pii/0011916496000355. Chen, K.L., Song, L., Ong, S.L., and Ng, W.J. (2004). The development of membrane fouling in full-scale RO processes. J. Membr. Sci., 232(1), 63{72. doi:https://doi.org/10.1016/j.memsci.2003.11. 028. URL http://www.sciencedirect.com/science/ article/pii/S0376738803006082. Chiolle, A., Gianotti, G., Gramondo, M., and Parrini, G. (1978). Mathematical model of reverse osmosis in parallel-wall channels with turbulence promoting nets. Desalination, 26(1), 3{16. doi: https://doi.org/10.1016/S0011-9164(00)84124-7. URL http://www.sciencedirect.com/science/article/ pii/S0011916400841247. C.P. Koutsou, S.G. Yiantsios, and A.J. Karabelas (2007). Direct numerical simulation of ow in spacer- lled channels: E ect of spacer geometrical characteristics. J. Membr. Sci., 291(1), 53{69. doi: https://doi.org/10.1016/j.memsci.2006.12.032. URL http://www.sciencedirect.com/science/article/ pii/S0376738806008532. Du, Y., Xie, L., Liu, J., Wang, Y., Xu, Y., and Wang, S. (2014). Multi-objective optimization of reverse osmosis networks by lexicographic optimization and augmented epsilon constraint method. Desalina- tion, 333(1), 66{81. doi:https://doi.org/10.1016/j.desal. 2013.10.028. URL http://www.sciencedirect.com/ science/article/pii/S0011916413005109. Geraldes, V., Pereira, N.E., and Norberta de Pinho, M. (2005). Simulation and Optimization of Medium-Sized Seawater Reverse Osmosis Processes with Spiral-Wound Modules. Ind. Eng. Chem. Res., 44(6), 1897{1905. doi: 10.1021/ie049357s. URL https://doi.org/10.1021/ ie049357s. Han, Z., Terashima, M., Liu, B., and Yasui, H. (2018a). CFD investigation of the E ect of the Feed Spacer on Hydrodynamics in Spiral Wound Membrane Modules. Mathematical and Computational Applications, 23(4). doi:10.3390/mca23040080. URL https://www.mdpi. com/2297-8747/23/4/80. Han, Z., Terashima, M., Liu, B., and Yasui, H. (2018b). Impact of Modi ed Spacer on Flow Pattern in Narrow Spacer-Filled Channels for Spiral-Wound Membrane Modules. Environments, 5(11). doi:10.3390/ environments5110116. URL https://www.mdpi.com/ 2076-3298/5/11/116. Karabelas, A.J., Koutsou, C.P., and Sioutopoulos, D.C. (2018). Comprehensive performance assessment of spacers in spiral-wound membrane modules accounting for compressibility e ects. J. Membr. Sci., 549, 602{615. doi:https://doi.org/10.1016/j.memsci.2017.12. 037. URL http://www.sciencedirect.com/science/ article/pii/S0376738817326121. Kavianipour, O., Ingram, G.D., and Vuthaluru, H.B. (2017). Investigation into the e ectiveness of feed spacer con gurations for reverse osmosis membrane modules using Computational Fluid Dynamics. J. Membr. Sci., 526, 156{171. doi:https://doi.org/10.1016/j.memsci. 2016.12.034. URL http://www.sciencedirect.com/ science/article/pii/S037673881631626X. Kuroda, O., Takahashi, S., and Nomura, M. (1983). Characteristics of ow and mass transfer rate in an electrodialyzer compartment including spacer. Desalination, 46(1), 225{232. doi: https://doi.org/10.1016/0011-9164(83)87159-8. URL http://www.sciencedirect.com/science/article/ pii/0011916483871598. Ruiz-García, A., Melián-Martel, N., and Mena, V. (2018). Fouling characterization of RO membranes after 11years of operation in a brackish water desalination plant. De- salination, 430, 180{185. doi:https://doi.org/10.1016/j. desal.2017.12.046. URL http://www.sciencedirect. com/science/article/pii/S0011916417313164. Ruiz-García, A. and Nuez, I. (2020). Longterm intermittent operation of a full-scale bwro desalination plant. Desalination, 489, 114526. doi: https://doi.org/10.1016/j.desal.2020.114526. URL http://www.sciencedirect.com/science/article/ pii/S0011916420305403. Ruiz-García, A. and Ruiz-Saavedra, E. (2015). 80,000h operational experience and performance analysis of a brackish water reverse osmosis desalination plant. Assessment of membrane replacement cost. Desalination, 375, 81{88. doi:https://doi.org/10.1016/j.desal.2015.07. 022. URL http://www.sciencedirect.com/science/ article/pii/S0011916415300308. Ruiz-García, A. and de la Nuez-Pestana, I. (2018). A computational tool for designing BWRO systems with spiral wound modules. Desalination, 426, 69{77. doi:https://doi.org/10.1016/j.desal.2017.10. 040. URL http://www.sciencedirect.com/science/ article/pii/S0011916417310950. Ruiz-García, A. and de la Nuez Pestana, I. (2019). Feed Spacer Geometries and Permeability Coecients. E ect on the Performance in BWRO Spriral-Wound Membrane Modules. Water, 11(1), 1{13. doi:10.3390/ w11010152. URL https://www.mdpi.com/2073-4441/ 11/1/152. Schock, G. and Miquel, A. (1987). Mass transfer and pressure loss in spiral wound modules. Desalination, 64, 339{352. doi:https://doi.org/10.1016/0011-9164(87) 90107-X. URL http://www.sciencedirect.com/ science/article/pii/001191648790107X. Schwinge, J., P.R. Neal, D.E. Wiley, D.F. Fletcher, and A.G. Fane (2004). Spiral wound modules and spacers: Review and analysis. J. Membr. Sci., 242(1), 129{153. doi:https://doi.org/10.1016/j.memsci.2003.09. 031. URL http://www.sciencedirect.com/science/ article/pii/S0376738804003321. Membrane Engineering Special Issue. Sonin, A.A. and M. S. Isaacson (1974). Optimization of Flow Design in Forced Flow Electrochemical Systems, with Special Application to Electrodialysis. Ind. Eng. Chem. Proc. Des. Dev., 13(3), 241{248. doi:10. 1021/i260051a009. URL https://doi.org/10.1021/ i260051a009. Wang, Y., He, W., and Muller, J.D. (2019). Sensitivity analysis and gradient-based optimisation of feed spacer shape in reverse osmosis membrane processes using discrete adjoint approach. Desalination, 449, 26{40. doi:https://doi.org/10.1016/j.desal.2018.09. 016. URL http://www.sciencedirect.com/science/ article/pii/S0011916418304132.