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Abstract: Moving Horizon Estimation (MHE) is an important optimization-based approach for
state estimation and parameter updates, because of its capabilities in dealing with nonlinearity
and state constraints. In addition, one of the applications is to provide the full state information
for Model Predictive Controller (MPC) to control the process in either setpoint tracking or
economic control purposes. However, the computational burden of MHE could deteriorate the
control performance if the feedback delay caused by computation is too long, leading to potential
safety issues or process damage. In this paper, we propose a fast moving horizon estimation
algorithm to overcome the long computational time of MHE for real-time control applications,
especially for fast dynamics or large-scale systems. We exploit the nonlinear programming (NLP)
sensitivity and make use of efficient NLP solvers, IPOPT and k_aug, to reduce the on-line
computational costs. This new approach is demonstrated on a CSTR process, where results are
compared to ideal MHE and advanced-step MHE (asMHE).
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1. INTRODUCTION

Moving Horizon Estimation has recently become more
popular, especially for model based control strategies such
as Nonlinear Model Predictive Control (NMPC). By solv-
ing an optimization problem at each sampling time that
possesses a sequence of noised measurements, MHE pro-
vides the full state information and real-time updates for
changing parameters. The former information can be set
as the required initial condition of NMPC and the latter
updates can improve the performance of NMPC with more
accurate parameters. In addition, compared to the well-
known Extended Kalman Filter (EKF) (Bryson and Ho
(1975), Jazwinski (1970)), the advantages of MHE are its
abilities to handle nonlinearities with first principles mod-
els and to deal with constraints in a simple and consistent
way (Haseltine and Rawlings (2005)). These constraints
enable us to include more physical information of the
states, leading to better performance of the estimator by
avoiding the infeasible region.
However, the non-negligible on-line computing time re-
quried for MHE raises some concerns. Reducing compu-
tational delay is also important for chemical processes.
A delayed state estimate incurs a deadtime in control
action, which leads to loss of control performance as well
as possible destabilization of the process (Findeisen and
Allgöwer (2004), Diehl et al. (2005), Chen et al. (2000)).
Some methods to cope with on-line computational load
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include applying the generalized Gauss-Newton method
to a simultaneous framework of the estimation problem in
Kraus et al. (2006) and Wynn et al. (2014). In particular,
Zavala et al. (2008) proposed a real-time MHE algorithm
to tackle the online computational burden with nonlin-
ear programming (NLP) sensitivity. In his approach, the
measurements for the next step are predicted by the plant
model and the MHE problem is solved offline with the
predicted measurements in background. Once the actual
measurements are obtained, the optimal solution based
on the true measurements is updated quickly using NLP
sensitivity. This online updating approach only performs
a backsolve for the linear system in each step, and re-
quires less computation time compared to solving a full
MHE problem. Nonetheless, this approach can only apply
to cases where the MHE solution time is less than one
sampling time; this may not be suitable for fast dynamic
systems or large-scale plants.
Following on our previous work on advanced-multi step
NMPC (amsNMPC, Kim et al. (2020b)), we propose the
advanced-multi step MHE (amsMHE) requiring only one
processor to handle the longer solution time for MHE.
Basically, we predict a number of future measurements
with plant model and solve the MHE a few steps ahead de-
pending on how long it takes to obtain the optimal solution
in background. When we obtain the actual measurements,
we place them in the corresponding position inside the
horizon window, update the solution with NPL sensitivity,
and retrieve the current estimates. The main difference
from asMHE is that we now solve the MHE problem over



multiple sampling times. In addition, the results from this
MHE problem would then be used for multiple time steps
until the next MHE result is available.
This paper is organized as follows. In section 2, we intro-
duce the formulation of MHE and NLP sensitivity. Section
3 presents the algorithm of amsMHE. Section 4 shows the
CSTR case study results and compares them to ideal MHE
and asMHE. Finally, section 5 concludes this paper and
provides some future perspectives.

2. IDEAL MHE AND NLP SENSITIVITY

Consider the nonlinear system having the state distur-
bances wk and measurement noise vk:

xk+1 = f(xk, wk)

yk = h(xk) + vk.
(1)

At time step tk, we have the past measurement data
from the initial time t0. Using the whole measurement
data makes the size of the estimation problem increase
with time. To address this, the MHE formulation with
finite horizon N is introduced with the arrival cost, which
approximates the estimation errors from initial time to
tk−N , along with the prior estimate of xk−N and its
covariance. There are several approaches to calculate the
arrival costs such as using EKF, unscented KF, or using
the information from the NLP solution (Negrete, 2011;
Zavala et al., 2007). The last approach is used in this study.
The ideal MHE formulation for estimating the states from
the measurement data is as follows
MN (ηk) :

min
zl,wl

ψN (ηk) = Γ(z−N ) +

−1∑
l=−N

LN+l(zl, wl) + LN (z0)

s.t.zl+1 = f(zl, wl), l = −N, ...,−1

zl ∈ Z, wl ∈ W.
(2)

Here, the arrival cost is:

Γ(z−N ) =
1

2
(z−N − z̄−N )⊤Π̄−1

−N (z−N − z̄−N ), (3)

the stage costs are:

LN+l =
1

2
(yk+l − h(zl))

⊤R−1
l (yk+l − h(zl))

+
1

2
w⊤

l Q
−1
l wl, l = −N, ...,−1

LN =
1

2
(yk − h(z0))

⊤R−1
0 (yk − h(z0))

(4)

and the prior estimate of xk−N and its covariance are
denoted as z̄−N and Π̄−N , respectively. ηk is the data
set, [z̄−N , Π̄−N , yk−N , yk−N+1, ..., yk], which fully defines
MN . When we consider this data set as parameters
p, the Karush–Kuhn–Tucker (KKT) conditions can be
represented as implicit functions of p:

ϕ(s(p)) = 0 (5)
where s(p)⊤ = [z⊤−N , w

⊤
−N , λ

⊤
−N+1, ..., z

⊤
−1, w

⊤
−1, λ

⊤
0 , z

⊤
0 ].

In this study, we investigate the effects of perturbations
of p on the optimal MHE solution. To this end, we adapt
the general NLP sensitivity theorem to the MHE problem.
Consider ηk in MN (ηk) as the nominal parameter p0, and
assume the following.

Assumption 1. f(·), Γ(·), and L(·) are twice continuously
differentiable in a neighborhood of the nominal solution
s∗(p0).
Assumption 2. s∗(p0) satisfies the linear independence
constraint qualifications (LICQ), second order sufficient
conditions (SOSC), and strict complementary slackness
(SC).

Then, by the NLP sensitivity theorem (Fiacco, 1976,
1983), there exists an isolated, continuous, and differen-
tiable solution vector s∗(p) for p in a neighborhood of
p0. In addition, ∂s

∂p |p0
is bounded and unique. From this,

we can apply the implicit function theorem to (5) and it
yields:

K∗(p0)
∂s∗

∂p
|p0

= −∂ϕ(s(p))
∂p

|p0
. (6)

where K∗(p0) denotes the KKT matrix of MN (p0). For p
in a neighborhood of p0, the first-order Taylor expansion
of s∗(p) is

s∗(p) ≈ s∗(p0) +
∂s∗

∂p
|p0

(p− p0) = s̃(p). (7)

The KKT matrix is nonsingular by Assumption 1 (Nocedal
and Wright, 2006) and using (6), we have

s̃(p) = s∗(p0)−K∗(p0)
−1 ∂ϕ(s(p))

∂p
|p0

(p− p0)

= s∗(p0) +
∂s

∂p
|p0

(p− p0).

(8)

where, ∂s
∂p = −K∗(p0)

−1 ∂ϕ(s(p))
∂p is the sensitivity matrix.

Thus, we can approximate the optimal solution of MN (p)
as s̃(p), using the optimal solution of MN (p0) and its
sensitivity matrix. Moreover, the errors between the ap-
proximate solution and the optimal solution are bounded
by

∥s̃(p)− s∗(p)∥ ≤ Ls ∥p− p0∥2 (9)
with a constant Ls > 0. Thus s∗(p)− s̃(p) = O(∥p− p0∥2).

3. FAST AMS-MHE ALGORITHM

We propose an advanced-multi-step MHE algorithm to
avoid the online computational load when more than one
sampling time is required to solve MHE problem. The
nominal MHE problem with the predicted measurements
is solved offline beforehand. The optimal solution of MHE
with the real measurements is approximated using NLP
sensitivity online. The detailed algorithm is as follows:
Offline during tk - tk+Ns :
(1) Predict the future measurements ŷk+1, ..., ŷk+2Ns−1

from
x̄(k + i) = f(x̄(k + i− 1), w̄(k + i− 1))

ŷk+i = h(x̄k+i)

i = 1, . . . , 2Ns − 1

x(k) = x̄(k)

(10)

The first Ns − 1 disturbances can be approximated
by the previous MHE problem solved at tk−Ns

, while
other disturbances are assumed to be zero. That is,
w̄(k + i − 1) = 0, i = Ns, . . . , 2Ns − 1. x̄(k) denotes
the estimated values of states at tk.



(2) Define the extended data η̄k = (z̄−N (k), Π̄−1
−N (k), y(k−

N)..., y(k), ŷ(k + 1), ..., ŷ(k + 2Ns − 1)) and solve the
extended problem MN+2Ns−1(p0) with p0 = η̄k.

MN+2Ns−1(p0) :

min
zl,wl

ψN+2Ns−1(p0)

s.t. zl+1 = f(zl, wl), l = −N, ..., 2Ns − 2

zl ∈ Z, wl ∈ W.
(11)

where,

ψN+2Ns−1(p0) = Γ(z−N ) +

0∑
l=−N

LN+l(zl, wl)

+

2Ns−2∑
l=1

L̂N+l(zl, wl) + L̂N+2Ns−1(z2Ns−1)

Γ(z−N ) =
1

2
(z−N − z̄−N+Ns|k−Ns

)⊤Π̄−1
−N+Ns|k−Ns

× (z−N − z̄−N+Ns|k−Ns
)

LN+l =
1

2
(yk+l − h(zl))

⊤R−1
l (yk+l − h(zl))

+
1

2
w⊤

l Q
−1
l wl, l = −N, ..., 0

L̂N+l =
1

2
(ŷk+l − h(zl))

⊤R−1
l (ŷk+l − h(zl))

+
1

2
w⊤

l Q
−1
l wl, l = 1, ..., 2Ns − 2

L̂N+2Ns−1 =
1

2
(ŷk+2Ns−1 − h(zN+2Ns−1))

⊤R−1
2Ns−1

× (ŷk+2Ns−1 − h(zN+2Ns−1)).
(12)

(3) Before tk+Ns , obtain the solution s∗(η̄k) and then
calculate and compute the sensitivity matrix ∂s

∂p

∣∣∣
η̄k

.

On-line, at tk+i, i = Ns, ..., 2Ns − 1:
Note that at this point, the measurements y(k + j), j =
1, . . . , Ns − 1 are already obtained while MN+2Ns−1(η̄k)
is solved.
(1) Obtain the measurement y(k+i) and update the cur-

rent problem data η(k+ i) = (z̄−N (k), Π̄−1
−N (k), y(k−

N)..., y(k + i), ȳ(k + i+ 1), ...ȳ(k + 2Ns − 1)).
(2) Using all N+1+i measurements in η(k+i), compute

an instantaneous approximate solution s̃(η(k + i))
using (8).

(3) Extract the updated solution z̃i corresponding to the
nominal optimal solution z∗i ; these are the estimated
states, x̄(k + i) = z̃i.

At tk+Ns
:

(1) Set k to k + Ns, and prepare the next iteration. We
set w̄(k + i − 1) = w̃i, i = Ns, ..., 2Ns − 1,which is
extracted from the updated solution s̃(η(k)). z̄−N (k)
is set as z̃−N+Ns

. The arrival cost Π̄−1
−N (k) is approx-

imated using the inverse of reduced Hessian.
Note that the solution of the MHE problem MN+2Ns−1(η̄k)
initiated at tk is used to estimate states only between
tk+Ns

and tk+2Ns−1. The states within tk and tk+Ns−1

are estimated using the previous MHE solution, initiated
at tk−Ns

.

4. SIMULATION RESULTS

The proposed amsMHE is applied to a CSTR, where the
exothermic reaction A → B occurs. The dimensionless
dynamic models in Hicks and Ray (1971); Yang and
Biegler (2013) are used with the state disturbances w1 and
w2.

dx1
dt

=
1

u2
(1− x1)− k′exp(−E′/x2)x

3
1 + wx1

dx2
dt

=
1

u2
(xf − x2) + k′exp(−E′/x2)x

3
1

−Ahu1(x2 − xc) + wx2

y = x2

(13)

x1 and x2 are the dimensionless A concentration and
temperature, respectively. x2 is measured. xf and xc are
the dimensionless feed concentration and temperature,
respectively. k′ and E′ are the dimensionless rate constant
and ratio of the activation energy to the gas constant,
respectively. Ah is the dimensionless heat transfer area.
The first manipulated variable u1 is the reactor jacket
heat transfer coefficient which increases monotonically as
the coolant flow rate increases. The second manipulated
variable u2 is V/F where F is the feed flow rate and
V is the reactor volume. In addition, model parameters
are xf = 0.395, xc = 0.382, k′ = 17328, E′ = 5 and
Ah = 1.95× 10−4. The moving horizon length N is set as
20 steps with the sampling time of 1 s. The constraints for
the states are [0, 1] because both are dimensionless values.
The continuous model is discretized by Lagrange-Radau
collocation method, and it is solved using Pyomo (Hart
et al., 2011) and IPOPT 3.12 (Wächter and Biegler, 2006)
with the linear solver MA57 (Duff, 2004). The KKT matrix
and the inverse of the reduced Hessian are obtained using
k_aug (Thierry and Biegler, 2019).

4.1 With state disturbances and measurement noise

We simulate four different cases with the state disturbance
w and measurement noise v:

• Case 1: wx1
and wx2

∼ N (0, 0.012), v ∼ N (0, 0.012)
• Case 2: wx1

and wx2
∼ N (0, 0.022), v ∼ N (0, 0.012)

• Case 3: wx1
and wx2

∼ N (0, 0.012), v ∼ N (0, 0.022)
• Case 4: wx1

and wx2
∼ N (0, 0.022), v ∼ N (0, 0.022)

We use the fixed control inputs obtained by the ideal
NMPC and the ideal MHE for the asMHE (Ns = 1) and
amsMHE (Ns = 3) simulation. The Rl and Ql are set as
the standard deviation of each noise.
The results are shown in Fig. 1 and Table 1. The sum-of-
squared errors for asMHE are smaller than for ideal MHE.
Although the sum-of-squared errors in x2 for cases 3 and 4
are smaller for amsMHE, the total sum-of-squared errors
are always greater than those of ideal MHE.
To investigate why asMHE can yield better estimations
than ideal MHE, we analyze the KKT conditions of
ideal MHE and the approximate update of asMHE. This
occurs because the MHE objective function contains the



state disturbance terms. In section 4.2, we show the
results of the case without state disturbances, where the
objective function does not include them and the ideal
MHE estimates the true values better than asMHE.
Consider the KKT conditions of the ideal MHE at tk+1

where the data set ηk+1 = [z̄−N+1, Π̄−N+1, yk−N+1, ..., yk+1]
is used with N horizon, and the inequality constraints are
assumed inactive. The Lagrangian of MN (ηk+1) is

L = ψN (ηk+1) +

0∑
l=−N+1

λ⊤l+1(zl+1 − f(zl, wl)). (14)

and the KKT conditions for z1 and λ1 are,
∇z1L = −∇z1h

⊤
1 R

−1
1 (yk+1 − h(z1)) + λ1 = 0 (15a)

∇λ1L = z1 − f(z0, w0) = 0 (15b)
∇w0L = Q−1

0 w0 −∇w0f
⊤
0 λ1 = 0. (15c)

Here, hl = h(zl) and fl = f(zl, wl). The solution of ideal
MHE z∗1 , w∗

0 , and λ∗1 satisfies (15). In addition, because
h(z1) = [0, 1][x1(tk+1), x2(tk+1)]

⊤ for this example, (15a)
is simplified as

λ∗1 =

[
0

R−1
1 (yk+1 − x∗2(tk+1))

]
(16)

With η̄k = [z̄−N , Π̄−N , yk−N+1, ..., yk, ŷk+1] and an ex-
tended horizon N +1, the Lagrangian of asMHE becomes:

Las = ψN+1(η̄k) +

0∑
l=−N

λ⊤l+1(zl+1 − f(zl, wl)). (17)

The solution z∗1,as, w∗
0,as, and λ∗1,as of MN+1(η̄k) satisfies

the following parts of the KKT conditions:
∇z1Las = −∇z1h

⊤
1 R

−1
1 (ŷk+1 − h(z1)) + λ1 = 0 (18a)

∇λ1L = z1 − f(z0, w0) = 0 (18b)
∇w0L = Q−1

0 w0 −∇w0f
⊤
0 λ1 = 0. (18c)

When the measurement yk+1 is obtained, the solution is
updated to satisfy

∇z1z1Las∆z1 +∆λ1 −∇z1h
⊤
1 R

−1
1 ∆p = 0 (19)

where the variables ∆z1 = z̃1−z∗1,as, ∆λ = λ̃1−λ∗1,as, and
∆p = yk+1−ŷk+1. Because h(z1) = [0, 1][x1(tk+1), x2(tk+1)]

⊤

in this example, (18a) becomes

−
[
0
1

]
R−1

1 (ŷk+1 − x∗2,as(tk+1)) + λ∗1,as = 0 (20)

and (19) becomes[
0

R−1
1 (x̃2(tk+1)− x∗2,as(tk+1))

]
+∆λ1 −

[
0

R−1
1 ∆p

]
= 0

(21)
From (20) and (21),[

0
R−1

1 (x̃2(tk+1))

]
+ λ̃1 −

[
0

R−1
1 yk+1

]
= 0. (22)

and
λ̃1 =

[
0

R−1
1 (yk+1 − x̃2(tk+1))

]
. (23)

Considering (15c) and (18c) and comparing (16) and (23),
we can note that the estimates of x2(tk+1) depend on the
estimates of state disturbances w0 in addition to z0. This
may make the asMHE estimate of x2(tk+1) better from
the perspective of the errors.
On the other hand, as seen in Table 1 for amsMHE with
Ns = 3, solving the optimization problem less frequently,

and with less accurate predicted measurements, leads to
a deterioration of estimation performance. In addition,
the amsMHE approximates an ideal MHE with real and
predicted measurements depending on the time steps. This
can also affect estimation performance.

Table 1. The squared errors between the esti-
mates and true values of amsMHE with Ns =
3, asMHE, and ideal MHE when considering

state disturbances and measurement noise.
amsMHE asMHE Ideal MHE

Case 1

∑150

0
(x1 − x̂1)2 0.0473 0.0081 0.0102∑150

0
(x2 − x̂2)2 0.0601 0.0113 0.0541
Total 0.1074 0.0194 0.0644

Case 2

∑150

0
(x1 − x̂1)2 0.1965 0.0293 0.0319∑150

0
(x2 − x̂2)2 0.1988 0.0147 0.1653
Total 0.3953 0.044 0.1972

Case 3

∑150

0
(x1 − x̂1)2 0.0389 0.0121 0.0168∑150

0
(x2 − x̂2)2 0.0579 0.0292 0.0728
Total 0.0968 0.0413 0.0895

Case 4

∑150

0
(x1 − x̂1) 0.1684 0.0353 0.0423∑150

0
(x2 − x̂2) 0.1758 0.0447 0.1914

Total 0.3442 0.08 0.2338

4.2 Without state disturbances and with measurement
noise

To further compare the effects of the approximate ap-
proach, we simulate the MHE without state disturbances
and only with measurement noise. The results obtained
with v ∼ N (0, 0.052) are shown in Table 2 and Fig. 2.
As expected, the performances of amsMHE deteriorate as
Ns increases because the NLP is solved with a greater
number of predicted measurements and then the solution
is updated approximately when the real measurements are
obtained.
In Table 3, we show the average and maximum of online
and offline CPU time to solve MHEs. The online CPU
time of asMHE is negligible and the average and maximum
online CPU times of amsMHE with Ns = 3 are smaller
than those of ideal MHE. Because the example has small
computational load, the time reductions for asMHE and
amsMHE are also small. A detailed large-scale case study
with an ASU model (Kim et al. (2020a), submitted) shows
a reduction in average on-line computation from over 100
CPU s to about 0.001 CPU s.

Table 2. The squared errors between the esti-
mates and true values of amsMHE with Ns =
3, asMHE, and ideal MHE for the simulations

only with measurement noise.

amsMHE asMHE Ideal MHE∑150

0
(x1 − x̂1)2 0.009 8.11E-06 2.65E-07∑150

0
(x2 − x̂2)2 0.0263 0.0014 9.50E-07
Total 0.0353 0.0014 1.22E-06

5. CONCLUSION

This paper proposes an advanced-multi-step MHE that the
optimization problem with predicted outputs is solved in
advance, and the optimal estimates with the real measure-
ments are approximated by NLP sensitivity update online.
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Fig. 1. State estimation with state disturbances and measurement noise.

Table 3. Average and maximum CPU times for
solving ideal MHE and amsMHEs.

amsMHE asMHE Ideal MHE
Offline Average 0.0042 0.0070 -

CPU time [s] Max 0.0316 0.0456 -
Online Average 0.0005 0.0000 0.0055

CPU time [s] Max 0.0156 0.0000 0.0160

We investigate the performances of amsMHE, asMHE
and ideal MHE with state disturbances and measurement
noise. The estimation performance of asMHE is sometimes
better than ideal MHE because general MHE problems
minimize the sum of estimation errors and the norm of
state disturbances. On the other hand, given the stochas-
tic nature of these simulations, it is expected that per-
formance comparisons among these approaches may be
case dependent. Also, when we simulate the cases only
with measurement noise, we observe that the performance
deteriorates as Ns increases. The computational load of
NLP can be handled by ams strategy, solving the opti-
mization problem in background; thus, future work will
consider large-scale problems to show the computational

advantages of the amsMHE method. Also, parametric un-
certainties will be considered, and the amsMHE method
will be coupled with advanced-multi-step nonlinear model
predictive control (amsNMPC), thus leading to a fast
output-based controller.
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