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Abstract: The key idea of the fourth industrial revolution is to use the huge amount of data from the 
increased process digitalisation in order to make better decisions at all levels: from the design and control, 
to operation and management. However, advanced decision support systems usually rely on good plant 
models. Despite the increased popularity of machine learning, in the process industry many of these ap-
proaches may fail in building reliable prediction models: that is, models whose output can be trusted even 
out of the region where actual data was collected. This paper illustrates how to get a reliable grey-box 
model of a chemical plant for optimisation purposes via sum-of-squares (SOS) constrained regression, a 
method that guarantees full enforcement of physical features on the identified model, no matter the quality 
and quantity of the collected data. The approach is used here to identify a reliable model for the reaction 
kinetics in a hybrid CSTR, a pilot plant where the chemical reactions are emulated over a harmless fluid. 
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1. MOTIVATION 

Industry is at the doors of the full digital era, where the im-
pressing amount of data that will be stored, as well as the speed 
at which they are recorded, is expected to significantly affect 
the decision-making procedures at all levels of a factory. How-
ever, in the process industries (those where bulk materials are 
submitted to complex physical and chemical processes), these 
expected advances will not come alone by just collecting huge 
amounts of data and presenting them in a nice view: data treat-
ment and analytics is necessary. Moreover, models for reliable 
predictions need to be built upon such data (Aguilar, Torres & 
Martín, 2019), in order to be later used in advanced control, 
real-time optimisation and scheduling routines (Grossmann & 
Harjunkoski, 2019). 
First, several drawbacks that torpedo the success of machine 
learning (ML) in the chemical industry already arise from the 
data collection side (Pitarch & de Prada, 2019):  
• Measurements could be biased and/or corrupted. 
• Plants are operating in the same point most of the time. 
• Extensive experimentation is too expensive or limited due 

to production constraints. 
• Some key variables are not accessible for measurement. 
Concerning model building, there are also some problems to 
face, such as finding the right trade-off between achieving high 
fidelity and low computational cost, how to customise a phys-
ics-based model to really match the actual plant, or ensuring 
coherent behaviours in extrapolating with a data-driven model. 
In this context, the direct application of an ML approach in the 
process industry needs to be evaluated carefully, as this is not 

the first (unsuccessful) attempt in the history of process sys-
tems engineering (Venkatasubramanian, 2019). 
In these industrial sectors, it is not sensible to throw away all 
the deep knowledge acquired by expert scientists and engineers 
for many years, just to replace it with deep learning algo-
rithms. Thus, one of the key challenges of ML to successfully 
penetrate in the process industry is developing methods and 
tools that are able to naturally embed and combine the existent 
process knowledge with data. Consequently, the process con-
trol and chemical engineering communities devoted efforts to 
develop effective methods and tools for building grey-box 
models that get both high matching with the actual plant in 
current operation and, importantly, confidence for extrapola-
tion (i.e., prediction beyond the explored operation zone). See 
for instance the works by Nauta et al. (2007) and Cozad, 
Sahinidis & Miller (2015), among others. 
Recently, the authors proposed a systematic methodology for 
building grey-box models of process plants (Pitarch, Sala, & 
de Prada, 2019b). In this method, the two main sources of pro-
cess knowledge (well-known first principles and collected 
data) are integrated into a data-reconciliation stage, which pro-
vides an extended set of virtual data that is coherent with the 
basic process physics. Then, ML is recalled to identify any re-
quired black-box relationship among variables that was diffi-
cult to model at first instance. Any ML procedure could be 
used in this second stage, but constrained regression is the 
suggested one in order to provide interpretability as well as the 
desired reliability in extrapolation with the identified black-
box sub models. 
Briefly summarising, constrained regression attempts to solve 
the following problem. Assume that 𝑁𝑁 reliable data points are 
available for some outputs 𝑦𝑦 and inputs 𝑥𝑥. Then, a form 𝑓𝑓(𝑥𝑥) ♦ This research received funding from the EU and the Spanish MICINN 
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is sought such that a 𝑝𝑝-measure of the error (e.g., 𝐿𝐿1-regular-
ized or least squares) w.r.t. the data are minimised subject to 
some extra constraints 𝑐𝑐(𝑥𝑥) ≥ 0 with physical meaning: 

minimise
𝛼𝛼∈ℝ𝑛𝑛

� �𝑦𝑦[𝑡𝑡] − 𝑓𝑓�𝛼𝛼; 𝑥𝑥[𝑡𝑡]��
𝑁𝑁

𝑡𝑡=1 𝑝𝑝

s. t. : 𝑐𝑐(𝛼𝛼; 𝑥𝑥) ≥ 0 ∀ 𝑥𝑥 ∈ 𝒳𝒳
  (1) 

Where the decision variables 𝛼𝛼 are the coefficients of 𝑓𝑓(𝑥𝑥), 
i.e. the model parameters, and constraints 𝑐𝑐(𝑥𝑥) would like to 
hold in a local region 𝒳𝒳 of the input space, that may be wider 
than the region to which the 𝑁𝑁 experimental points 𝑥𝑥[𝑡𝑡] belong. 
Two main technologies have been developed to address (1) 
off-line in a computationally affordable way: symbolic regres-
sion via mixed-integer programming (Neumann et al., 2019) 
and the SOS-constrained regression via semidefinite 
programming (Pitarch, Sala, & de Prada, 2019a). The main 
drawback with symbolic regression is that constraints 𝑐𝑐(𝑥𝑥) ≥
0 can only be checked in the finite number of points present in 
the dataset, which is certainly a subset of region 𝒳𝒳. This im-
portant issue vanishes with the SOS approach where, due to 
the inherent features of semidefinite programming, 𝑐𝑐(𝑥𝑥) ≥ 0 
is ensured in the whole region 𝒳𝒳 independently of the data 
available. However, SOS programming can only handle poly-
nomial 𝑓𝑓(𝑥𝑥) whereas nonlinear basis functions can be part of 
the candidate model in symbolic regression. Note that, alt-
hough polynomials are flexible regressors, many of the inter-
nal mechanisms in (bio)chemical systems behave according to 
non-polynomial representations, so the models obtained by the 
SOS approach may lack physical interpretability. 
Pilot plants of reduced scale are a way to test these novel mod-
elling methods. However, despite needing less investment in 
instrumentation or equipment, they also involve raw materials 
and chemical reactions that can be expensive or dangerous. 
Moreover, these plants also require a careful setting up and 
maintenance. Here is where the concept of hybrid plants can 
be useful. In these pilot setups, the equipment and the hydro-
thermodynamics of the process are real (but limited to the 
properties of the involved raw materials) and the hazardous 
components (e.g, chemical reactions) are emulated via soft-
ware (Kershenbaum & Kittisupakorn, 1994). In this line, we 
built a hybrid continuous-stirred tank reactor (CSTR) of labor-
atory scale. The aim is to use this hybrid plant as proof of con-
cept for advanced modelling, control and optimisation solu-
tions (e.g., Kalliski et al. (2019), among others). 
Hence, the contributions in this paper are twofold: a practical 
one, by applying the SOS-constrained regression to build grey-
box models, illustrated with the constructed hybrid CSTR; and 
a methodological one, extending the SOS approach to include 
non-polynomial basis functions, without losing full constraint 
satisfaction guarantees of course. To achieve this, the non-pol-
ynomial terms arising in 𝑐𝑐(𝑥𝑥) are bounded between polyno-
mial vertex models of desired complexity via the Taylor series 
approach (Sala & Ariño, 2009). 
In the next section, the reader will find the description of the 
constructed hybrid CSTR. Then, Section 3 resumes the SOS-
modelling approach, whose application to the CSTR case is in 
Section 4 together with the obtained results, and a discussion 
section with remarks closes the paper. 

2. THE HYBRID CSTR PILOT PLANT 

2.1 Hardware components 

In the hybrid CSTR of Fig. 1 the “reactants” (i.e. water) are 
stored in tank T-101 and fed to the reactor using pump P-101 
(0.3 to 1.7 l/min), manipulated by a PID flow control loop. The 
volume of the reactor is constant as the products are extracted 
using P-102 mimicking overflow. The cooling fluid is water 
from a network and a PID controller acting over V-101 sets the 
flowrate (0.8 to 15 l/min). Exothermic reactions can be simu-
lated by the computation block UX-100, so that the heat is gen-
erated in the vessel R-101 (AISI 316 stainless steel) by two 
electric resistances (3 kW each) feed with the computed signal 
amplified in J. The plant has four PT100 temperature probes 
and two magnetic flowmeters, shown in Fig. 1. 
Perfect mixture is assumed inside the vessel R-101 (11.5 l vol-
ume), so the process can be modelled by mass and energy bal-
ances of lumped parameters. Note that the kinetic calculations 
in UX-100 are carried out with the actual reactor temperature 
(measured) and reactants inflow. 

 
Fig. 1. P&ID of the hybrid CSTR pilot plant. 

The data acquisition card MCC USB-1208HS-4A0, which 
reads and writes in the 0-5 V range, manages all control sig-
nals. However, instruments work in 4-20 mA range. So an ad-
ditional conversion stage is needed, as shown in Fig. 2. 

2.2 Software components 

There are three main software components to run the plant: an 
OPC server that contains the simulation of the chemical reac-
tions, OPC servers that implement two digital PID flow con-
trollers and a SCADA system developed in the Wonderware 
InTouch environment (Fig. 2). This SCADA is in charge of 
managing all communications among the different OPC serv-
ers, visualising the information from plant sensors as well as 
allowing the user to manipulate actuators, tuning the PIDs and 
setting the kinetic parameters of the chemical reactions to be 
simulated. 
The evolution of plant variables can be recorded from the 
SCADA via ReadOPC v1.6 software. The resulting data file is 
suitably processed by a Python script developed ad-hoc that 
converts it to a readable CSV file. 
To facilitate the understanding of the methodology proposed 
in the next section, a toy first-order reaction A → B is coded in 
the simulation block. 
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Fig. 2. Plant communications scheme. 

The reaction rate (cA is the concentration of reactant A and E 
the activation energy)  

𝑟𝑟𝐴𝐴 ≔ k0 ⋅ e−
E
R·𝑇𝑇 ⋅ 𝑐𝑐𝐴𝐴 (2) 

appears in the mass balance (3). The reactor temperature 𝑇𝑇 and 
volume V are used in the energy balances:  

V �̇�𝑐𝐴𝐴 = (𝑐𝑐𝐴𝐴0 − 𝑐𝑐𝐴𝐴) 𝑞𝑞𝑅𝑅 − V 𝑟𝑟𝐴𝐴 (3) 
ρCpV �̇�𝑇 = (𝑇𝑇0 − 𝑇𝑇)𝑞𝑞𝑅𝑅 − (𝑇𝑇 − 𝑇𝑇𝐶𝐶) 𝑈𝑈 A (4) 

ρ𝐶𝐶Cp𝐶𝐶V𝐶𝐶  �̇�𝑇𝐶𝐶 = (𝑇𝑇𝐶𝐶0 − 𝑇𝑇𝐶𝐶)ρ𝐶𝐶Cp𝐶𝐶  𝑞𝑞𝐶𝐶 + (𝑇𝑇 − 𝑇𝑇𝐶𝐶) 𝑈𝑈 A (5) 
The heat generated by the chemical reaction is computed by: 

𝑄𝑄 = V 𝑟𝑟𝐴𝐴 ΔH (6) 
Where ΔH is the standard enthalpy of reaction. 
If this was an industrial setup, parameters such as volumes V, 
flow densities ρ, specific heats Cp, exchange area A, could be 
assumed known with enough precision. However, the kinetics 
of the actual chemical reaction(s) are not always well known. 
Similarly, it could happen with the actual expression of the 
heat-transfer coefficient 𝑈𝑈, dependent of the cooling flow 𝑞𝑞𝑅𝑅. 
Remark 1. For the modelling in this paper, neither the param-
eters nor the true structure of (2) will be assumed fully known.  

3. SOS-CONSTRAINED REGRESSION 

First, we briefly recall some definitions and basic results on 
sum-of-squares programming. 
Definition 1. (SOS polynomials). An even-degree polynomial 
𝑝𝑝(𝑥𝑥) ∈ ℛ𝑥𝑥 in variables 𝑥𝑥 is SOS iff ∃𝑄𝑄 ≽ 0 such that 𝑝𝑝(𝑥𝑥) =
𝑧𝑧𝑇𝑇 (𝑥𝑥)𝑄𝑄𝑧𝑧(𝑥𝑥), with 𝑧𝑧(𝑥𝑥) being a vector of monomials in 𝑥𝑥. 
Then, checking if any 𝑄𝑄 ≽ 0 exist for a given 𝑝𝑝 is a linear ma-
trix inequality (LMI) problem (Parrilo,  2000). 
In this way, if 𝑝𝑝 is affine in decision variables (typically its 
coefficients), it can be checked for SOS via efficient SDP solv-
ers (Papachristodoulou, et al., 2013). From now on, the set of 
SOS polynomials is denoted by the symbol Σ𝑥𝑥 . 
SOS optimisation. Analogously to the previous cases, the min-
imisation of a cost index linear in some decision variables 𝛼𝛼 
subject to SOS constraints 𝑔𝑔(𝛼𝛼;𝑥𝑥) ∈ Σ𝑥𝑥 or SOS positive-defi-
niteness constraints 𝐺𝐺(𝛼𝛼; 𝑥𝑥) ∈ Σ𝑥𝑥𝑛𝑛 with 𝑔𝑔,𝐺𝐺 affine in 𝛼𝛼 can 
also be cast as a convex SDP problem. Scalar matrix linear 

constraints on 𝛼𝛼 can be incorporated too, as they are zero-de-
gree polynomials. 
Local positivity of polynomials on semialgebraic sets can be 
checked via the well-known Putinar’s Positivstellensatz theo-
rem (Putinar, 1993). Lemmas 1 and 2 in the Appendix are sim-
plified versions of such result. 
Accordingly, the constrained regression (1) can be cast as an 
SOS optimisation problem provided that polynomials 𝑓𝑓 and 𝑐𝑐 
are affine in decision variables, the objective function is linear, 
and the region 𝒳𝒳 is defined by polynomial boundaries: 

𝒳𝒳 ≔ {𝑥𝑥|𝑔𝑔(𝑥𝑥) ≥ 0; 𝑘𝑘(𝑥𝑥) = 0;  𝑔𝑔, 𝑘𝑘 ∈ ℛ𝑥𝑥
𝑛𝑛} (7)   

For a given dataset 𝒟𝒟 ≔ {𝑌𝑌 ∈ ℝ𝑛𝑛𝑜𝑜×𝑁𝑁, 𝑋𝑋 ∈ ℝ𝑛𝑛𝑖𝑖×𝑁𝑁} of 𝑁𝑁 sam-
ples of 𝑛𝑛𝑜𝑜 output variables (measured or estimated) and 𝑛𝑛𝑖𝑖 in-
put ones, denote by 𝐹𝐹(𝛼𝛼;𝑋𝑋) to a matrix whose columns result 
from evaluating a polynomial vector form 𝑓𝑓(𝛼𝛼; 𝑥𝑥) ∈ ℛ𝑥𝑥

𝑛𝑛𝑜𝑜   at 
each value 𝑥𝑥𝑖𝑖[𝑡𝑡] ∈ 𝑋𝑋. In other words, 𝐹𝐹 is the matrix of model 
predictions for the 𝑛𝑛𝑖𝑖 × 𝑁𝑁 input samples. Then, if 𝛼𝛼 are the 
affine coefficients in the polynomial candidate form 𝑓𝑓, then 
𝐹𝐹(𝛼𝛼;𝑋𝑋) = 𝛼𝛼 𝑍𝑍(𝑋𝑋)𝑇𝑇, where 𝑍𝑍(𝑋𝑋) ∈ ℝ𝐶𝐶𝑛𝑛𝑖𝑖+𝑑𝑑,𝑛𝑛𝑖𝑖×𝑁𝑁 is a matrix 
containing all monomials in 𝑓𝑓(𝑥𝑥) evaluated at the samples 𝑋𝑋. 
In the usual least-squares fitting (ℒ22 norm), the fitness function 
in (1) can be efficiently expressed as: 

‖𝑌𝑌 𝑈𝑈1 − 𝛼𝛼 𝑉𝑉 Σ1‖𝑙𝑙 (8)   
Where the economic singular value decomposition 𝐹𝐹(𝑋𝑋) =
𝑈𝑈1Σ1𝑉𝑉𝑇𝑇is used to reduce the problem size when 𝑁𝑁 ≫ 𝐶𝐶𝑛𝑛𝑖𝑖+𝑑𝑑,𝑛𝑛𝑖𝑖 . 
Then, (1) with (8) is reformulated for SOS optimisation as: 

minimise
α,β,γ∈ℝ𝑛𝑛; 𝜏𝜏∈ℝ+

     𝜏𝜏     

s. t. :  𝜂𝜂T �
𝜏𝜏 𝑌𝑌𝑈𝑈1 − 𝛼𝛼𝑉𝑉Σ1

𝑈𝑈1𝑇𝑇𝑌𝑌𝑇𝑇 − Σ1𝑉𝑉𝑇𝑇𝛼𝛼𝑇𝑇 𝐼𝐼 � 𝜂𝜂T ∈ Σ𝜂𝜂 (9) 

  𝑐𝑐(𝛼𝛼; 𝑥𝑥) −� 𝑠𝑠𝑖𝑖(𝛽𝛽; 𝑥𝑥)𝑔𝑔𝑖𝑖(𝑥𝑥)
𝑙𝑙

𝑖𝑖=1
 

+� 𝑣𝑣𝑗𝑗(𝛾𝛾;𝑥𝑥)𝑘𝑘𝑗𝑗(𝑥𝑥)
𝑞𝑞

𝑗𝑗=1
∈ Σ𝑥𝑥 

(10) 

Where Lemma 3 (Appendix A) is recalled and used to equiva-
lently express 𝜏𝜏 − ‖𝑌𝑌𝑈𝑈1 − 𝛼𝛼𝑉𝑉Σ1‖22 ≥ 0 as (9), and Lemma 1 
to enforce the additional constraints 𝑐𝑐(𝑥𝑥) ≥ 0 locally in 𝒳𝒳. 
The polynomial forms 𝑐𝑐(𝑥𝑥) in (10) can be chosen among: 

• Constraints on the input/output domain.  
• Constraints on the model (partial) derivatives, i.e., 

bounded slopes, curvatures, and/or enforcing convexity. 
• Boundary constraints ensured by equality constraints 

𝑐𝑐(𝑥𝑥)|𝑥𝑥[𝑡𝑡] = 0, enforced over some 𝑥𝑥[𝑡𝑡] = �̅�𝑥.  
The reader is referred to (Pitarch, Sala, & de Prada, 2019b) for 
extended details on the possible shapes of 𝑐𝑐(𝛼𝛼; 𝑥𝑥). 
 
Extension to non-polynomial basis functions 

The goal now is to allow the inclusion of non-polynomial 
terms ℎ(𝛽𝛽; 𝑥𝑥), such as e𝛽𝛽𝑥𝑥, log(𝛽𝛽𝑥𝑥), sin(𝛽𝛽𝑥𝑥) ,√𝑥𝑥, etc., in the 
candidate form 𝑓𝑓(𝑥𝑥). Unfortunately, the parameters 𝛽𝛽 here 
cannot be decision variables for the optimisation. Furthermore, 
the method presented below requires that ℎ(𝑥𝑥) is C𝑜𝑜𝑛𝑛  so that 
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its Taylor expansion of order 𝑜𝑜𝑛𝑛 exists and converges to ℎ(𝑥𝑥) 
in a region 𝒳𝒳 of the input space as 𝑜𝑜𝑛𝑛 → ∞. 
Given these assumptions, now denote 𝜌𝜌𝑖𝑖 = ℎ𝑖𝑖(𝛽𝛽; 𝑥𝑥) to each 𝑖𝑖-
th non-polynomial function that will be included in the candi-
date model 𝑓𝑓. Then, taking 𝜌𝜌 as additional input variables, a 
polynomial model 𝑓𝑓(𝛼𝛼; 𝑥𝑥,𝜌𝜌) of degree 𝑑𝑑 can be sought. 
Note that the matrix 𝐹𝐹(𝛼𝛼;𝑋𝑋) is now computed by applying 
𝑓𝑓(𝛼𝛼; 𝑥𝑥, ℎ(𝛽𝛽; 𝑥𝑥)) to each value 𝑥𝑥𝑖𝑖[𝑡𝑡] in 𝑋𝑋. Consequently, 𝑍𝑍(𝑋𝑋) 
is now a matrix containing all monomials in 𝑥𝑥 and 𝜌𝜌 present in 
𝑓𝑓, evaluated at the samples 𝑋𝑋. From here, the fitting objective 
(8), as well as its particular SOS implementation (9) can be 
formulated. However, 𝑐𝑐(𝑥𝑥) are no more polynomials in 𝑥𝑥, as 
the regressors ℎ(𝑥𝑥) and/or other possible nonlinearities de-
rived from them arise in 𝑐𝑐, depending on the type of constraint 
to be enforced. E.g., a constraint on the model slope involves  

𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

⋅
𝑑𝑑𝜌𝜌
𝑑𝑑𝑥𝑥

 

so that ℎ(𝑥𝑥) can arise in 𝜕𝜕𝑓𝑓/𝜕𝜕𝑥𝑥 and in 𝑑𝑑𝜌𝜌/𝑑𝑑𝑥𝑥, and new non-
polynomial forms 𝑢𝑢(𝛽𝛽; 𝑥𝑥) normally arise in 𝑑𝑑𝜌𝜌/𝑑𝑑𝑥𝑥 as well. 
Then, the idea proposed here is to embed each of these nonlin-
earities, ℎ(𝑥𝑥) and 𝑢𝑢(𝑥𝑥), between polynomial vertices using 
Lemma 4 (Appendix A). Hence, 𝑐𝑐(𝑥𝑥) can be equivalently ex-
pressed as a convex combination of polynomials in region 𝒳𝒳: 

𝑐𝑐(𝛼𝛼; 𝑥𝑥) = ∑ 𝜎𝜎𝑘𝑘(𝑥𝑥)𝑟𝑟
𝑘𝑘=1 𝑝𝑝𝑘𝑘(𝛼𝛼; 𝑥𝑥), ∑ 𝜎𝜎𝑘𝑘(𝑥𝑥) = 1𝑘𝑘 , 𝑥𝑥 ∈ 𝒳𝒳  (11) 

Where 𝑟𝑟 = 2𝜈𝜈 is the total number of vertex models in the gen-
eral case, being 𝜈𝜈 the number of defined nonlinearities ℎ(𝑥𝑥𝑖𝑖) 
and 𝑢𝑢(𝑥𝑥𝑖𝑖) on a single variable 𝑥𝑥𝑖𝑖. 
Following this idea and neglecting the shape dependency in 
the interpolating functions 𝜎𝜎(𝑥𝑥), i.e., transforming 𝜎𝜎𝑘𝑘(𝑥𝑥) into 
an arbitrary scalar in the standard simplex 𝜎𝜎𝑘𝑘 ∈ Δ (shape inde-
pendency) as in (27), constraints (10) can be conservatively 
guaranteed by enforcing them in the 𝑘𝑘: 1, … , 𝑟𝑟 vertices: 

𝑝𝑝𝑘𝑘(𝛼𝛼; 𝑥𝑥) − ∑ 𝑠𝑠𝑘𝑘𝑖𝑖(𝑥𝑥)𝑔𝑔𝑖𝑖(𝑥𝑥)𝑙𝑙
𝑖𝑖=1 + ∑ 𝑣𝑣𝑘𝑘𝑗𝑗(𝑥𝑥)𝑘𝑘𝑗𝑗(𝑥𝑥)𝑞𝑞

𝑗𝑗=1 ∈ Σ𝑥𝑥  (12) 

4. APPLICATION TO THE HYBRID CSTR 

The goal now is to apply the above modelling methodology to 
find an expression for the reaction rate rA(T, cA) from experi-
mental data. Note that the precise knowledge of (2) is not 
known. Therefore, a fully fixed functional structure will not be 
set for regression as in classical parameter identification. In-
stead, a more flexible one will be sought through SOS-con-
strained regression, so that certain coherence with the basic ki-
netic features of the class of chemical reactions taking place in 
the reactor will be assured, no matter the size, sparsity or di-
versity of the dataset recorded from plant sensors. 
To this aim, an experiment of 305 min duration (5 sec sam-
pling time) is run to collect data with sensible step variations 
in P-101 and V-101 in order to capture the plant state dynamics 
with precision, see Fig 3. This provides a dataset of 3660 sam-
ples, choosing randomly half for regression and half for vali-
dation for instance (other divisions can be done as well). 
At this point, dynamic data reconciliation is recalled with sys-
tem equations (3)-(5) to robustly estimate rA from all available 
plant measurements (Pitarch, Sala, & de Prada, 2019b). Note 
that full state measurements are available in this case, as 𝑐𝑐𝐴𝐴 
computed in UX-100 is assumed measurable in real time at the 
reactor outlet.  

 
Fig. 3. Evolution of the CSTR state during the experiment. 

This filtering approach resulted satisfactory. The proof is that 
a nonlinear parameter identification with the functional form 
(2) fully known could acceptably identify1 parameters k0 and 
E from data. See the filtered rA compared to the true response 
of (2) in Fig. 4. Nonetheless, as the precise structure of (2) is 
not assumed known for this example, nor it is usually in actual 
practice, the methodology in Section 3 is applied to build a 
physically coherent model for 𝑟𝑟𝐴𝐴(𝑇𝑇, 𝑐𝑐𝐴𝐴) in the local region: 

𝒳𝒳 ≔ {𝑇𝑇, 𝑐𝑐𝐴𝐴|0.2 ≤ 𝑐𝑐𝐴𝐴 ≤ 1, 10 ≤ 𝑇𝑇 − 273 ≤ 80} (13) 
Remark 2. Note that 𝒳𝒳 goes beyond the region explored in the 
experiment (see Fig. 5). This is set on purpose in order to en-
sure certain physical coherence of the model predictions when 
extrapolating to physically possible operating conditions. 

 
Fig. 4. Evolution of the reaction rate 𝑟𝑟𝐴𝐴 over the time. 

Now let’s suppose that the chemical engineer has the insight 
that 𝑟𝑟𝐴𝐴 necessarily increases with 𝑐𝑐𝐴𝐴 and 𝑇𝑇. Furthermore, that 
the family of reactions 𝐴𝐴 → 𝐵𝐵 are governed by:  

𝑟𝑟𝐴𝐴 = 𝑓𝑓 �𝑐𝑐𝐴𝐴
γ, e−

θ
𝑇𝑇� ;    θ, γ ∈ ℝ+; 0 < γ ≤ 2 (14) 

Where, 𝑓𝑓(⋅) is an unknown function of the above arguments. 

Note that 𝑐𝑐𝐴𝐴
γ and e−

θ
𝑇𝑇 (with fixed γ, θ) can be renamed as 𝜌𝜌1 

and 𝜌𝜌2 so that a polynomial 𝑓𝑓(𝑐𝑐𝐴𝐴,𝑇𝑇,𝜌𝜌1,𝜌𝜌2) could be directly 
sought with our proposed methodology. Nonetheless, as pro-
posing a priori values for γ, θ close to the real ones would be 
sheer luck, the SOS optimisation would certainly remove the 
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1 k0 = 1.38 and E = 2420 were the values set for (2) in the UX-100 block, 
whereas k�0 = 1.367 and E� = 2398 were identified by nonlinear regression.  
 



 
 

     

 

basis 𝜌𝜌 from the final form 𝑓𝑓. Thus, what is sensible to avoid 
this issue is searching for a linear combination between, at 
least, the two expected vertex values for each nonlinear basis. 
Consequently, we will search for a model of the form: 

𝑟𝑟𝐴𝐴 = 𝑝𝑝1(𝑐𝑐𝐴𝐴) · e−
120
𝑇𝑇 + 𝑝𝑝2(𝑐𝑐𝐴𝐴) · e−

600
𝑇𝑇  (15) 

Where 𝑝𝑝(𝑐𝑐𝐴𝐴) are polynomial forms up to degree 𝑑𝑑 = 2. 
The partial derivatives of (15) w.r.t. 𝑐𝑐𝐴𝐴 and 𝑇𝑇 are: 

𝜕𝜕𝑟𝑟𝐴𝐴
𝜕𝜕𝑐𝑐𝐴𝐴

=
𝑑𝑑𝑝𝑝1
𝑑𝑑𝑐𝑐𝐴𝐴

e−
120
𝑇𝑇 +

𝑑𝑑𝑝𝑝2
𝑑𝑑𝑐𝑐𝐴𝐴

e−
600
𝑇𝑇  (16) 

𝜕𝜕𝑟𝑟𝐴𝐴
𝜕𝜕𝑇𝑇

= e−
120
𝑇𝑇

120𝑝𝑝1
𝑇𝑇2

+ e−
600
𝑇𝑇

600𝑝𝑝2
𝑇𝑇2

 (17) 

Now, denote the above non-polynomial terms by: 

𝜌𝜌1 ≔ e−
120
𝑇𝑇 ;    𝜌𝜌2 ≔ e−

600
𝑇𝑇 ; 

 𝜌𝜌3 ≔ 𝜌𝜌1
120
𝑇𝑇2

;   𝜌𝜌4 ≔ 𝜌𝜌2
600
𝑇𝑇2

 
(18) 

Then, each of the above 𝜌𝜌 is bounded in 𝒳𝒳 between two linear 
(for simplicity) vertex models by computing the maximum and 
minimum values for the reminders of the Taylor expansion 
around 𝑇𝑇0 = 33.56 + 273 K (mean value of the dataset): 

𝜌𝜌1 = 8.988𝑒𝑒−4𝑇𝑇 + 0.1351; 𝜌𝜌1 = 8.912𝑒𝑒−4𝑇𝑇 + 0.1327; 

𝜌𝜌2 = 9.216𝑒𝑒−4𝑇𝑇 + 0.3928; 𝜌𝜌2 = 7.707𝑒𝑒−4𝑇𝑇 + 0.4391; 

𝜌𝜌3 = 9.624𝑒𝑒−4 − 1.07𝑒𝑒−6𝑇𝑇;  𝜌𝜌3 = 9.452𝑒𝑒−4 − 1.014𝑒𝑒−6𝑇𝑇; 

𝜌𝜌4 = 2.914𝑒𝑒−3 − 4.758𝑒𝑒−6𝑇𝑇;  𝜌𝜌4 = 0.0027 − 4.06𝑒𝑒−6𝑇𝑇; 

Note importantly that, despite we have 4 nonlinearities that 
would give rise to 𝑟𝑟 = 24 vertex models in the general case, 
they all depend on the same variable 𝑇𝑇 and they reach their 
minimum and maximum values at the extremes of 𝒳𝒳. Hence, 
they will never evolve independently, so we get full guarantees 
by just ensuring the desired features in the two vertices formed 
by all the 𝜌𝜌 and 𝜌𝜌 respectively. Finally, the desired positivity 
is locally enforced in the partial derivatives by setting (10) as: 
𝑑𝑑𝑝𝑝1
𝑑𝑑𝑐𝑐𝐴𝐴

𝜌𝜌1𝑘𝑘 +
𝑑𝑑𝑝𝑝2
𝑑𝑑𝑐𝑐𝐴𝐴

𝜌𝜌2𝑘𝑘 − 𝑆𝑆1𝑘𝑘(353 − 𝑇𝑇)(𝑇𝑇 − 283) − 

𝑆𝑆2𝑘𝑘(1 − 𝑐𝑐𝐴𝐴)(𝑐𝑐𝐴𝐴 − 0.2) ∈ Σ𝑇𝑇,𝑐𝑐𝐴𝐴  ∀𝜌𝜌𝑖𝑖𝑘𝑘 ∈ �𝜌𝜌𝑖𝑖 ,𝜌𝜌𝑖𝑖� 
(19) 

𝑝𝑝1𝜌𝜌3𝑘𝑘 + 𝑝𝑝2𝜌𝜌4𝑘𝑘 − 𝑆𝑆3𝑘𝑘(353 − 𝑇𝑇)(𝑇𝑇 − 283) − 

𝑆𝑆4𝑘𝑘(1 − 𝑐𝑐𝐴𝐴)(𝑐𝑐𝐴𝐴 − 0.2) ∈ Σ𝑇𝑇,𝑐𝑐𝐴𝐴  ∀𝜌𝜌𝑖𝑖𝑘𝑘 ∈ �𝜌𝜌𝑖𝑖 ,𝜌𝜌𝑖𝑖� 
(20) 

With S1k, S2k ∈ ℝ+ and quadratic S3k, S4k ∈ ΣT,cA multipliers. 
Furthermore, including an upper bound τ on the 𝜕𝜕𝑟𝑟𝐴𝐴/𝜕𝜕𝑇𝑇 is 
convenient too. This bound is chosen as the highest variation 
detected in the data w.r.t. the temperature, 𝜏𝜏 = 0.027. 
The resulting polynomials 𝑝𝑝1(𝑐𝑐𝐴𝐴) and 𝑝𝑝2(𝑐𝑐𝐴𝐴) after solving the 
SOS-constrained regression are: 

𝑝𝑝1 = −7.71𝑐𝑐𝐴𝐴2 + 9.8233𝑐𝑐𝐴𝐴 − 1.3925 
𝑝𝑝2 = 1.663𝑐𝑐𝐴𝐴2 − 1.3549𝑐𝑐𝐴𝐴 + 0.33276 

(21) 

The model (15) with the computed polynomials (21) fits the 
data as good as a nonlinear parameter regression does if the 
true structure of 𝑟𝑟𝐴𝐴 were known (see Table 1), while keeping 
coherent behaviour in the zone of 𝒳𝒳 that was not covered by 

the performed experiment. Indeed, if the reader compares Fig. 
5 with the shape of the true generating function (2) in 𝒳𝒳, he/she 
will find little differences. That is of course due to the fact that 
(2) is not highly nonlinear in 𝒳𝒳, but also because the proposed 
methodology imposes certain model coherence, no matter the 
degree of complexity and/or the features of the dataset. 

 
Fig. 5. Collected plant data over the computed model surface. 

Remark 3. The SOS-constrained regression is solved in less 
than 3 seconds in a common laptop (Intel® i7-4510U CPU). 

Table 1.  Regression error 

 Training  Validation  Total 

Nonlinear ident. 0.10214 0.09092 0.19306 

SOS Constrained 0.08965 0.10149 0.19114 

5. REMARKS AND FURTHER EXTENSIONS 

This paper shows how SOS-constrained regression is applied 
to find a reliable model from data collected in a chemical plant. 
Indeed, the methodology has proven effective with a sparse 
dataset and in presence of measurement noise. This proves that 
(conservatively) enforcing physical constraints does not nec-
essarily penalise the total fitness to data.  
Moreover, we outlined how the modelling approach based on 
SOS polynomials and semidefinite programming can be ex-
tended to include non-polynomial basis functions, while keep-
ing full guarantees of constraint satisfaction. Derivations of the 
Positivstellensatz theorem and of the polynomial sector non-
linearity for fuzzy-systems modelling were key to build the 
proposed extension. However, the main drawback that remains 
is the impossibility of keeping the parameters in non-polyno-
mial terms as decision variables in the SOS optimisation, a 
problem also common to other approaches based on symbolic 
regression (Cozad, Sahinidis, & Miller, 2015). 
Although the SOS approach can be naturally combined with 
standard polynomial regularization methods, we admit that se-
lecting the suitable model complexity by automatically acti-
vating the combination of basis functions is desirable. Thus, 
we foresee mixed-integer semidefinite programming (in par-
ticular MISOSP) as an interesting path to explore. 



 
 

     

 

REFERENCES 

Aguilar, R.M., Torres, J.M. & Martín, C.A. (2019). Automatic 
learning for the system identification. A case study in the 
prediction of power generation in a wind farm. Revista 
Iberoamericana de Automática e Informática industrial, 
16(1), 114-127. 

Cozad, A., Sahinidis, N., & Miller, D. (2015). A combined 
first-principles and data-driven approach to model 
building. Computers & Chemical Eng., 73, 116-127. 

Grossmann, I., & Harjunkoski, I. (2019). Process Systems 
Engineering: Academic and industrial perspectives. 
Computers & Chemical Engineering, 126, 474-484. 

Kalliski, M., Pitarch, J.L., Jasch, C., & de Prada, C. (2019). 
Support to Decision-Making in a Network of Industrial 
Evaporators. Revista Iberoamericana de Automática e 
Informática industrial, 16(1), 26-35. 

Kershenbaum, L.S., & Kittisupakorn, P. (1994). The use of a 
partially simulated exothermic (PARSEX) reactor for 
experimental testing of control algorithms. Chemical 
Engineering Research & Design, 72(1), 55-63. 

Nauta, K., Weiland, S., Backx, A., & Jokic, A. (2007). 
Approximation of fast dynamics in kinetic networks using 
non-negative polynomials. 16th IEEE Inter. Conf. on 
Control Applications, 1144-1149. Singapore. 

Neumann, P., Cao, L., Russo, D., Vassiliadis, V., & Lapkin, 
A. (2019). A new formulation for symbolic regression to 
identify physico-chemical laws from experimental data. 
Chemical Engineering Journal, 123412. 

Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, 
S., Seiler, P., & Parrilo, P. (2013). SOSTOOLS: Sum of 
squares optimization toolbox for MATLAB. 

Parrilo, P. (2000). Structured semidefinite programs and 
semialgebraic geometry methods in robustness and 
optimization. PhD. Thesis: Caltech. 

Pitarch, J.L., & de Prada, C. (2019). Machine learning and the 
digital era from a Process Systems Engineering 
perspective. 10th EUROSIM Congress (p. 12). Logroño. 

Pitarch, J.L., Sala, A., & de Prada, C. (2019a). A Sum-Of-
Squares Constrained Regression Approach for Process 
Modeling. IFAC-PapersOnLine, 52(1), 754-759. 

Pitarch, J.L., Sala, A., & de Prada, C. (2019b). A systematic 
grey-box modeling methodology via data reconciliation 
and SOS constrained regression. Processes, 7(3), 170. 

Putinar, M. (1993). Positive Polynomials on Compact Semi-
algebraic Sets. Indiana Univerisity Mathematics Journal, 
42(3), 969-984. 

Sala, A., & Ariño, C.V. (2009). Polynomial fuzzy models for 
nonlinear control: A Taylor series approach. IEEE 
Transactions on Fuzzy Systems, 17(6), 1284-1295. 

Scherer, C. (2005). Relaxations for Robust Linear Matrix 
Inequality Problems with Verifications for Exactness. 
SIAM Journal on Matrix Analysis and Applications, 
27(2), 365-395. 

Venkatasubramanian, V. (2019). The Promise of Artificial 
Intelligence in Chemical Engineering: Is It Here, Finally? 
AIChE Journal, 65(2), 466-478. 

Appendix A. AUXILIARY RESULTS 

Definition 2. (SOS polynomial matrix). Let 𝐹𝐹(𝑥𝑥) ∈ ℛ𝑥𝑥
𝑛𝑛 be an 

𝑛𝑛 × 𝑛𝑛 symmetric polynomial matrix of degree 2𝑑𝑑 in 𝑥𝑥. Then, 

𝐹𝐹(𝑥𝑥) is an SOS polynomial matrix if 𝐹𝐹(𝑥𝑥) = 𝐻𝐻𝑇𝑇(𝑥𝑥)𝐻𝐻(𝑥𝑥), or 
equivalently if 𝑦𝑦𝑇𝑇𝐹𝐹(𝑥𝑥)𝑦𝑦 ∈ Σ𝑥𝑥,𝑦𝑦 (Scherer, 2005). 𝐹𝐹(𝑥𝑥) being 
SOS implies 𝐹𝐹(𝑥𝑥) ≽ 0 ∀𝑥𝑥. The set of 𝑛𝑛 × 𝑛𝑛 symmetric SOS 
polynomial matrices is denoted by the symbol Σ𝑥𝑥𝑛𝑛×𝑛𝑛. 
Lemma 1. Consider a region defined by polynomial boundaries 
𝒳𝒳 ≔ {𝑥𝑥|𝑔𝑔1(𝑥𝑥) ≥ 0, … ,𝑔𝑔𝑙𝑙(𝑥𝑥), 𝑘𝑘1(𝑥𝑥) = 0, … , 𝑘𝑘𝑟𝑟(𝑥𝑥) = 0}. If 
polynomial multipliers 𝑠𝑠𝑖𝑖(𝛽𝛽; 𝑥𝑥) ∈ Σ𝑥𝑥 and 𝑣𝑣𝑗𝑗(𝛾𝛾; 𝑥𝑥) ∈ ℛ𝑥𝑥 (𝛽𝛽, 𝛾𝛾 
vector decision variables) can be found fulfilling: 
𝑝𝑝(𝑥𝑥) − ∑ 𝑠𝑠𝑖𝑖(𝛽𝛽; 𝑥𝑥)𝑔𝑔𝑖𝑖(𝑥𝑥)𝑙𝑙

𝑖𝑖=1 + ∑ 𝑣𝑣𝑗𝑗(𝛾𝛾; 𝑥𝑥)𝑘𝑘𝑗𝑗(𝑥𝑥)𝑞𝑞
𝑗𝑗=1 ∈ Σ𝑥𝑥  (22) 

Then 𝑝𝑝(𝑥𝑥) is locally greater or equal than zero in 𝒳𝒳.           ■ 
Remark 4. With Lemma 1 we can prove local positivity of odd-
degree polynomials via SOS programming, by appropriately 
choosing the multipliers degree such that 𝑑𝑑𝑒𝑒𝑔𝑔(𝑠𝑠(𝑥𝑥)𝑔𝑔(𝑥𝑥)) and 
𝑑𝑑𝑒𝑒𝑔𝑔(𝑣𝑣(𝑥𝑥)𝑘𝑘(𝑥𝑥)) is even and greater than 𝑑𝑑𝑒𝑒𝑔𝑔�𝑝𝑝(𝑥𝑥)�. 

Lemma 2. The polynomial matrix 𝐹𝐹(𝑥𝑥) is locally positive sem-
idefinite in the region 𝒳𝒳 if there exist polynomial matrices 
𝑆𝑆𝑖𝑖(𝛽𝛽; 𝑥𝑥) ∈ Σ𝑥𝑥𝑛𝑛, 𝑉𝑉𝑗𝑗(𝛾𝛾; 𝑥𝑥) ∈ ℛ𝑥𝑥

𝑛𝑛 verifying: 

𝐹𝐹(𝑥𝑥) −∑ 𝑆𝑆𝑖𝑖(𝛽𝛽; 𝑥𝑥)𝑔𝑔𝑖𝑖(𝑥𝑥)𝑙𝑙
𝑖𝑖=1 + ∑ 𝑉𝑉𝑗𝑗(𝛾𝛾;𝑥𝑥)𝑘𝑘𝑗𝑗(𝑥𝑥)𝑞𝑞

𝑗𝑗=1 ∈ Σ𝑥𝑥𝑛𝑛  (23) 
 ■ 

Lemma 3. The set of nonlinear matrix inequalities 
𝑅𝑅(𝑥𝑥) > 0, 𝑄𝑄(𝑥𝑥) − 𝑆𝑆(𝑥𝑥)𝑇𝑇𝑅𝑅(𝑥𝑥)−1𝑆𝑆(𝑥𝑥) > 0, (24) 

where 𝑄𝑄(𝑥𝑥) = 𝑄𝑄(𝑥𝑥)𝑇𝑇, 𝑅𝑅(𝑥𝑥) = 𝑅𝑅(𝑥𝑥)𝑇𝑇 and 𝑆𝑆(𝑥𝑥) are polyno-
mial matrices in 𝑥𝑥, is equivalent to the following polynomial 
matrix expression: 

𝑀𝑀(𝑥𝑥) = �𝑄𝑄(𝑥𝑥) 𝑆𝑆(𝑥𝑥)𝑇𝑇
𝑆𝑆(𝑥𝑥) 𝑅𝑅(𝑥𝑥) � > 0 (25) 

■ 
This is the direct extension of the well-known Schur Comple-
ment result in the LMI framework to the polynomial case 
(Scherer, 2005). Condition (25) can be checked (conserva-
tively) via SOS programming, as previously discussed. 
Lemma 4. (Sala & Ariño, 2009) Let 𝑓𝑓(𝑥𝑥) be a continuous and 
smooth enough function of a variable so that its Taylor expan-
sion up to degree 𝑑𝑑 around certain 𝑥𝑥0, i.e. 𝑓𝑓𝑑𝑑(𝑥𝑥 − 𝑥𝑥0), exists. 
Assume that the 𝑑𝑑-th derivative of 𝑓𝑓 is continuous in a com-
pact region 𝒳𝒳 including 𝑥𝑥0. Then, the Taylor’s reminder is: 

𝑇𝑇𝑑𝑑(𝑥𝑥) ≔
�𝑓𝑓(𝑥𝑥) − 𝑓𝑓𝑑𝑑(𝑥𝑥 − 𝑥𝑥0)�

(𝑥𝑥 − 𝑥𝑥0)𝑑𝑑 , 

Then, computing its maximum and minimum in 𝒳𝒳 as 
𝜓𝜓1 ≔ sup

𝑥𝑥∈𝒳𝒳
𝑇𝑇𝑑𝑑(𝑥𝑥),   𝜓𝜓2 ≔ inf

𝑥𝑥∈𝒳𝒳
𝑇𝑇𝑑𝑑(𝑥𝑥), 

such reminder can be equivalently expressed by: 
𝑇𝑇𝑑𝑑(𝑥𝑥) = 𝜇𝜇1(𝑥𝑥) ⋅ 𝜓𝜓1 + 𝜇𝜇2(𝑥𝑥) ⋅ 𝜓𝜓2 (26) 

I.e., 𝑓𝑓(𝑥𝑥) can be embedded in a convex combination between 
two polynomial vertex models of desired complexity 𝑑𝑑: 

𝑓𝑓(𝑥𝑥) ⊂ 𝑓𝑓𝑑𝑑(𝑥𝑥 − 𝑥𝑥0) + (𝜇𝜇1𝜓𝜓1 + 𝜇𝜇2𝜓𝜓2)(𝑥𝑥 − 𝑥𝑥0)𝑑𝑑   
𝜇𝜇1 + 𝜇𝜇2 = 1,   ∀𝜇𝜇 ∈ [0,1],   𝑥𝑥 ∈ 𝒳𝒳 

(27) 

 ■ 
This result guarantees local positivity of a nonlinear function 
by just checking it on the polynomial vertices via SOS pro-
gramming. This method can be also applied to any function 
that can be written as an expression tree with functions of one 
variable, i.e., addition and multiplication. 


