
Graph-Based Modeling and Decomposition
of Energy Infrastructures ?

Sungho Shin ∗ Carleton Coffrin ∗∗ Kaarthik Sundar ∗∗

Victor M. Zavala ∗

∗University of Wisconsin-Madison, Madison, WI 53706 USA
(e-mail: sungho.shin@wisc.edu; victor.zavala@wisc.edu).

∗∗ Los Alamos National Laboratory, Los Alamos, NM 87545 USA
(e-mail: cjc@lanl.gov; kaarthik@lanl.gov)

Abstract: Nonlinear optimization problems are found at the heart of real-time operations
of critical infrastructures. These problems are computationally challenging because they embed
complex physical models that exhibit space-time dynamics. We propose modeling these problems
as graph-structured optimization problems, and illustrate how their structure can be exploited
at the modeling level (for parallelizing function/derivative computations) and at the solver level
(for parallelizing linear algebra operations). Specifically, we present a restricted additive Schwarz
scheme that enables flexible decomposition of complex graph structures within an interior-point
algorithm. The proposed approach is implemented as a general-purpose nonlinear programming
solver that we call MadNLP.jl; this Julia-based solver is interfaced to the graph-based modeling
package Plasmo.jl. The efficiency of this framework is demonstrated via problems arising in
transient gas network optimization and multi-period AC optimal power flow. We show that our
framework accelerates the solution (compared to off-the-shelf tools) by over 300%; specifically,
solution times are reduced from 72.36 sec to 23.84 sec for the gas problem and from 515.81 sec
to 149.45 sec for the power flow problem.

Keywords: Nonlinear Optimization, Decomposition, Graphs, Energy Systems

1. INTRODUCTION

Real-time operation of modern energy infrastructures re-
quires solving large-scale nonlinear programs (NLPs). Ap-
plication examples include transient gas network optimiza-
tion (Sundar and Zlotnik, 2018) and multi-period optimal
power flow problems (Geth et al., 2020; Kim and Anitescu,
2020). Achieving real-time solutions for these problems is
challenging, as they embed complex physical models that
require space-time discretization. NLPs arising in this con-
text can easily reach millions of variables and constraints
and defy the scope of off-the-shelf solvers. Specifically, scal-
ability bottlenecks are often encountered at the modeling
level (function and derivative computations) and at the
solver level (computation of the search step).

Large-scale NLPs arising in energy infrastructures have
the key characteristic that they exhibit sparse graphs
structures; we refer to such problems as graph-structured
optimization problems (Jalving et al., 2019; Shin et al.,
2020b; Jalving et al., 2020). Graph-structured problems
can be conveniently modeled using specialized modeling
platforms such as Plasmo.jl (Jalving et al., 2019, 2020)
and solved using structure-exploiting optimization solvers
such as PIPS-NLP (Chiang et al., 2014)). Plasmo.jl is a
graph-based modeling platform that enables the modular
construction and analysis of highly complex models; this
platform also leverages the algebraic modeling capabilities

? We acknowledge support from the Grainger Wisconsin Distin-
guished Graduate Fellowship.

of JuMP.jl (Dunning et al., 2017) and facilitates access to
infrastructure modeling tools such as GasModels.jl and
PowerModels.jl (Bent et al., 2020; Coffrin et al., 2018).

Another key benefit of Plasmo.jl is that it can com-
municate model structures to solvers, and this facilitates
the implementation of different decomposition strategies,
notably the alternating direction method of multipliers
(Boyd et al., 2011), overlapping Schwarz (Shin et al.,
2020a), and parallel interior-point (IP) methods (Chiang
et al., 2014; Rodriguez et al., 2020).

In this paper, we present a new and flexible decomposition
framework for graph-structured optimization problems.
Our framework uses a restricted additive Schwarz (RAS)
decomposition scheme implemented within a filter line-
search IP method (Wächter and Biegler, 2006). We present
a Julia-based implementation of this approach, which we
call MadNLP.jl (https://github.com/zavalab/MadNLP.
jl). We use our framework to experiment with different
decomposition strategies that exploit parallelism at the
modeling and at the solver level. Specifically, we consider
a scheme that parallelizes function and derivative compu-
tations by exploiting the modular structure of Plasmo.jl.
We also consider a scheme that uses RAS (Cai and Sarkis,
1999) for parallelizing step computations. RAS has been
widely used for the solution of large linear algebra sys-
tems arising from discretized partial differential equations
(PDEs) (Balay et al., 2019), but we have recently shown
that it can also be applied to solve general linear sys-
tems arising in graph-structured optimization (Shin et al.,

2020b; Gerstner et al., 2016). Our computational results
indicate that our framework can accelerate computations
by up to 300% (compared to off-the-shelf tools).

The paper is organized as follows: In Section 2, we define
the graph-structured problem of interest and discuss how
its structure can be exploited at the modeling level. In
Section 3, we discuss parallel decomposition schemes. In
Section 4, we apply these schemes to transient gas network
optimization and multi-period AC optimal power flow
problems. Section 5 presents concluding remarks.

Fig. 1. Alternative graph representations of a transient
gas network problem. Left: graph G in which nodes
represent times and the spatial (network) structure

is embedded within each node. Right: graph G̃ in
which each node represents a variable or a constraint.

Middle: a slice of G̃ that corresponds to the structure
contained in each node of G.

2. GRAPH-BASED MODELING

Optimization problems arising in energy infrastructures
can be expressed as a graph-structured optimization prob-
lem of the form:

min
{xi}i∈V

∑
i∈V

fi(xi) (1a)

s.t. cIi (xi) = 0, i ∈ V, (λIi) (1b)

cLi ({xj}j∈NG[i]) = 0, i ∈ V, (λLi) (1c)

xi ≥ 0, i ∈ V (zi) (1d)

Here, the undirected graphG = (V,E) is an ordered pair of
the nonempty, strictly ordered node set V and the edge set
E ⊆ {{i, j} ⊆ V : i 6= j}; NG[i] := {j ∈ V : {i, j} ∈ E} ∪
{i} denotes the neighborhood of i ∈ V on G. For each
i ∈ V , xi ∈ Rni is the decision variable; fi(·) is the
objective function; cIi (·) is the inner equality constraint

function; cLi (·) is the linking constraint function; λIi ∈ RmI
i

is the dual variable associated with (1b); λLi ∈ RmL
i

is the dual variable associated with (1c); zi ∈ Rni is
the dual variable associated with (1d). General inequality
constraints can be handled by introducing slack variables.

In the context of energy infrastructures, the graph G may
intuitively be used as an abstraction of the space-time
structure of the problem. Specifically, each node i ∈ V is a
component located at a particular spatial location and at
a particular time point (e.g., a subset of buses, generators,
storage facilities, and electric lines in power networks
or a subset of junctions, compressors, and pipelines in
gas networks). The link constraints (1c) may represent
spatial connections (e.g., interconnecting electric lines in
power networks or pipelines in gas networks) or temporal
connections. Furthermore, we will show that the graph G

can also be used as a general abstraction in which each
node i ∈ V represents an individual variable or constraint
of the problem (the graph encodes the general sparsity
structure of the problem). The ability to represent the
same optimization problem in different forms provides
flexibility to identify efficient decomposition strategies.

We define the short-hand notation for (1):

min
x
f(x) (2a)

s.t. c(x) = 0 (λ) (2b)

x ≥ 0 (z), (2c)

where x := {xi}i∈V , λ = {[λIi ;λLi]}i∈V , f(·) :=∑
i∈V fi(·), c(·) := {[cIi (·); cLi (·)]}i∈V , n =

∑
i∈V ni, and

m =
∑
i∈V m

I
i +mL

i . Here, ni and mi are the primal-dual
variable dimensions, and {(·)i}i∈V denotes the vector con-
catenation. We use boldface symbols to denote quantities
associated with multiple nodes.

Each node i ∈ V may contain more than or less than one
variable and constraint (ni,mi ∈ Z≥0). Thus, the problem
graph G = (V,E) may be different from the primal-

dual coupling graph G̃ = (Ṽ , Ẽ), where Ṽ := Z[1,n+m],

Ẽ := {{i, j} : ∇2
(x,λ)(x,λ)L(x,λ, z)[i, j] 6= 0}. Here, L(·) is

the Lagrangian of (2), and we use syntax Z[a,b] := {a, a+
1, · · · , b}. We can observe that a node i in V corresponds to

a set of nodes Ui ⊆ Z[1,n+m] in Ṽ , which contains multiple

variables and constraints. Example graphs G and G̃ for a
transient gas network problem are depicted in Figure 1
(a detailed problem formulation can be found in Section
4.1). Graph G contains 24 nodes, each corresponding to a
time point in a prediction horizon. Periodicity (over a 24
hours period) is enforced as constraints (this periodicity
creates the cycle shape of G). In this graph, each node
embeds the spatial structure of the problem (network

and pipelines). Graph G̃ unfolds the temporal and spatial
structure and shows the interconnectivity between all
variables and constraints in the problem.

3. GRAPH-BASED DECOMPOSITION

We proceed to describe our IP solver MadNLP.jl, compris-
ing a new Schwarz decomposition scheme that exploits
graph structures within an IP method, and we describe its
interface to Plasmo.jl.

3.1 Interior-Point Method

The IP method implemented in MadNLP.jl finds the solu-
tion of (2) by solving a sequence of barrier subproblems:

min ϕ(x) := f(x)− µ eT log(x) s.t. c(x) = 0. (3)

with a decreasing sequence for parameter µ. The KKT
conditions for (3) give the nonlinear equations:

∇f(x) +A>λ− z = 0; c(x) = 0; XZe− µ e = 0, (4)

where A := ∇c(x), X := diag(x), and Z := diag(z).
A solution of KKT system (4) is obtained by computing
primal-dual Newton steps d∗ from:[

W + Σ + δwI A>

A −δcI

]
︸ ︷︷ ︸

M

[
dx

dλ

]
︸ ︷︷ ︸
d

= −
[
∇xϕ(x) +A>λ

c(x).

]
︸ ︷︷ ︸

p

, (5)

where W := ∇2
xxL(x,λ, z), Σ := X−1Z, and δw, δc > 0

are regularization parameters. The step d∗ computed from
(5) is safeguarded by a line-search filter procedure to
induce global convergence (Wächter and Biegler, 2006).
Typically, the solution of the linear system (5) is the most
computationally intensive step in the IP method. This sys-
tem is typically solved using direct linear solvers that are
based on LDL> factorizations (e.g., as those implemented
in HSL routines (HSL, 2007)). Decomposition strategies
based on Schur complements (Chiang et al., 2014) and
iterative strategies (Curtis et al., 2012; Rodriguez et al.,
2020) have also been proposed. The solution of (5) based
on a direct block LDL> factorization reveals the iner-
tia (the number of positive, zero, negative eigenvalues)
of M . This inertia information is crucial in determining
the acceptability of the computed step and in triggering
the regularization of the linear system. However, inertia
is not available when using iterative solution algorithms
(as that proposed in this work). In MadNLP.jl, we use
an inertia-free regularization strategy to determine the
acceptability of the step (Chiang and Zavala, 2016). This
method performs a simple negative curvature test to trig-
ger regularization.

3.2 Restricted Additive Schwarz (RAS)

We propose a solution strategy for (5) based on an RAS
scheme. We define some concepts and quantities that help
explain our algorithm. Consider a partition {Vk}Kk=1 of V ;
we call Vk non-overlapping subdomains. This partition can
be obtained by applying a graph partitioning scheme to
G. We then construct a family of overlapping subdomains
{V ωk }Kk=1 (these are constructed by expanding Vk). The
expansion procedure is performed by progressively incor-
porating adjacent nodes (Shin et al., 2020b) (the size of
overlap ω represents the expansion level). We observe that:

Vk ⊆ V ωk ⊆ V, k = 1, · · · ,K;

K⊔
k=1

Vk =

K⋃
k=1

V ωk = V,

where t denotes disjoint union. With {Vk}Kk=1 and
{V ωk }Kk=1, we define the corresponding index sets in the
space of primal-dual variables in Rn+m as follows:

Wk :=
⊔
i∈Vk

Ui; Wω
k :=

⊔
i∈V ω

k

Ui, k = 1, · · · ,K,

where Ui ⊆ W := Z[1,n+m] is the index set of [xi;λi] in
[x;λ]. We now observe that:

Wk ⊆Wω
k ⊆W, k = 1, · · · ,K;

K⊔
k=1

Wk =

K⋃
k=1

Wω
k = W.

We state the RAS scheme for solving (5) as:

d(`+1) = d(`) +
(K∑
k=1

R̃kM
−1
k R>k︸ ︷︷ ︸

P−1

)
r(`), ` = 0, 1, · · · . (6)

Here, ` is the RAS iteration counter, r(`) := p −Md(`)

is the residual; Mk := M [Wω
k ,W

ω
k]; Rk := {e>i }>i∈Wk

;

R̃k := {(ẽki)>}>i∈Wk
, where ei is the i-th standard basis of

Rn+m, and ẽki = ei if i ∈Wk and 0 otherwise.

G = (V,E)

V1
V2

V3

V4

W1 W2

W3W4

M1

M2

M3

M4

Fig. 2. Graph-based decomposition in MadNLP.jl applied
to a transient gas network problem.

The RAS scheme (6) involves the following steps. We first
obtain the residual at the current step `; then, for each
overlapping subdomains {V ωk }Kk=1, the associated residual

is extracted as R>k r
(`). The k-th subsystem is then solved

by applying M−1
k . In MadNLP.jl, a factorization of Mk

is computed with a direct solver and stored, so that the
system can be repeatedly solved whenever the new right-
hand-side is given. Subsequently, the solution M−1

k R>k r
(`)

for the k-th overlapping subdomain is restricted to the
non-overlapping subdomain Vk and then mapped back to

the full-space by applying R̃ωk (the indices associated with
V \ Vk are set to zero in this step). Key defining features
of RAS are the concepts of overlap and restriction. The
overlap allows the dampening of the adverse effect of the
truncated domain, and the restriction procedure discards
the part of the solution where the adverse truncation effect
is strong.

It has been empirically observed that the convergence
of the RAS algorithm improves as the size of overlap ω
increases and as the conditioning of M improves (Cai
and Saad, 1996). For positive definite M , an exponential
relationship between the convergence rate and the size of
overlap has been established (Shin et al., 2020b). When
ω = 0, the RAS scheme reduces to a block-Jacobi scheme
(decentralized) while, when ω is maximal (Mk = M), the
RAS scheme becomes a direct solution method (central-
ized). In this sense, RAS provides a bridge between fully
decentralized and fully centralized schemes (thus providing
flexibility). In the Schwarz submodule of MadNLP.jl, ω is
set automatically based on the relative size of Vk, and
adaptively adjusted whenever a convergence issue occurs.
Algorithm (6) uses a simple static iteration (also called
a Richardson iteration), but more sophisticated iterative
methods (e.g., the generalized mean residual (GMRES)
method) can also be used (by treating P as a precondi-
tioner). Both Richardson and GMRES iterators are im-
plemented in MadNLP.jl.

The construction of partitions for the RAS scheme is
illustrated in Figure 2; these partitions correspond to the
transient gas network example of Figure 1. Here, by par-
titioning the problem graph G = (V,E) (first subfigure),
the node set V is divided into 4 subdomains V1, V2, V3, V4

(second subfigure). These subdomains are associated with
the primal-dual index sets W1,W2,W3,W4 (third sub-
figure). After applying expansions, the associated blocks
M1,M2,M3,M4 of M are identified (last subfigure);
these blocks are used by the RAS scheme (6).

3.3 Implementation in MadNLP.jl

The abstraction layers within MadNLP.jl are shown in
Figure 3. The problem is modeled as an OptiGraph object
(the core modeling object of Plasmo.jl). The OptiGraph

is interfaced with multiple JuMP.jl models. The JuMP.jl
model objects provide a set of local function oracles (ob-
jective, objective gradient, constraint, constraint Jacobian,
and Lagrangian hessian). The Plasmo.jl-MadNLP.jl in-
terface collects these local function oracles and creates a
set of oracles for the full problem, where the local oracles
are evaluated in parallel.

The Solver object of MadNLP.jl is created from the
OptiGraph object of Plasmo.jl. The Solver object of
MadNLP.jl uses a line-search filter IP method (Wächter
and Biegler, 2006) to solve the problem. The step com-
putation is performed by the linear solver specified by
the user. The linear solver can be specified either as a
direct solver or as the RAS solver. When the RAS solver
is chosen, multiple subproblem solver objects are created
by using standard direct solvers (e.g., by using Ma57 of
HSL routines). These subproblem solvers are used for fac-
torization and backsolve for Mk blocks. The RAS scheme
(6) exploits multi-thread parallelism available in Julia.
After termination of the IP solution procedure, the primal-
dual solutions are sent back to the OptiGraph object and
Model objects from JuMP.jl so that the user can query
the solution via the interface provided by Plasmo.jl and
JuMP.jl. See Figure 3 for a comparison with a conven-
tional implementation.

4. CASE STUDIES

The proposed computational framework was tested using
transient gas network and multi-period AC power flow
problems. In this section, we present the problem state-
ments followed by numerical results and discussion.

4.1 Transient Gas Network

We consider a transient gas network problem (Sundar and
Zlotnik, 2018) of the form:

min
ρ,ϕa,ϕ−,
α,s,d∈R

∑
t∈T

 ∑
(i,j)∈C

γP aijt +
∑
i∈R

citsit −
∑
i∈D

citdit

 (7a)

s.t.
∑

j∈N (i)

faijt =
∑

j∈R(i)

sjt −
∑
j∈D(i)

djt, i ∈ N , t ∈ T (7b)

ρmin
i ≤ ρit ≤ ρmax

i , i ∈ N , t ∈ T (7c)

ρ2
it − ρ2

jt = −λL
D
ϕaijt|ϕaijt|, (i, j) ∈ P, t ∈ T (7d)

L̂(ρ̇jt + ρ̇it) = −4ϕ−ijt, (i, j) ∈ P, t ∈ T (7e)

faijt(ρit − ρjt) ≤ 0, (i, j) ∈ C, t ∈ T (7f)

ρjt = αijtρit, (i, j) ∈ C, t ∈ T (7g)

P aijt ≤ Pmax
ij , (i, j) ∈ C, t ∈ T (7h)

− faij ≤ faijt ≤ faij , (i, j) ∈ C, t ∈ T , (7i)

where ρ̇it = ρit−ρit−1

∆t , P aijt = WaAij , and faijt = Aijϕ
a
ijt.

Here, N is the set of junctions; P is the set of pipelines;
C is the set of compressors; R is the set of receipts;
D is the set of demands; R(i) is the set of receipts at
junction i ∈ N ; D(i) is the set of demands at junction
i ∈ N ; T is the time index set; ρ is the densitiy; ϕa

is the average mass flux; ϕ− is the negative mass flux;
α is the compression ratio; s is the supply; d is the

demand; ρ̇ is the time derivative of density; P a is the
power consumption of compressor; f is the mass flow; c
is the gas price; γ is the economic factor; λ, L̂, L,D,A,∆t,
and Wa are physical parameters. To implicitly enforce the
periodicity, we let ρi0 = ρiT , where T is the end time index.
The gas network under study consists of 2 compressors, 6
junctions (35 junctions after discretization), 4 pipelines
(32 pipelines after discretization), 1 receiving points and 5
transfer points (which work either as receipt or delivery).
The model is constructed using GasModels.jl (Bent et al.,
2020).

4.2 Multi-Period AC Power Flow

We consider a multi-period AC power flow problem with
storage (Geth et al., 2020) of the form:

min
v,s,sg,ss∈C
e,sc,sd,sqc∈R

∑
t∈T

∑
k∈G

c0kt + c1kt<(sgkt) + c2kt<(sgkt)
2 (8a)

s.t. vLi ≤ |vit| ≤ vUi , i ∈ N , t ∈ T (8b)∑
k∈Gi

sgkt −
∑
k∈Li

sdkt +
∑
k∈Si

sskt =
∑

j∈NG [i]

sijt, i ∈ N , t ∈ T

(8c)

sijt = (Yij + Y cij)
∗ |vit|2

|Tij |2
− Y ∗ij

vitv
∗
jt

Tij
,

(i, j) ∈ E , t ∈ T

sijt = (Yij + Y cji)
∗|vjt|2 − Y ∗ij

v∗itvjt
T ∗ij

,

(i, j) ∈ ER, t ∈ T

(8d)

|sijt| ≤ sUij , (i, j) ∈ E ∪ ER, t ∈ T (8e)

θ∆L
ij ≤ ∠(vitv

∗
jt) ≤ θ∆U

ij , (i, j) ∈ E , t ∈ T (8f)

sgLk ≤ s
g
kt ≤ s

gU
k , k ∈ G, t ∈ T (8g)

ekt − ekt−1 = (ηcsct − sdt/ηd)∆t, k ∈ S, t ∈ T \ {T}
(8h)

sskt + (sckt − sdkt) =
√
−1sqckt + sloss

k , k ∈ S, t ∈ T
(8i)

|sskt| ≤ suk , 0 ≤ ekt ≤ euk k ∈ S, t ∈ T (8j)

0 ≤ sckt ≤ scuk , 0 ≤ sdkt ≤ scuk , k ∈ S, t ∈ T , (8k)

Here, G is the set of generators; N is the set of buses; E is
the set of (directed) branches; ER is the set of branches
with inverted directions; S is the set of storage; T is
the time index set; v ∈ C is the voltage; e ∈ R is the
state of charge; s ∈ C is the power flow; sg ∈ C is the
power generation; ss ∈ C is the complex power injected
by the storage; sc ∈ R is the charging rate; sd ∈ R is
the discharging rate; sqc ∈ R is the reactive power slack;
c0, c1, c2 ∈ R are the generation costs; sd ∈ C is the power
demand; Y is the admittance; T is the branch complex
transformation parameter; η is the charging efficiency;
sloss is the storage energy loss; ∆t is the time interval. Note
that (8) can be reformulated as an NLP with real variables
by separately treating the real and imaginary part of the
variables and equations (a polar formulation is used here).
The power network under study is a variant of IEEE 14
bus test system; this comprises 14 buses, 5 generators, 1
storage, 1 shunt, and 20 branches. The detailed model is
constructed with PowerModels.jl (Coffrin et al., 2018).

Plasmo.OptiGraph MadNLP.Solver Schwarz.Solver

JuMP.Model Ma57.Solver

JuMP.Model Ma57.Solver
...

...

{x∗
k,λ

∗
k,z

∗
k} x∗,λ∗,z∗ d∗ {d∗k}

{fk(·), gk(·)} f(·), g(·) M ,p {Mk, r
(`)
k
}

JuMP.Model MadNLP.Solver Ma57.Solver
x∗,λ∗,z∗ d∗

f(·), g(·) M ,p

Fig. 3. Schematics of graph-based modeling and solution (top) and conventional modeling and solution (bottom).

4.3 Results and Discussion

We compare the proposed method (MadNLP.jl inter-
faced with Plasmo.jl and Schwarz), with the conven-
tional method (MadNLP.jl interfaced with serial/par-
allel direct solvers Ma57 or MKL-Pardiso along with
non-graph based algebraic modeling language JuMP.jl).
The conventional methods are referred to as JuMP-
Ma57 and JuMP-PardisoMKL, and the proposed method
is referred to as Plasmo-Schwarz/Ma57. Furthermore,
the mix of proposed/conventional approaches (JuMP-
Schwarz/Ma57, Plasmo-Ma57, and Plasmo-PardisoMKL)
is also tested together. For JuMP-Schwarz/Ma57, the
graph partitioning tool METIS was used to partition the

primal-dual coupling graph G̃ directly. A Richardson
scheme was used as an iterator for the RAS scheme.
The study was performed by solving the gas (7) and
power (8) problems while varying the size of the prob-
lems (by increasing the length of the prediction hori-
zon). The code was run on a server computer equipped
with 2 CPUs of Intel Xeon CPU E5-2698 v4 running
2.20GHz (20 core for each), and 20 threads are used
for the computation. Code to reproduce the results can
be found in https://github.com/zavalab/JuliaBox/
tree/master/AdchemCaseStudy

For both problems, we found that the graph-based
approach can significantly accelerate the solution (see
Figure 4). In particular, comparing JuMP-Ma57 and
Plasmo-Schwarz/Ma57, Plasmo-Schwarz/Ma57 becomes
faster than JuMP-Ma57 when the prediction horizon is
3 days or more. Function evaluations are always faster
in Plasmo.jl compared to JuMP.jl because the com-
putational savings from function evaluations directly re-
duce the total solution time (parallelizing the function
evaluation itself has no impact on the other part of the
algorithm). On the other hand, one can see that the speed-
up from parallel linear algebra is only observed when the
problem size is sufficiently large (3 days in the gas network
and 60 days in the power network). This is because the
reduction in the problem size also reduces the overlap size.
In our implementation, we set the size of overlap using the
relative size of the block (the size of the overlap is reduced
if the overall problem size is reduced). As a result, the RAS
scheme (6) may become slow, and the number of required
factorization/backsolve steps increases. This indicates that
the use of RAS is beneficial only when the problem size
is sufficiently large. For the gas problems, the acceleration
of linear algebra computations was more pronounced. In
contrast, for the power problems, the acceleration of func-

tion evaluations was more pronounced. This is because the
AC power flow formulation has a large number of nonlin-
ear expressions. By comparing the linear solver time for
JuMP-Schwarz/Ma57 and Plasmo-Schwarz/Ma57, we see
the advantage of using a graph-based modeling language
for obtaining the partitions {Wk}Kk=1. We recall that for
JuMP-Schwarz/Ma57, the Metis graph partitioning rou-

tine is directly applied to G̃ while Plasmo-Schwarz/Ma57
uses the user-provided problem graph G. One can ob-
serve that, in general, the linear solver time is shorter for
PlasmoNLP-Schwarz/Ma57. This indicates that the user-
provided graph information can be leveraged for obtaining
high-quality partitions.

5. CONCLUSIONS AND FUTURE WORK

We have presented a graph-based modeling and decompo-
sition framework for large-scale nonlinear programs arising
in energy infrastructures. Here, we introduce a new de-
composition paradigm for linear algebra systems within
an interior-point method: a restricted additive Schwarz
(RAS) scheme. We implement this framework in the Julia
package MadNLP.jl and show that the RAS approach
accelerates computations (compared to off-the-shelf ap-
proaches) by up to 300%. This work focused on applying
RAS to conduct temporal decomposition; applying RAS
as a spatial decomposition scheme is a future direction of
interest. A surprising finding was that the RAS scheme
is effective at handling instances with a large number of
active inequality constraints. We are interested in deter-
mining the reasons for this by investigating the conver-
gence properties of the RAS scheme within an interior-
point context.

ACKNOWLEDGEMENTS

We acknowledge Andreas Wächter for helpful comments
and Jordan Jalving for implementing the requested fea-
tures in Plasmo.jl.

REFERENCES

Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune,
P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V.,
Gropp, W., et al. (2019). PETSc users manual.

Bent, R., Sundar, K., and Fobes, D. (2020). GasModels.jl.
https://github.com/lanl-ansi/GasModels.jl.

Boyd, S., Parikh, N., and Chu, E. (2011). Distributed
optimization and statistical learning via the alternating
direction method of multipliers. Now Publishers Inc.

Function Evaluation Wall Time (sec) Function Evaluation Wall Time (sec)

Linear Solver Wall Time (sec) Linear Solver Wall Time (sec)

Solution Wall Time (sec) Solution Wall Time (sec)

N
u
m
b
er

o
f
V
a
ri
a
b
le
s

Plasmo-Ma57
Plasmo-PardisoMKL
Plasmo-Schwarz/Ma57

JuMP-Ma57
JuMP-PardisoMKL
JuMP-Schwarz/Ma57

Fig. 4. Solution time (top), linear solver time (middle), function evaluation time (bottom) for transient gas network
(left) and multi-period AC optimal power flow (right) problems.

Cai, X.C. and Saad, Y. (1996). Overlapping domain
decomposition algorithms for general sparse matrices.
Numerical linear algebra with applications, 3(3), 221–
237.

Cai, X.C. and Sarkis, M. (1999). A restricted additive
schwarz preconditioner for general sparse linear systems.
SIAM Journal on Scientific Computing, 21(2), 792–797.

Chiang, N.Y. and Zavala, V.M. (2016). An inertia-free
filter line-search algorithm for large-scale nonlinear pro-
gramming. Computational Optimization and Applica-
tions, 64(2), 327–354.

Chiang, N., Petra, C.G., and Zavala, V.M. (2014). Struc-
tured nonconvex optimization of large-scale energy sys-
tems using PIPS-NLP. In 2014 Power Systems Compu-
tation Conference, 1–7. IEEE.

Coffrin, C., Bent, R., Sundar, K., Ng, Y., and Lubin,
M. (2018). PowerModels.jl: An open-source framework
for exploring power flow formulations. In 2018 Power
Systems Computation Conference (PSCC), 1–8. doi:
10.23919/PSCC.2018.8442948.

Curtis, F.E., Huber, J., Schenk, O., and Wächter, A.
(2012). A note on the implementation of an interior-
point algorithm for nonlinear optimization with inexact
step computations. Mathematical programming, 136(1),
209–227.

Dunning, I., Huchette, J., and Lubin, M. (2017). JuMP:
A modeling language for mathematical optimization.
SIAM Review, 59(2), 295–320.

Gerstner, P., Schick, M., Heuveline, V., Meyer-Hübner, N.,
Suriyah, M., Leibfried, T., Slednev, V., Fichtner, W.,
and Bertsch, V.V. (2016). A domain decomposition ap-
proach for solving dynamic optimal power flow problems
in parallel with application to the german transmission
grid. Preprint Series of the Engineering Mathematics
and Computing Lab, (1).

Geth, F., Coffrin, C., and Fobes, D.M. (2020). A flexible
storage model for power network optimization. arXiv
preprint arXiv:2004.14768.

HSL, A. (2007). collection of fortran codes for large-scale
scientific computation. See http://www. hsl. rl. ac. uk.

Jalving, J., Cao, Y., and Zavala, V.M. (2019). Graph-
based modeling and simulation of complex systems.
Computers & Chemical Engineering, 125, 134–154.

Jalving, J., Shin, S., and Zavala, V.M. (2020). A graph-
based modeling abstraction for optimization: Concepts
and implementation in plasmo. jl. arXiv preprint
arXiv:2006.05378.

Kim, Y. and Anitescu, M. (2020). A real-time optimization
with warm-start of multiperiod ac optimal power flows.
Electric Power Systems Research, 189, 106721.

Rodriguez, J.S., Laird, C.D., and Zavala, V.M. (2020).
Scalable preconditioning of block-structured linear al-
gebra systems using admm. Computers & Chemical
Engineering, 133, 106478.

Shin, S., Anitescu, M., and Zavala, V.M. (2020a). Overlap-
ping schwarz decomposition for constrained quadratic
programs. arXiv preprint arXiv:2003.07502.

Shin, S., Zavala, V.M., and Anitescu, M. (2020b). De-
centralized schemes with overlap for solving graph-
structured optimization problems. IEEE Transactions
on Control of Network Systems.

Sundar, K. and Zlotnik, A. (2018). State and parameter
estimation for natural gas pipeline networks using tran-
sient state data. IEEE Transactions on Control Systems
Technology, 27(5), 2110–2124.

Wächter, A. and Biegler, L.T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
programming, 106(1), 25–57.

