Cao, L. and Schwartz, H.M. (2004). Analysis of the Kalman filter based estimation algorithm: an orthogonal decomposition approach. Automatica, 40(1), 5–19. Cao, Y., Swartz, C.L., Flores-Cerrillo, J., and Ma, J. (2016). Dynamic modeling and collocation-based model reduction of cryogenic air separation units. AIChE J., 62(5), 1602–1615. Caspari, A., Offermanns, C., Ecker, A.M., Pottmann, M., Zapp, G., Mhamdi, A., and Mitsos, A. (2020a). A wave propagation approach for reduced dynamic modeling of distillation columns: Optimization and control. J. Process Control, 91, 12–24. Caspari, A., Tsay, C., Mhamdi, A., Baldea, M., and Mitsos, A. (2020b). The integration of scheduling and control: Top-down vs. bottom-up. J. Process Control, 91, 50–62. Dias, L.S., Pattison, R.C., Tsay, C., Baldea, M., and Ier- apetritou, M.G. (2018). A simulation-based optimiza- tion framework for integrating scheduling and model predictive control, and its application to air separation units. Comput. Chem. Eng., 113, 139–151. Du, J., Park, J., Harjunkoski, I., and Baldea, M. (2015). A time scale-bridging approach for integrating production scheduling and process control. Comput. Chem. Eng., 79, 59–69. Graichen, K., Hagenmeyer, V., and Zeitz, M. (2006). Feedforward control with online parameter estimation applied to the Chylla–Haase reactor benchmark. J. Process Control, 16(7), 733–745. Guo, L. (1990). Estimating time-varying parameters by the Kalman filter based algorithm: stability and convergence. IEEE Trans. Autom. Control, 35(2), 141– 147. Jamaludin, M.Z. and Swartz, C.L. (2017). Approximation of closed-loop prediction for dynamic real-time opti- mization calculations. Comput. Chem. Eng., 103, 23–38. Kelley, M.T., Pattison, R.C., Baldick, R., and Baldea, M. (2018). An MILP framework for optimizing demand response operation of air separation units. Appl. Energy, 222, 951–966. Ljung, L. and Gunnarsson, S. (1990). Adaptation and tracking in system identification—a survey. Automatica, 26(1), 7–21. Niedzwiecki, M. (2000). Identification of time-varying processes. Wiley, Hoboken, NJ. Orfanidis, S.J. (1995). Introduction to signal processing. Prentice Hall, Upper Saddle River, NJ. Pattison, R.C., Touretzky, C.R., Johansson, T., Har- junkoski, I., and Baldea, M. (2016). Optimal process operations in fast-changing electricity markets: frame- work for scheduling with low-order dynamic models and an air separation application. Ind. Eng. Chem. Res., 55(16), 4562–4584. Radecki, P. and Hencey, B. (2012). Online building thermal parameter estimation via unscented Kalman filtering. In American Control Conference, 3056–3062. Scha ̈fer, P., Caspari, A., Kleinhans, K., Mhamdi, A., and Mitsos, A. (2019). Reduced dynamic modeling approach for rectification columns based on compartmentalization and artificial neural networks. AIChE J., 65(5), e16568. Tsay, C. and Baldea, M. (2019). 110th anniversary: Using data to bridge the time and length scales of process systems. Ind. Eng. Chem. Res., 58(36), 16696–16708. Tsay, C. and Baldea, M. (2020). Integrating production scheduling and process control using latent variable dynamic models. Control Eng. Pract., 94, 104201. Tsay, C., Kumar, A., Flores-Cerrillo, J., and Baldea, M. (2019). Optimal demand response scheduling of an industrial air separation unit using data-driven dynamic models. Comput. Chem. Eng., 126, 22–34.