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Abstract— Electric distribution networks are operated under
a number of constraints in order to deliver power at a
certain quality and reliability level. A distributed management
system (DMS) is a supervisory control layer in the distribution
system used by the utilities for managing distribution assets
in a coordinated fashion. For large distribution systems (those
consisting of thousands of nodes and multiple tens of capacitor
banks and voltage regulators), an integrated Volt/VAr Control
(IVVC), which maximizes asset lifetime, is non-trivial due to
the size of the search space for determining the optimal settings
of these devices. This paper presents coordinated optimization
approach to IVVC for large power distribution networks that
will enable a more optimal operation of the distribution network
while maximizing distribution control asset lifetime through the
minimization of unnecessary device switching.

I. INTRODUCTION

The basic structure of an electric system consists of vari-
ous hardware such as generators, power lines, transformers,
feeders, and SCADA equipment for generation, transmission,
and distribution of electricity to the end consumers. The
power industry is operated under complex rules to provide
reliable electricity to the end user. Power produced by
generators is first transmitted over high voltage lines (66 KV
to 765 KV) and then distributed at low voltage levels (below
66 KV). The control of bulk power over high-voltage trans-
mission lines is markedly different than that of distributing
power in the low-voltage distribution circuit. The delivery of
electricity typically utilizes a supervisory control and data
acquisition system (SCADA) that provides monitoring and
control from generation through the step-down substation
to detect the need for an increase/reduction in generating
resources, and to respond to system instabilities. Today’s
electric system is inefficient with losses occurring throughout
the transmission and distribution system due to increased
load growth.

In general, electric distribution networks are operated un-
der a number of constraints in order to deliver power at a cer-
tain quality and reliability level. Distribution control assets,
such as capacitor banks, voltage regulators, whose operation
is governed by local controllers based on locally sensed
variables such as voltage or reactive power, are employed
by the utilities to facilitate and to maintain an acceptable
variation of voltage magnitude and an acceptable level of
power factor within the distribution system. Traditionally,
these devices are operated under fixed schedules, based on
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voltage, time of day or some other local parameters, and their
operations are disjointed from one another. Any changes to
the system configuration or in power demands, or due to the
intermittent behavior of renewable generation can result in
higher, lower, or oscillatory voltages in the system, resulting
in a decreased effectiveness of operation. A computation-
ally efficient optimal control policy for integrated Volt/VAr
control (IVVC) is a critical component of a DMS [1] for
improved power factor, device life, and load adjustment via
conservation voltage reduction [2].

Most prior work on IVVC is based on determining the
optimal solution (on/off, tap settings) only for the current
time instead of an optimal schedule for the entire day [3],
[4], [5], [6], [7], [8], [9]. IVVC is further complicated by the
introduction of intermittent renewable power sources in the
distribution grid, which can cause unacceptably large voltage
fluctuations. Performing IVVC for only the current time
point (or in a feedback control approach) can compensate
for large voltage fluctuations at the expense of frequent
switching of the cap bank and voltage regulator control de-
vices. Since the lifetime of a capacitor or voltage regulator is
dependent on the number of switching operations performed,
it is desired to minimize the number of device operations
during the day while at the same time achieving the desire
level of voltage and reactive power control. For example, a
capacitor bank is typically design so that it can withstand
40,000-50,000 on/off switching cycles for an average of 6-7
switches per day, but if the controls for the cap bank allow
this number of switching operations to increase then the
lifetime will be correspondingly reduced. Thus, any local
or global control algorithms resulting in frequent switching
of device setting are likely to be discarded by the Utility in
an attempt to prevent premature device failure. In this sense,
an optimal IVVC should consider minimizing the number of
switches as well as improving the power factor or minimizing
losses, which are commonly used as objectives.

There are two critical needs in daily scheduling of reactive
power sources and adjusting voltage regulator tap ratios. The
first need is an accurate load (active, reactive) forecast. In
order to minimize the number of switches of capacitors,
we apply model of the distribution network to estimate the
behavior of the network as though it were driven by the
forecasted load. The models estimate the impact of non-
linearities, and are used to predict the behavior of dependent
variables (i.e. outputs: node voltages, losses) of the modeled
dynamic distribution network with respect to changes in the
independent variables (i.e. control device settings). Second
need is computational speed so that the determination of the
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control device settings can be accomplished within a small
time period. The algorithm for scheduling should run fast
enough to provide updates in 5-15 minutes for large radial
distribution networks. That is why more recent methods such
as genetic algorithms may be undesirable even though they
are capable of finding global minima.

In this paper, we present a a coordinated optimized IVVC
algorithm that is computationally efficient at the expense
of optimality (an approximate solution to the minimum
cost of the objective function) for large radial distribution
networks (e.g., those which contains thousands of nodes,
tens of cap banks, and tens of load tap changers/ voltage
regulators. In [10], it is discussed that the search space for
the optimal device settings that minimize the cost of the
objective function is (2CB × 33V R)TP where the number 2
stands for the two switching states (On/Off) of each of ”CB”
capacitor banks, ”33” stands for the thirty three tap positions
(from -16 to 16) of each of VR/LTC or voltage regulators,
and ”TP” stands for the number of time points in one twenty-
four hour optimization time window. Clearly, the penalty for
attempting to minimize the number of switching operations
is a search space that is exponentially large. For example,
if CB = 20, VR =10, and TP = 288 (the number of five
minute time windows in twenty-four hours) then the number
of combinations of control device settings is ”Infinite”. Even
if, the number of devices were reduced to CB = 10, VR = 4,
”33” tap setting changed to 4 (through expert power systems
knowledge, and TP = 7, the resulting search space is greater
than 1.6x1063! Therefore, we felt we needed to foresake
search for the”true” global optimum, and coordinated several
algorithms to reduce the search space to a reasonable value.

In this paper, we focus on real-time scheduling of device
settings, only, and expand upon the approach described in
[10]. We present a coordinated optimized IVVC algorithm
that is computationally efficient at the expense of optimality
(an approximate solution to the minimum cost of the ob-
jective function) for large radial distribution networks (e.g.,
those which contains thousands of nodes, tens of cap banks,
and tens of load tap changers/ voltage regulators. There are
several factors that contribute to the increased efficiency of
our new approach compared to dynamic programming of
[10] or genetic algorithms. First, we consider optimization
of (discrete) capacitors and voltage regulators as separate but
dependent problems. Modularity of the algorithms for differ-
ent types of control devices provides flexibility to increase
optimality, allowing integration with other more optimal
but less efficient algorithms as needed. Our new algorithm
provides: (1) an optimal daily schedule for capacitor banks
based on minimizing the total VARs at the head of the
distribution substation, (2) these cap banks settings are used
to determine an tap settings based on leveling the average
voltage and setting the average voltage to achieve some level
of objective function cost minimization within appropriate
sections of the distribution network, and (3) finalizing the
VR tap settings using the dynamic programming algorithm
discussed in [10]. Step 2 of our new approach codifies the
”expert power systems knowledge” that was used to reduce

the search space in [10].
Second, we partition the problem to supportive, subor-

dinate distribution control systems, such as a microgrid
control system (MCS) for microgrids or a substation-based,
Distribution Automation (DA) SCADA which assumes the
responsibility of CB and VR control for those nodes of the
distribution grid assigned to its area of responsibility (AOR)
in coordination with the overall DMS. Each of the subor-
dinate distribution control systems coordinates its objective
function for optimization with the DMS. This partitioning
enables a large distribution network to be reduced to a
manageable size. Each AOR is treated as a spot load by the
top-level DMS. Each control system whether it be a MCS or
a DA SCADA has the responsibility to coordinate the IVVC
objective function with the DMS, provide DMS with its load
forecast, This partitioning distributes IVVC operations so
that no one control system is forced to bear the burden of
the entire network IVVC control.

II. PROBLEM STATEMENT
Distribution Management System (DMS) is a supervisory

control layer in the distribution system for managing dis-
tributed energy generation, microgrids (MGs), loads such
as homes and buildings, energy storage systems, switchable
VAR sources, and voltage regulators (VRs) or load tap
changers (LTCs). A Microgrid Control System (MCS) is the
most complex, subordinate asset of the DMS. The MCS man-
ages the internal resources of the microgrids in support of
the DMS for optimal distributed generation dispatch as well
as Volt/VAR control in the distribution system. The DMS
and MGC communicate objective functions and aggregated
information on their assets to achieve at least three objectives
independently or as simultaneous objectives:

• loss minimization
• load reduction
• power factor correction

for global coordinated control of the distribution operation.
Incorporating MSCs into the DMS is advantageous in reduc-
ing the complexity of the IVVC because the loads and assets
within local control of MCSs are aggregated as a single spot
load for load forecasting and power flow computations.

The IVVC is composed of two separate but dependent
steps as shown in Fig. 1. First step is the optimal commitment
of CBs. The objective in this step is to increase (assuming
need for reactive power) the power factor to greater than
or equal to a desired value. Our challenge is in two-fold.
First, CBs have discrete values. Second, the number of
switches of CBs should not increase beyond a certain limit
since the lifetime of a CB is correlated with the number of
times it is switched on or off. Also the topology of the CB
distribution within the AOR is known to the CB commitment
algorithm. Finally, the CB commitment algorithm requires
forecasted total reactive load for the AOR over 24 hours
scheduling cycle. Second step is the adjustment of VR
and transformer tap ratios. The second algorithm has the
objective to flatten the average load voltage curve over the
course of the day and maintain the average load voltage to a
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desired level over the 24 hour scheduling cycle. The desired
level over the 24-hour scheduling cycle. The desired level
for the average voltage is set to achieve a desired objective
using the AOR’s conservation voltage reduction (CVR) factor
[2]. CVR factor is the percent change in load consumption
resulting from a percent change in voltage [11]. CVR factors
in the range of 0.7 have been found to be typical in Northwest
Energy Efficiency Alliance’s (NEEA) Distribution Efficiency
Initiative (DEI) and EPRI’s Green Circuits. Adjustment of
feeder voltage at the substation and along the distribution
feeders has long been used to maintain service voltage
within the limits set forth in industry standards, such as
ANSI C84.1 in North America [11]. The third algorithm is
the Dynamic Programming algorithm of [10]. The second
algorithm codifies the ”expert” knowledge identified in [10]
used to speed the rate of convergence of the algorithm by re-
dicing the number of tap setting for the baseline determined
by leveling the average voltage to a desired value.

Fig. 1. The IVVC algorithm is composed of CB commitment and tap-ratio
adjustment algorithms run in series.

III. OPTIMAL CAPACITANCE BANK
COMMITMENT

Our optimal CB commitment algorithm is composed of
three stages described as follows

• Divide the network in the AOR into zones
• Distribute VAr shortage to zones with inadequate CBs

to achieve desired power factor
• Solve the modified Knapsack problem with the branch-

and-bound algorithm.
Currently, Stage I is the only stage that has not been
automated. Thus, a system expert is needed to perform this
stage, but this is typically done once prior to final design
and commissioning of the system. There are various factors
that can be considered when dividing the network into zones.
It may be the case that some zones have VAr resources that
can supply reactive power to achieve the desired power factor
while some zones do not have adequate resources. This is
when the second stage comes into picture. When a zone does

not have adequate resources to achieve the desired power
factor then other zones with excess CBs should help out
the zone in need of VAr resources. There are two possible
methods to have zones help each other to achieve a common
goal: 1) Have the VARs shared among zones or 2) have
the shortage shared among the zones. The second method
is easier to implement algorithmically because of the way
Stage III is designed to switch CBs on/off at a minimum
rate for unbalanced 3-phase circuits.

We now describe the algorithm for Stage - II. Input to the
algorithm from previous stage is the zone map. The zone
map is a graph G=(V,E) where V is the set or vertices
and E is the set of edges. Each vertex corresponds to a
zone. There is an edge between two zones if and only if
there is a bus in one zone that is connected to bus in the
other zone. In the following we will describe how zones in
need of help to achieve desired power factor can get help
from their neighboring zones with adequate or excess VAr
resources. The other inputs to Stage - II are total reactive
power shortage curves over time based on the desired power
factor and total reactive power supplied by CBs for each
zone for each phase. The output of Stage - II is the updated
reactive power shortage curve for each zone for each phase
based on how much of the neighboring zones shortages’ need
to be taken care for. It may be the case that a zone that needs
help has more than one neighbor. In order to account for this
case, we incorporated a distribution mechanism that allows
a zone to distribute its reactive shortage over to its neighbors
based on neighboring zones’ total reactive resources.

The final stage of the CB commitment algorithm is to
solve for the optimal on/off times of each CB over the 24-
hour scheduling period The input to this stage from Stage -
II is the updated reactive power shortage curve such that the
desired power factor will be achieved in each zone at each
phase within some error margins based on reactive power
resources. Any mismatch in the resource distribution is taken
care of in Stage - II. The remaining inputs to the algorithm
are:

• Desired power factor
• CB VARs per zone per phase
• Branching size
• Maximum overshoot factor
• Percent overshoot off-time span
• Switch-on and inter-switch on sensitivities

Stage III focuses only on finding the switch on/off times for
the CBs. The next two inputs are desired power factor and
reactive power input from each CB for each zone and phase.
The rest of the inputs are parameters for the algorithm. These
parameters to the algorithm may influence the optimality of
the branch-and-bound algorithm. For example, a higher the
branching size results in a more optimal the CB commitment
result.

Our approach in this final stage of the overall CB com-
mitment algorithm is to describe the problem as a knap-
sack problem (KP). A KP is described as follows: given
a knapsack of size W and items with weights and profits,
maximize the total profits of items in the knapsack while
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keeping the total weight of the knapsack below W. The KP-
based definition of the CB commitment considers CBs as
items. The profit associated with each CB is the total reactive
power supplied by the CB during its commitment period.
Since the predicted reactive power curve is a time-varying
function and is, in general, not a constant function, the profit
for a CB depends on the switching order of the CBs. The
weight associated with each CB is simply the fixed reactive
power supplied by each CB upon switching on.

A branch-and-bound (BB) algorithm is used to solve KP.
Other algorithms examined include dynamic programming
and greedy. The construction of the BB algorithm for the
KP-based CB commitment problem requires calculation of
the area under the reactive power shortage curve when a CB
is switched on. This area calculation is carried in two steps.
First, the time spans during which the reactive power of the
CB is less than or equal to the reactive power shortage are
extracted. Second, the total duration of these time spans is
multiplied by the reactive power supplied by the CB.

The KP-based description of the CB commitment naturally
overcomes the challenges stated in the problem definition.
First, the problem description considers the CBs as items
with discrete weights. Thus it does not require finding a
continuous reactive power solution and discretization of the
solution. Second, the problem is formulated in a way that
results in switching a CB on and off only once. Finally,
the BB solution approach aligns with visual commitment of
the CBs as would be done by a power systems expert. For
example, if the reactive power shortage curve is shaped like
a pyramid the an intuitive commitment of the CBs is to have
the CBs with higher reactive power on longer than the CBs
with low reactive power. In other words, a power systems
expert would want to maximize the coverage of the area
under the reactive load curve.

We now describe the mathematical formulation and algo-
rithmic solution to the CB commitment problem. Suppose
that a hitch-hiker has to fill up his knapsack by selecting
among a finite number of objects. Each object has weight
or size and value. The hitch-hiker wants to maximize the
overall value of the objects in the knapsack while keeping
the overall weight (size) below a certain level.

Let Q(k) be the reactive power generated at the substation
for k = 1, . . . ,K with sampling period T such that k×T =
24 is equivalent to 24 hours. Let φ and φd be the current
and desired power factors. Then, the desired reactive power
at the substation is

Qd(k) =

√
1 − φ2d
φd

P (k) (1)

where P (k) is the real power at the substation and is a
function of Q(k) and φ as follows

P (k) =
φ√

1 − φ2
(2)

The shortage reactive power at the substation Qs is the differ-
ence between the reactive power generated at the substation

and desired reactive power

Qs(k) = Q(k) −Qd(k) (3)

Our goal is to utilize CBs to provide the shortage reactive
power at the substation. There are two ways to formulate the
CB commitment algorithm: 1) Under-coverage and 2) Over-
coverage. The under-coverage algorithm we try to the cover
the area under the shortage curve. That is the CBs provide
reactive power below the shortage curve while minimizing
the uncovered area between shortage and total reactive power
from CBs over their switched on periods. In the over-
coverage algorithm CBs provide reactive power above the
shortage curve while minimizing the area between the total
CBs and shortage.

In the following, we first describe the under-coverage
formulation and then the over-coverage one. Let x(k) be
an ordered sequence of CBs such that xi(k) = 1 if CBi

is switched on at time k and xi(k) = 0 otherwise. Let wi

be the reactive power supplied by CBi where i = 1 · · ·N
and N is the number of CBs. The profit associated with a
CB varies as a function of the shortage reactive power and
previous CBs that has been switched on. First, we illustrate
the profit calculation in an example and then present the
formal description.

Formally, the profit is calculated as follows. Let Wi be
the total reactive power of the CBs in the ordered sequence
xi(k) that has been switched on prior to ith CB. Then, the
profit associated with CBi is equal to

pi = liwi (4)

We can now state the optimal CB commitment problem as
a variation on KP optimization problem as follows

Maximize
N∑
i

pixi(k) (5)

Subject to
N∑
i

wixi(k) ≤ Qs(k) (6)

where wi and pi are as described above. Since we implicitly
incorporate the information on under-coverage of the short-
age curve and weight through profit and we can simplify the
problem for algorithm development as follows

Minimize A−
N∑
i

pi(wi, Qs, k)xi(k) (7)

where A =
∑K

k=1Qs(k) is the area under the shortage curve
and profit is a function of weight and shortage curve over
time as described above.

The over-coverage algorithm is the same as under-
coverage algorithm except the calculation of profits associ-
ated with each CB. The profit is still the multiplication of the
length and weight. But the length is calculated differently.
The optimization problem is formulated to minimize the
difference between the area covered by CBs and the shortage
curve instead of the difference between the shortage curve
and CBs.
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Both under- and over-coverage algorithms require cal-
culating the duration during which CBs are switched on.
For example, the profit of switching a CB on depends on
how long it stays on. However, CB lifetime depends on the
number of switches. Having CBs switched 6-7 times a day
will result in average lifetime of 30 years. Thus if we double
the number of switches we halve the lifetime of the CB. That
is why while calculating the duration we need to make sure
that number of switches is minimized. In order to calculate
the duration li given relative shortage function Q over 24
hours (sampled as low as every 5 minutes) and weight T we
first use a threshold function F to identify periods where Q
is greater than T. Mathematically,

F (Q,T ) =

{
1, Q ≥ T
0, Q < T

(8)

After we calculate F, we calculate the indices (or times) for
positive and negative slopes of F. Each positive (negative)
slope corresponds to a switch on (off) point. Each positive
slope should be followed by a negative slope. If the index of
the first positive slope is greater than the index of the first
negative slope then there is a missing positive slope at time
t=0. If the index of the last negative slope is smaller than
the index of the last positive slope ten there is a missing
negative slope at the last time point. Once the positive and
negative slopes are matched, we need to analyze the duration
of switch-ons and inter-switch-ons. If the switch-on duration
is too small then we need to eliminate the first switch-on to
minimize number of switches. If the inter-switch-on is too
small then we need to combine the two switches.

In developing an algorithm to solve this problem, we wish
to provide an intuitive and computationally efficient solution.
There are several ways of solving KPs. KPs are combina-
torial algorithms and solutions to combinatorial algorithms
include but not limited to greedy algorithm, dynamic pro-
gramming, and branch-and-bound [12], [13]. Dynamic pro-
gramming performs an enumeration of all the feasible points
but it differs from the branch-and-bound (BB) algorithm in
the sense that it works backwards from the last decisions to
the earlier ones. Suppose that we made n decisions to solve a
combinatorial optimization problem. According to dynamic
programming approach the last k¡ndecisions must be optimal
as well. That is the completion of an optimal sequence of
the decisions must be optimal [12].

IV. OPTIMAL TAP RATIO ADJUSTMENT

The voltage profiles can greatly influence the system
losses. Our goal in this section is to describe an algorithm
that changes the tap settings of Load Tap Changers (LTCs)
and/or Voltage Regulators (VRs) to improve the voltage
profile. There are two steps in improving the voltage profile.
First is to flatten the average voltage profile. The average
voltage profile for a given zone and phase is the arithmetic
mean of the voltages from load buses for the given zone and
phase.

The average voltage profile is quantized to enable compu-
tation of the relative tap changes to flatten the voltage profile

regardless of the voltage mean of the average voltage profile.
In this stage we use the algorithm to calculate the duration of
CB switch on time to calculate the tap ratio changes staring
and end points over time as well. The switch-on and inter-
switch-on sensitivities may result in increased number of tap
changes yet will result in more flat voltage profile over time.
Thus there is a tradeoff between the sensitivity levels and
number of tap changes required to flatten the voltage profile.

The second important stage is the part where the mean
of the average voltage is calculated to bias the relative tap
ratios to calculate their absolute values such that when with
the new tap ratios result in the desired mean voltage level.
The desired mean voltage level is calculated with respect
to desired CVR factor. Note that the tap ratio adjustment
algorithm runs for each zone and for each phase. Finally, the
output of the tap ratio adjustment algorithm is the tap ratios
for each LTC or VR and for each phase over the course of
the 24 hour scheduling period.

V. CASE STUDY: IEEE123 RADIAL FEEDER

In this section, we describe the Matlab/OpenDSS simula-
tion built to test the performance of various Volt/VAr opti-
mization algorithms. The flow chart of the Matlab/OpenDSS
simulation is shown in Fig. 2. OpenDSS is a publicly
available power flow software. OpenDSS is designed to
simulate utility distribution systems in arbitrary detail for
most types of analysis related to distribution planning [14].
OpenDSS takes scripts as input and is easy to integrate into
Matlab environment. Currently, we have scripts for modified
IEEE 13 and 123 circuits [15] and are working on building
an 8000 bus circuit.

Fig. 2. The flow chart of the Matlab/OpenDSS simulation for testing various
Volt/VAr optimization algorithms.

We obtain load forecast for a given time period (24
hours or longer) based on historical data using least squares
estimation. Since the optimal CB commitment and tap
settings are performed based on the load forecast, more
accurate the forecast better the performance of these Volt/VAr
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optimization algorithms. Even though the simulation is every
∆t minutes, it may be more adequate to run the load forecast
algorithm every 3-4 hours. Similarly, for the CB commitment
and VR/LTC tap setting algorithms, it may be more practical
to run the algorithms every 15-30 minutes.

We run the Matlab/OpenDSS simulation on IEEE123 with
additional CBs and phases for existing VRs and LTC to
obtain average voltage profiles without the CBs and taps at
zero setting and with the optimal CB commitment and tap
settings. The average voltage profile drops below 0.95 p.u.
while the maximum average voltage is 0.99 p.u. without any
control. The end-of-line voltages varies between 0.93 p.u.
and 1.01 p.u. As a result of the optimal CB commitment
and VR/LTC tap setting algorithm, the average voltage is
flattened and end-of-line voltages stay within 0.95 and 1 p.u.
as shown with dashed lines in Fig. 3 The power factor at
the substation is also improved. The power factor without
the optimal CB commitment is around 0.95. The power
factor with the optimal CB commitment is within 0.98 and
1 averaging around 0.99 over 24 hours.

Fig. 3. The average voltage profile based on perfect knowledge of the
network with optimal CB commitment and tap settings.

VI. CONCLUSION

We developed a new method to calculate optimal CB
commitment and tap ratio adjustments over the course of a
day. The algorithms are unique in the sense that they consider
an optimal daily commitment instead of running an instance
of the algorithm for every load sample time. This we believe
results in computational savings, eventually, resulting in
lower run time. The runtime of the optimal CB algorithm is
dependent on the number of CBs, not the size of the network,
and the number of zones. The optimal CB commitment and
tap ratio adjustment algorithms can be run separately as long
as the CBs are supplied to the tap ratio adjustment algorithm
properly. The tap ratio algorithm can include an additional
step to guarantee the tap ratio settings result in the desired
voltage after the bias to the taps are calculated. This can
be achieved by running a second iteration of the tap adjust-
ment algorithm with a new desired voltage level updated
based on the results from the first iteration. Overall, the

developed algorithms achieve the objectives of improving the
power factor and reducing system losses by switching VAr
sources and adjusting tap ratios accordingly while keeping
the number of switches and number of tap ratio changes well
within their daily limits, thereby, maximizing the lifetime of
these control devices. These algorithms support the increased
penetration of renewable power sources since they can place
the average voltage of the portion of the network containing
the intermittent renewable at a level such that the voltage
fluctuations do not exceed the ANSI 84.1 limits; thereby,
mitigating the impacts to the cap bank and voltage regulator
control devices.
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