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Abstract— In this paper the problem of designing excitation
controllers to improve the transient stability of multimachine
power systems is addressed adopting two new perspectives.
First, instead of the standard formulation of stabilization of an
equilibrium point, we aim here at the more realistic objective
of keeping the difference between the generators rotor angles
bounded and their speeds equal—which is called synchroniza-
tion in the power literature—and translates into a problem of
stabilization of a set. Second, we adopt the classical viewpoint
of power systems as a set of coupled nonlinear pendula, and
express our control objective as ensuring that some suitable
defined pendula dynamics are (asymptotically) immersed into
the power system dynamics. Our main contribution is the
explicit computation of a control law for the 2–machine system
that achieves global synchronization. The same procedure is
applicable to the n–machine case, for which the existence of a
locally stabilizing solution is established.

I. INTRODUCTION

Oscillations in power systems occur due to sudden

faults and transients. Damping these oscillations, generically

known as ”transient stability improvement”, is a critical issue

that is witnessing increased interest in the new deregulated

market [9]. Several control actions are available to accom-

plish this task, in this paper we consider the classical field

excitation of the generators, see [10] where a switched series

capacitor is used instead.

Transient stabilization has been traditionally formulated in

terms of enlarging the domain of attraction of an operating

equilibrium point [2], approach that has been widely adopted

by the control community, see e.g., [5], [11] and references

therein. As early as 1974, [13], it was recognized that the

requirement of convergence to an equilibrium point is too

stringent for engineering applications—see also [8] and the

recent discussion in [6]. In particular, it is argued in [13]

that convergence of the rotor angles to a fixed point is not

required. Indeed, due to the action of secondary control loops

operating at a slower time scale, it suffices to keep their

difference bounded during the transient period, in this case

it is said that the power system synchronizes [1]. Adopting
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this viewpoint the control objective is now stabilization of a

set, which is the problem addressed in this paper.

Another novelty of this paper is that the controller is

designed with the objective of making the power system

asymptotically behave like some suitably defined nonlinear

coupled pendula. This approach has several advantages.

1) It is consistent with a widely adopted viewpoint of the

swing equations as a set of nonlinear coupled pendula,

which should oscillate in a synchronized manner [1],

[2]. See [12] for a recent interesting analysis of the

instability mechanisms.

2) It provides a physical interpretation of the control

action. In particular, physical intuition can be used to

define the desired pendula dynamics, whose potential

energy and dissipation functions are free to the de-

signer.

3) The controller design task can be neatly formulated

using the recently introduced immersion and invariance

(I&I) methodology [3], [4], where (lower order) target

dynamics that capture the desired behavior of the

controlled system are first defined and then the control

is designed to ensure that the target dynamics are

(asymptotically) immersed into the system dynamics.

The main difficulty for the successful application of I&I

is the need to solve a partial differential equation. In this

paper this difficulty is obviated with a suitable selection

of the target dynamics and assuming that all generators

are actuated and have the same relative damping. The I&I

strategy is applied to asymptotically stabilize the equilibrium

of a single machine infinite bus system using a controllable

series capacitor in [10] and generator excitation in [7].

This paper is organized as follows. A brief introduction

to the I&I control synthesis is given in Section II. The

model and the control problem are presented in Section

III. Using the I&I strategy, we compute in Section IV a

globally synchronizing control law for the 2–machine power

system. The extension to the n–machine case, which yields

a local result, is done in Section V. Section VI includes the

application of the proposed technique to a classical example.

Finally, we conclude with some remarks in Section VII.

II. IMMERSION AND INVARIANCE

The method of I&I for observer design, stabilization and

adaptive control of nonlinear systems has been proposed in

[3], and has been recently summarized in [4]. The following

result from [3] will be instrumental for our developents.
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Theorem 1 Consider the system

ẋ = f(x) + g(x)u, (1)

with state x ∈ R
n and control u ∈ R

m, and an assignable

equilibrium point x⋆ ∈ R
n to be stabilized. Let s < n, and

assume we can find mappings

α : R
s → R

s, π : R
s → R

n, c : R
n → R

m,

φ : R
n → R

n−s, ψ : R
n×(n−s) → R

m,

such that the following hold.

(H1) (Target system) The system

ξ̇ = α(ξ), (2)

with state ξ ∈ R
s, has an asymptotically stable equilib-

rium at ξ⋆ ∈ R
s and x⋆ = π(ξ⋆).

(H2) (Immersion condition) For all ξ ∈ R
s

f(π(ξ)) + g(π(ξ))c(π(ξ)) =
∂π(ξ)

∂ξ
α(ξ). (3)

(H3) (Implicit manifold) The set identity

M := {x ∈ R
n | x = π(ξ) for some ξ ∈ R

s}
= {x ∈ R

n |φ(x) = 0} (4)

holds.

(H4) (Manifold attractivity and trajectory boundedness)

All trajectories of the system

ż =
∂φ(x)

∂x
[f(x) + g(x)ψ(x, z)]

ẋ = f(x) + g(x)ψ(x, z), (5)

are bounded and satisfy

lim
t→∞

z(t) = 0. (6)

Then, x⋆ is a globally asymptotically stable equilibrium of

the closed loop system

ẋ = f(x) + g(x)ψ(x, φ(x)).

Theorem 1 lends itself to the following interpretation.

Given the system (1) and the target dynamical system (2)

find, if possible, a manifold M, which can be rendered

invariant and attractive, and such that the restriction of the

closed–loop system to M is described by ξ̇ = α(ξ). The

control law u = c(π(ξ)) render the manifold invariant.

A measure of the distance of the system trajectories to

the manifold M is given by z, called off–the–manifold

coordinate. Our aim is to design a control law u = ψ(x, z)
that drives to zero the coordinate z and keeps the system

trajectories bounded.

III. MODEL AND PROBLEM FORMULATION

We consider a large–scale power system that consists of

n generators interconnected through a lossy transmission

network. The dynamics of the j–th machine using reduced

network model with excitation are represented by the classi-

cal three–dimensional flux decay model1

δ̇j = ωj

Mjω̇j = Pmj
−Djωj −GjjE

2
j−

−Ej

n
∑

k=1,k 6=j

EkYjk sin(δj − δk + αjk)

Ėj = −ajEj + bj

n
∑

k=1,k 6=j

Ek cos(δj − δk + αjk)+

+ 1
τj

(

E⋆
Fj

+ vj

)

,

(7)

where we have defined

Yjk :=
√

G2
jk +B2

jk, αjk := arctan
Gjk

Bjk

aj :=
1

τj
[1−Bjj(xdj − x′dj)], bj :=

Yjk

τj
(xdj − x′dj).

We observe that if the network is lossless—that is if we

neglect the transfer conductances Gij—then αij = 0. The

field voltage EFj
is split in two terms, E⋆

Fj
+ vj . The first

is constant and fixes the equilibrium value, while the second

one is the control action.2

The standard formulation of transient stability presumes

that the system (7) with v = 0 has a stable equilibrium

(δj , ωj , Ej) = (δ⋆
j , 0, E

⋆
j ), and the purpose of the control

is to enlarge its domain of attraction. As explained in the

introduction, we follow the formulation of [13] and [8],

where a trajectory of the (uncontrolled or closed–loop)

system is said to be transiently stable if the initial conditions

belong to an open domain of attraction of the set
Sn := {δj−δk = cjk, ωj = ωk, Ej = E⋆

j , j 6= k} ⊂ R
3n,

(8)

where E⋆
j > 0 is some desired equilibrium value for Ej

and cjk are some non–negative constants that measure

the admissible (steady–state) deviations of the rotor

angles. Obviously, the assumption of existence of an

open–loop stable equilibrium, which is consistent with the

system operation, is retained. We recast then the transient

stabilization problem as asymptotic stabilization of the set

Sn.

Definition 1 [1] A control v is said to (globally) synchronize

the power system (7) if the set Sn is made (globally)

attractive.

To solve this problem we apply the I&I strategy. We

consider first, in the next subsection, the case of 2–machine

power systems and then we generalize the study to the

1This corresponds to eq. (9) of [5], see also [11], to which we refer the
reader for the definition of the symbols and additional details of the model.

2Throughout the paper the subindices j, k range in the set {1, . . . , n},
clarification that is omitted for brevity. The symbol without subindex denotes
a column vector with all the elements piled up, e.g., v := col(v1, . . . , vm)

1409



n–machine case.

Remark 1 In [13] it is shown that in the case of nonzero

damping, the definition above is equivalent to the following.

A trajectory is transiently stable if its initial conditions

belong to an open domain of attraction of the set

{δj − δk = cjk, ωj = 0, Ej = E⋆
j , j 6= k} ⊂ R

3n.

IV. I&I CONTROL FOR TWO–MACHINE SYSTEM

A. System dynamics

The dynamics of the two–machine system are obtained

using equations (7), which yields the 6–th order model

δ̇1 = ω1

ω̇1 = −D1ω1 + P1 −G11E
2
1−

−Y12E1E2 sin(δ1 − δ2 + α)

Ė1 = −a1E1 + b1E2 cos(δ1 − δ2 + α) + 1
τ1

(

E⋆
F1

+ v1
)

δ̇2 = ω2

ω̇2 = −D2ω2 + P2 −G22E
2
2+

Y21E1E2 sin(δ1 − δ2 − α)

Ė2 = −a2E2 + b2E1 cos(δ2 − δ1 + α) + 1
τ2

(

E⋆
F2

+ v2
)

,
(9)

where, with an obvious abuse of notation, we assigned

Di ←
Di

Mi

, Pi ←
Pmi

Mi

, Gii ←
Gii

Mi

, i = 1, 2

as well as Y12 ← Y12

M1

, Y21 ← Y21

M2

, and defined α := α12 =
α21. We will assume in the sequel that P1 6= P2.

Now, since we are interested in the angle and velocity

differences, we define the state variables

x1 = δ1 − δ2, x2 = ω1 − ω2, x3 = E1, x4 = E2.

At this point we make the critical assumption of uniform

relative damping

Di

Mi

=: D, (10)

for i = 1, 2, to get

ẋ1 = x2

ẋ2 = −Dx2 + P1 − P2 −G11x
2
3 +G22x

2
4−

−Y12x3x4 sin(x1 + α)− Y21x3x4 sin(x1 − α)
ẋ3 = −a1x3 + b1x4 cos(x1 + α) + 1

τ1

(

E⋆
F1

+ v1
)

ẋ4 = −a2x4 + b2x3 cos(−x1 + α) + 1
τ2

(

E⋆
F2

+ v2
)

.
(11)

The control objective is then to asymptotically stabilize, with

a well–defined domain of attraction, the equilibrium

x⋆ = (x⋆
1, 0, x

⋆
3, x

⋆
4) := (c12, 0, E

⋆
1 , E

⋆
2 ). (12)

Remark 2 Notice that, even though the dynamics of x3

and x4 can be arbitrarily assigned with v1, v2, these signals

enter as products on the second state equation of (11).

Consequently, standard techniques (e.g., backstepping, con-

trol Lyapunov functions) cannot be applied to stabilize this

system.

B. Target dynamics

To design a stabilizing controller for the 2–machine system

(11) we verify the conditions of Theorem 1. Towards this

end, we first select as target dynamics a simple damped

pendulum system, that is

ξ̇1 = ξ2,

ξ̇2 = −R(ξ)ξ2 − V ′(ξ1).
(13)

The pendulum has an asymptotically stable equilibrium ξ⋆ =
(ξ⋆

1 , 0), which is ensured as follows.

(i) The potential energy function V (ξ1) satisfies
{

V ′(ξ⋆
1) = 0,

V ′′(ξ1) > 0.
(14)

(ii) The damping function verifies R(ξ) > 0.

For simplicity, we select

V (ξ1) = −β cos(ξ1 − ξ⋆
1),

for some β > 0.

C. Immersion condition

Since the objective of I&I is to render the manifold M,

defined in (4), asymptotically attractive it is reasonable to

choose the mapping π : S×R→ S×R×R×R as follows

π(ξ1, ξ2) :=









ξ1
ξ2

π3(ξ)
π4(ξ)









, (15)

where π3(ξ), π4(ξ) are functions to be defined. Moreover, the

condition x⋆ = π(ξ⋆) of Theorem 1, imposes the constraints

ξ⋆
1 = x⋆

1, π3(ξ
⋆) = x⋆

3, π4(ξ
⋆) = x⋆

4. (16)

Some simple calculations show that, selecting R = D,

the immersion condition (3), reduces to the simple quadratic

algebraic equation3

[

π3(ξ) π4(ξ)
]

A(ξ1)

[

π3(ξ)
π4(ξ)

]

= s(ξ1), (17)

where

A(ξ1) :=

[

G11 a12(ξ1)
a12(ξ1) −G22

]

s(ξ1) := P1 − P2 + β sin(ξ1 − x⋆
1)

a12(ξ1) :=
Y12

2
sin(ξ1 + α) +

Y12

2
sin(ξ1 − α). (18)

The solutions of (17) can be parameterized using Lemma

1 in the Appendix, whose proof is inspired by the standard

parametrization of hyperbola. The lemma imposes the con-

dition s(ξ1) > 0. If P1 > P2 the condition can be satisfied

with a sufficiently small β. On the other hand, if P2 > P1

we can make the independent term negative with a small β.

This case can also be treated with a slight modification to the

lemma. Therefore, without loss of generality we will assume

3The third and fourth equations in (3) are satisfied with a suitable
definition of the control v.
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in the sequel that P1 > P2 and s(ξ1) > 0. In this case, direct

application of Lemma 1 proves that all solutions of (17) can

be parameterized as

[

π3(ξ)
π4(ξ)

]

=
√
s









1√
G11

cosh(ρ)− a12

G11

√

a2

12

G11
+G22

sinh(ρ)

1
√

a2

12

G11
+G22

sinh(ρ)









,

with ρ(ξ) a free function.

To simplify our derivations it is convenient to make ρ(ξ)
function only of ξ1—in this case π3 and π4 are also functions

of ξ1 only—and such that π4(ξ) is a constant that, in view

of (16), has to be π4 = x⋆
4. That is, we select

ρ(ξ1) = sinh−1

(

x⋆
4

√

a2
12(ξ1) +G11G22

s(ξ1)G11

)

,

where we recall that sinh is a globally invertible function.

This yields, after some simple calculations, the expression

π3(ξ1) =
1

G11

(

√

sG11 + (x⋆
4)

2(a2
12 +G11G22)− a12x

⋆
4

)

,

(19)

where we have used the identity

cosh(sinh−1(θ)) =
√

1 + θ2.

Remark 3 It is important to underscore that the equation

(17), evaluated at the equilibrium ξ⋆, is precisely the equi-

librium equation of ẋ2. Since x2 = ω1 − ω2, and it is

assumed that the open–loop system (9) has an equilibrium,

we conclude that (17) has, at least, a local solution. Although

it is shown above that the equation has a global solution, the

remark will be important for the n–machine extension of

Section V.

D. Implicit manifold condition

Once the mapping π(ξ) has been defined, we proceed to

verify condition (4). From (15) and π4 = x⋆
4 it is clear that

the mapping φ(x) is defined as

φ(x) =

[

x3 − π3(x1)
x4 − x⋆

4

]

(20)

E. Manifold attractivity and trajectory boundedness

It only remains to verify condition (H4). Towards this end,

let z := φ(x) denote the off–the–manifold coordinate. Then,

we have that

ż1 = ẋ3 − π̇3(x1)

= −a1x3 + b1x4 cos(x1 + α) +

+
1

τ1
(E⋆

F1
+ ψ1(x, z))− π′

3(x1)x2,

while

ż2 = ẋ4

= −a2x4 + b2x3 cos(−x1 + α) +
1

τ2
(E⋆

F2
+ ψ2(x, z))

where we have substituted ẋ3, ẋ4, from (11), and we recall

that ψ1(x, z) and ψ2(x, z) are the actual controllers that we

apply. Selecting the globally defined functions

ψ1(x, z)

τ1
= a1x3−b1x4 cos(x1+α)−

E⋆
F1

τ1
+π′

3(x1)x2−γz1

ψ2(x, z)

τ2
= a2x4 − b2x3 cos(−x1 +α)−

E⋆
F2

τ2
− γz2, (21)

with γ > 0, yields the exponentially stable system ż = −γz.

It only remains to prove that the state of the system (11) in

closed–loop with v = ψ(x, z) is bounded. First, from (18),

(19) we see that π3(x1) is bounded. Since z1 is, clearly,

also bounded we conclude that x3 is bounded. The same

argument, using z2, establishes that x4 is bounded. Now,

x1 ∈ S, hence, is bounded. Finally, from the second equation

of (11) we see that x2 is the output of the stable filter 1
s+D

with a bounded input, consequently it is also bounded.

F. Global synchronization of the 2–machine power system

The derivations above established the following result.

Proposition 1 Consider the 2–machine system (9) verifying

(10) and P1 > P2.4 Fix the positive constants c12, E
⋆
1 , E

⋆
2 .

Let the control be given by v = ψ(x, φ(x)), which is defined

by (12), (18), (19), (20) and (21). The power system globally

synchronizes, that is, the set

S2 = {δ1 − δ2 = c12, ω1 = ω2, E1 = E⋆
1 , E2 = E⋆

2}

is globally attractive.

Remark 4 Global attractivity is, of course, not an issue in

practical applications. Actually, the coordinates Ej in the

model (7) are (physically) restricted to be positive and the

behavior of δj is of interest only in the set |δi − δj | ≤ π
2 .

V. I&I CONTROL FOR n–MACHINE SYSTEM

In this subsection we show that the I&I procedure applied

in Subsection II can be directly extended to the n–machine

case yielding a locally synchronizing controller. The only

difference is that, in this case, instead of one algebraic

equation in two unknowns, we end up with (n−1) algebraic

equations in n unknowns, for which no explicit solution has

been found. However, in the light of Remark 3, we will prove

the existence of a local solution.

Again, we consider the case of uniform relative damping,

that is, (10) holds for all j. We are interested in the angular

and velocity differences with respect to a reference machine

that, without loss of generality, we select to be the n–th

machine. After redefining the notation like in Section IV,

4As explained in Subsection IV-C the latter assumption is done without
loss of generality. Uniform relative damping is, on the other hand, a critical
nonphysically justified assumption. See the discussion in Section VII.
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results in the (3n− 2) state space model

δ̇j − δ̇n = ωj − ωn,

ω̇j − ω̇n = −D (ωj − ωn) + Pmj
−GjjE

2
j−

−Ej

n
∑

k=1,k 6=j

EkYjk sin(δj − δk + αjk)−

−Pmn
+GnnE

2
n−

−En

n−1
∑

k=1

EkYnk sin(δn − δk + αnk),

Ėj = −ajEj + bj

n
∑

k=1,k 6=j

Ek cos(δj − δk + αjk)+

+ 1
τj

(

E⋆
Fj

+ vj

)

.

(22)

Mimicking the derivations of the previous section, choose

the target system as (n− 1) coupled pendula with damping

Ri = D and potential energies Vi(ξ) verifying

(c12, 0, . . . , c(n−1)n, 0) = arg min

n−1
∑

i=1

Vi(ξ).

Select the mapping π(ξ) as

π(ξ) := col(ξ1, ξ2, · · · , ξ2n−2, π2n−1(ξ), · · · , π3n−2(ξ)).

It is easy to see that the immersion condition (3) reduces to

the algebraic equations

Pmi
−Giiπ

2
i+2n−2 − Pmn

+Gnnπ
2
3n−2

− πi+2n−2

n
∑

k=1,k 6=i

πk+2n−2Yik sin(ξi − ξk + αik)

− π3n−2

n−1
∑

k=1

πk+2n−2Ynk sin(−ξk + αnk) = −∂Vi(ξ)

∂ξi
,

(23)

with i = 1, ..., n− 1. These are (n− 1) quadratic equations

in the n unknowns π2n−1(ξ), · · · , π3n−2(ξ) for which, in

view of Remark 3, a local solution is insured. Proceeding

exactly as done in Section IV we can establish the following

result.

Proposition 2 Consider the n–machine system (7) verifying

(10). Fix the positive constants cij , E
⋆
j . There exists a static

state–feedback control v that locally synchronizes the power

system, that is, that renders the set Sn, defined in (8), locally

attractive.

VI. A BENCHMARK SIMULATION EXAMPLE

We consider here the classical 2-machine system con-

sidered in [2]. We analyze the response of (9) to a short

circuit which consists of a zero-impedance three phase

fault. The parameters of the model (9) are given in Table

I, and the equilibrium point is x⋆ = (x⋆
1, x

⋆
2, x

⋆
3, x

⋆
4) =

(δ⋆
12, ω

⋆
12, E

⋆
1 , E

⋆
2 ) = (−0.15, 0, 1, 1.08). The fault is intro-

duced at t = 0.5 sec and removed after a certain time (called

the clearing time and denoted tcl), after which the system

is back to its pre-disturbance topology. During the fault the

trajectories tend away from the equilibrium. The largest time

Parameter Gen 1 (pu) Gen 2 (pu)

a 17.71225 14.6054

b 11.8321 10.0303

D 0.2 0.2

P 52.2526 48.4902

Gii 30.7858 19.0708

Y 54.6097 39.007

α 0.5226 0.5226

E⋆

F
5.8103 7.9279

TABLE I

PARAMETERS OF THE 2–MACHINE SYSTEM

interval “before instability” called the critical clearing time

(tcr), is determined via simulation. This system has a critical

clearing time tcr = 0.1 sec in open loop. With the proposed

controller, and with a suitable selection of the parameters γ,

and β, this time could be increased to 1 sec; a value that

is far beyond the time scale of interest in this problem. The

tuning parameter β decides the shape of the energy function

for the closed-loop system, and γ decides the rate at which

the closed-loop system trajectories come closer to the desired

trajectories.

Figures 1 and 2 depict the transient response of system (9)

to a short-circuit with clearing time tcl = 0.8 s, γ = 140,

and β = 4 where the open loop system is unstable. As it can

be seen, the controller is able to significantly improve the

transient stability of the system and to enlarge its domain of

attraction. Figure 3 shows the total energy function of the

target system (13) with the potential energy (14) during the

perturbation.
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Fig. 1. Response of the 2-machine system (9) with the I&I control laws
(21) : Dotted line (open loop response), solid line (closed-loop response
with γ = 140, β = 4 and tcl=0.8 sec).

VII. CONCLUDING REMARKS

Some preliminary results on synchronization of power

systems have been reported. Besides the restrictive assump-

tions that all generators are actuated and the availability of

full–state measurement, the main drawback of our result is

the condition of uniform relative damping. This condition

cannot be physically justified and is imposed to translate the

problem of stabilization of the set Sn for the system (7) into

a standard equilibrium stabilization problem of a reduced

system. Research is under way to relax this assumption.
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We are pursuing our research along three directions.

• The derivation of explicit controller expressions for the

n–machine case. Some preliminary calculations using

“dynamic solutions” of the algebraic equations are very

encouraging.

• Study the effect of the choice of the target dynamics on

the solvability and complexity of the algebraic equations

and the definition of the control. Regarding the latter,

we have presented here a “partially linearizing” scheme

that cancels the potential energies of the target system

and yields a linear decoupled dynamics to the off–

the–manifold coordinate z. However, we believe that

incorporating physical intuition a more clever option

should be available.

• The study of the interaction of the network topology and

the machines dynamics. In particular, it is of interest

to identify generators (or transmission lines) where the

addition of control actions would have a major impact

in the transient stability improvement.
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APPENDIX

Lemma 1 Consider the quadratic form y⊤Ay = s, with

y ∈ R
2,

A =

[

a b

b −c

]

, a, c, s > 0.

All solutions of the quadratic form can be parameterized as

y =
√
s





1√
a

cosh(ρ)− b

a

√

b2

a
+c

sinh(ρ)

1
√

b2

a
+c

sinh(ρ)



 ,

with ρ a free constant.

Proof First, note that the congruence transformation

T⊤AT := Ã with

T =

[

1 −b
a

0 1

]

,

yields

Ã =

[

a 0

0 −
(

b2

a
+ c
)

]

.

Defining ỹ := T−1y and replacing in the quadratic form

yields ỹ⊤Ãỹ = s. The proof is completed selecting

ỹ =
√
s





1√
a

cosh(ρ)
1

√

b2

a
+c

sinh(ρ)



 ,

and using the fact that cosh2(ρ)− sinh2(ρ) = 1.
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