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Abstract— In this paper, we provide the optimal solution
for the H2 control problem in the case when both plant
and controller are interconnected systems interacting over
an arbitrary directed causal network. We first analyze the
structure of network realizable systems and then characterize
the set of all stabilizing controllers that are realizable over the
given network using the Youla parametrization. The H2 control
problem is then cast as a convex optimization problem and its
solution is shown to provide the optimal distributed controller
over the given network. The results of this paper allow one to
apply many classical results and approaches of multi-variable
robust control to networked systems.

Index Terms— Distributed control, Network realizability

theory, Networked control systems, Optimal H2 control

I. INTRODUCTION

With increasing number of applications in the field of

networked or spatially interconnected systems, there has

been a great surge in research towards distributed control

problems. The interconnected systems in consideration are a

(possibly large) group of individual sub-systems interacting

over a communication network. The main objective is to find

controllers satisfying the desired performance criteria and

implementable over the existing communication network in

a distributed fashion. In the recent literature on distributed

controller synthesis, the problem has been analyzed for vari-

ous classes of interconnected systems like spatially invariant

systems [1]–[4], systems with triangular and band structures

[5], [6], symmetrically interconnected systems [7] and a

more general case of systems satisfying quadratic invariance

property [8], [9]. Identical sub-systems connected over a

graph with diagonalizable “pattern matrix” were considered

by [10] and heterogeneous sub-systems connected over an

arbitrary undirected graphs were considered by [11].

In [1]–[8] and many references within, the symmetry and

invariance properties are well exploited in order to obtain

tractable algorithms to solve distributed optimal control prob-

lems for large scale distributed systems. The methodologies

used in the literature can be classified into two categories:

transfer function and state-space approaches. In both these

cases, conditions are given for a particular transfer function

or a state-space model to be well-posed and be compatible

with a given network interconnection [8], [11]. However, in

transfer function approaches, it is not clear how to implement

a designed controller in terms of local controllers exchanging
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information over the given network. Only in special cases

[12], reconstruction of local controllers is known. In a state-

space approach, the conditions for realizability over the given

network can be easily specified [13].

In [8], given a system, a characterization of all stabilizing

controllers that belong to a constraint set S is provided

when the set S is quadratically invariant under the given

system. In the case where the system and the controller are

restricted to be interconnected systems over a given network,

the results cannot be directly extended since [8] does not

provide any necessary conditions for the designed controller

to be implementable on the given network as a group of

n sub-systems interacting over the causal network G. In

this paper, we address this issue and provide an alternative

solution that ensures the network realizability of the designed

optimal controller.

The outline of this paper is as follows: Section II intro-

duces the notation used in the paper to describe systems on

networks. In Section III, interconnected systems over causal

networks are described using state-space and input-output

representations. The main problem under consideration is

described in Section IV, followed by the results on network

realizability and parametrization of all stabilizing network

realizable controllers in Section V.

II. NOTATION

A. Graph model

In this paper, we deal with networks of systems that are best

described using a directed pseudograph G = (V ,A) where

V = {1, . . . ,n} represents the nodes of the graph or the sub-

systems in the network, and A ⊂ V2 represents the arc-set

or the set of communication links between different sub-

systems. We say, arc (i, j) ∈A if there exists a directed link

from node i to node j. For ease of notation, we consider

(i, i)∈A ∀i ∈V . Define directed neighborhoods around each

node i, N−
i = { j|( j, i) ∈A} and N+

i = { j|(i, j) ∈A}, which

are the sets of nodes that have arcs to and from node i. With

a slight abuse of notation, we shall refer to the network by

G along with the underlying graph representing the network.

B. General

We refer to a column-vector as vector. To make represen-

tations compact, we use the notation [xi]i∈I for vertical

concatenation of vectors or matrices {xi}i∈I , of appropriate

dimension, where I is an index set. Let [xi j]i, j∈I represent

a block-matrix where the (i, j)th block is a matrix xi j. Also,

let diag[xi]i∈I denote the matrix formed by arranging the

vectors or matrices {xi}i∈I in a block-diagonal fashion

and the remaining entries being zeros. Sometimes, if the
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Fig. 1. An example of an interconnected system represented by a directed
pseudograph.

index set I equals {1, . . . ,n}, then we will not explicitly

mention the index set. Given a matrix A = [a1...an ] ∈ Cm×n,

where {ai}i denote the columns of A, we associate a vector

vec(A) = [ai]i ∈ Cmn which is a vector formed by vertically

concatenating the columns of matrix A. Define vec−1(·) as

the inverse operation of the vec(·) such that vec−1(vec(A))=
A.

A block-matrix A is said to be structured according to

a graph G = (V ,A) if it is of the form [Ai j]i, j∈{1,...,n}
and

Ai j = 0 when ( j, i) 6∈ A. When required, we shall use I

for an identity matrix and 0 for a zero matrix of appro-

priate size. The dimensions of the sub-matrices {Ai j}i, j are

described using two integer-valued vectors as follows. Let

Pa = (a1, . . . ,an) and Pb = (b1, . . . ,bn) be two n−tuples with

ai and bi being integers for all i. Then, matrix A is said to

be partitioned according to (Pa,Pb) if the sub-matrix Ai j

has dimension ai ×b j ∀i, j. This definition of partitioning is

easily extended to the case of vectors too. A vector x is

said to be partitioned according to Pa if it can be written

as [xi]i∈{1,...,n} where xi is a real vector of size ai for all

i ∈ {1, . . . ,n}.

III. INTERCONNECTED SYSTEMS

A group of sub-systems interacting over a communication

network is termed as a networked or an interconnected system

(see Fig. 1). The interconnected system is characterized by

1) topology of the network; 2) local dynamics of the sub-

systems; 3) interaction between the sub-subsystems over the

communication network.

We consider n sub-systems {Pi}i∈{1,...,n} interacting over a

network represented by a directed graph G = (V ,A) with the

sub-systems at its vertices and communication links corre-

sponding to the arcs. Let each sub-system Pi be described

by its states xi(k), local inputs ui(k), local outputs yi(k),
network inputs νi(k) and network outputs ηi(k). In this paper,

we consider each sub-system Pi to be a discrete-time causal

finite-dimensional linear time-invariant (FDLTI) system with

a state-space description




xi(k + 1)
yi(k)
ηi(k)



 =





Ai Bu
i Bν

i

C
y
i D

yu
i D

yν
i

C
η
i D

ηu
i D

ην
i









xi(k)
ui(k)
νi(k)



 (1)

Note that, ηi(k) = [ηi j(k)] j∈N+
i \{i} and νi(k) =

[νi j(k)] j∈N−

i \{i}
∀ i which correspond to the overall

set of messages transmitted and received by Pi, where ηi j(k)
is the message vector passed from plant Pi to Pj at the

time instant k and νi j(k) is the message passed in the other

direction.

A. Causal interconnection

A network is said to be a causal interconnection if the nodes

or the sub-systems on the network cannot relay the incoming

information obtained from the neighboring nodes in the same

time instant, i.e. the outgoing information at each time instant

can only depend on the local information available at that

time instant.

In the case of an interconnected system described by (1),

the interconnection is said to be causal if D
ην
i = 0 for all

i, i.e. Pi can not relay the information about νi(k) to its

neighbors in the same time instant k that it receives. In this

paper, we assume that the considered network is a causal

interconnection and the communication links are noiseless,

delay-free and have no bandwidth constraints. Thus νi j(k) =
η ji(k) for all i, j. In more practical scenarios, we have to

incorporate the stochastic nature and frequency response of

the communication links, which will be addressed in a future

work.

Remark 1: In some cases, an additional condition D
yν
i = 0

for all i may appear while modeling systems on networks

to ensure that the incoming information from neighboring

nodes of Pi cannot be relayed to the controller unit during

the same time instant. The procedure developed in this paper

can be extended to such cases with slight modifications that

incorporate the additional constraint.

B. State-space realizations of interconnected systems

Let the state-space equations corresponding to the dynamics

of each sub-system Pi be given by (1) with D
ην
i = 0 for

all i. From the individual dynamics of Pi and the causal

interconnection, the state-space equations for the complete

interconnected system P are obtained in the following man-

ner.

Bν
i νi(k) = Bν

i [η ji(k)] j∈N−

i \{i}

= Bν
i [C

η
jix j(k)+ D

ηu
ji u j(k)]

j∈N−

i \{i}

= ∑
j∈N−

i \{i}

(Ai jx j(k)+ Bu
i ju j(k))

(2)

for some appropriate values of Ai j and Bu
i j. Similarly, by

expressing D
yν
i νi(k) in terms of some appropriate matrices

C
y
i j and D

yu
i j , (1) can be written as

xi(k + 1) = ∑
j∈N−

i

Ai jx j(k)+ ∑
j∈N−

i

Bu
i ju j(k)

yi(k) = ∑
j∈N−

i

C
y
i jx j(k)+ ∑

j∈N−

i

D
yu
i j u j(k)

(3)

where Aii = Ai, Bu
ii = Bu

i , C
y
ii = C

y
i , D

yu
ii = D

yu
i for all i. By

defining Ai j, Bu
i j, C

y
i j and D

yu
i j to be zero for ( j, i) 6∈ A, the

state-space representation of the interconnected system P can

be represented as
[

x(k + 1)
y(k)

]

=

[

A Bu

Cy Dyu

][

x(k)
u(k)

]

(4)
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where x(k) = [xi(k)]i, u(k) = [ui(k)]i and y(k) = [yi(k)]i. Note

that A := [Ai j]i, j, Bu := [Bu
i j]i, j, Cy := [Cy

i j]i, j and Dyu :=

[Dyu
i j ]i, j are structured according to network G. These denote

the sparsity constraints on the state-space matrices of the

interconnected systems. Also note that A is partitioned ac-

cording to (Px,Px), Bu according to (Px,Pu), Cy according

to (Py,Px) and Dyu according to (Py,Pu), where Px,Pu,Py

are the partitions of x(k), u(k) and y(k), respectively.

Definition 1: Given the network G and the partitions Px,

Pu and Py, the set of state-space realizations (A,Bu,Cy,Dyu)
with the state-space matrices structured according to G is

denoted by S(G,Px,Pu,Py).
We also define the set S(G,Pu,Py) =

⋃

Px∈Nn

S(G,Px,Pu,Py). Note that the state-space realization

of any interconnected system built on a causal network

interaction G belongs to the set S(G,Pu,Py). Later, we

show that given any element of S(G,Pu,Py), one can obtain

a corresponding interconnected system with n sub-systems

interacting over a given network while maintaining internal

stability.

Remark 2: In the case of Remark 1, when D
yν
i = 0 for

all i, note that the resulting state-space matrices in (4) will

have the following format: A and Bu are structured according

to G while Cy and Dyu are block-diagonal. This constraint

only changes the structure of the state-space realizations

of interconnected systems built on G but the framework

designed in this paper still holds, with minor modifications.

More details regarding this case will be provided in a future

work.

C. Transfer functions of interconnected systems

In this section, we briefly consider the structure of the

transfer functions of interconnected systems over a given

network. Applying the ideas presented in [14] to a discrete-

time model, one can show that the transfer function of any

discrete-time, causal, FDLTI interconnected system over a

given causal network interconnection G can be described

in terms of the delay and sparsity constraints. Note that

Rp denotes the set of real-rational proper transfer function

matrices and RH∞ denotes the set of real-rational proper

stable transfer function matrices.

Let P(z) = [Pi j(z)]i, j be a transfer function matrix corre-

sponding to the considered interconnected system over G,

where Pi j(z) is the transfer function matrix from input vector

u j(k) to output vector yi(k). Note that P(z) is partitioned

according to (Py,Pu).

• Delay constraints: If l( j, i) is the length of the shortest

path from node j to node i, then the input vector u j(k)
at node j can effect the output vector yi(k) at node i

only after l( j, i)− 1 time instants in order to preserve

the causality of the interconnection. Thus, Pi j(z) can be

written as z−l( j,i)+1Hi j(z) where Hi j(z) ∈Rp.

• Sparsity constraints: In the case when there exists no

directed paths from node j to node i on G, Pi j(z) is a

zero matrix with appropriate dimensions. This implies

that the input at node j can not affect the output at node

i. The sparsity condition can be treated as a special case

of delay constraint where the delay is infinite.

Definition 2: Given a network G and the input and output

partitions, Pu and Py, the set of transfer function matrices

P(z) that satisfy the corresponding delay and sparsity con-

straints is denoted by T(G,Pu,Py).
Note that the transfer function matrix of any intercon-

nected system built on a network G with appropriate input

and output partitions belongs to the set T(G,Pu,Py). But

given an element of T(G,Pu,Py), it is non-trivial to obtain

a corresponding interconnected system with n sub-systems

interacting over a given network while maintaining internal

stability.

D. Realizable systems over a causal network

A system is said to be realizable over a causal network

if it can be implemented as n individual sub-systems (with

their local states, inputs and outputs corresponding to each

node of the network) that pass messages to each other

along the directed links while respecting the causal network

interconnection and maintaining internal stability.

In the later part of the paper, we can see that this property

is essential in designing distributed controllers over causal

networks. Also note that the realizability conditions might

change according to the properties of the network considered.

We analyze the network realizability property of the elements

of S(G,Px,Pu,Py) and T(G,Pu,Py) in Section V.

IV. PROBLEM DESCRIPTION

We consider a group of n sub-systems, {Pi}i, interacting over

a given causal network interconnection G where the links

are assumed to be noiseless, delay-free and have unlimited

bandwidth. Let G = (V ,A). Including the local exogenous

inputs wi(k) and local regulated outputs zi(k) in (1), the state-

space description of the sub-system Pi is written as








xi(k + 1)
zi(k)
yi(k)
ηi(k)









=









Ai Bw
i Bu

i Bν
i

Cz
i Dzw

i Dzu
i Dzν

i

C
y
i D

yw
i Dyu D

yν
i

C
η
i D

ηw
i D

ηu
i 0

















xi(k)
wi(k)
ui(k)
νi(k)









(5)

In this paper, we consider only the class of interconnected

plants for which D
yu
i , D

yν
i and D

ηu
i are zero matrices for

all i. By interconnecting these sub-systems over the causal

network G and following the equations similar to (2), we can

write (5) as follows





x(k + 1)
z(k)
y(k)



 =





A Bw Bu

Cz Dzw Dzu

Cy Dyw 0









x(k)
w(k)
u(k)



 (6)

where x(k) = [xi(k)]i and similarly the other inputs and

outputs are made of the local inputs and outputs of all the

plants. Note that the resulting state-space matrices A, Bw, Cz

and Dzw are structured according to G while Bu, Cy, Dzu and

Dyw are block-diagonal matrices, with appropriate partitions.

One can view the system P as
[

P11 P12
P21 P22

]

, a mapping

from
[

w(k)
u(k)

]

to
[

z(k)
y(k)

]

. The actual plant or process is in
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Fig. 2. An example of an interconnected plant and controller pair that are
realizable over the same network.

fact P22 which is the map from u(k) to y(k). Note that,

P22 = (A,Bu,Cy,0) ∈ S(G,Px,Pu,Py) where Px, Pu and Py

are the partitions of x(k), u(k) and y(k), respectively, with

Bu and Cy being block-diagonal. We assume that the plant

is stabilizable and detectable over the network G, i.e. there

exists a proper controller K (realizable over the network G)

that internally stabilizes P through output feedback.

In this paper, we consider interconnected systems with

structure described in (6) with block-diagonal Bu and Cy to

make the analysis easier (and the closed-loop interconnection

well-posed) while conveying the basic methodology followed

in the later sections. Analysis for a more general case, when

Bu and Cy are not block-diagonal, will be considered in

future.

The main objective of this paper is to design optimal

controllers that are realizable over the given network G while

minimizing the H2 norm of the closed-loop mapping from

w(k) to z(k). Figure 2 depicts such a plant-controller pair

when both are constrained to be interconnected systems over

the same network G.

V. MAIN RESULTS

In this section, we first analyze the network realizability

properties of the elements of S(G,Pu,Py) and T(G,Pu,Py).
Using these results, we describe the set of all stabilizing

network realizable controllers corresponding to a given in-

terconnected plant described by (6). This parametrization

is then used to solve the distributed H2 control problem

using techniques corresponding to a centralized H2 control

problem.

A. Network realizability of S(G,Px,Pu,Py) and

T(G,Pu,Py)

Lemma 1: Given a causal network interconnection G
and the partitions Px, Pu and Py, any system Q ∈
S(G,Px,Pu,Py) is realizable over the network G.

Proof: To prove this statement, we need to find n sub-

systems {Qi}i with state-space representation of the form (1)

which result in the given Q by interacting over the network

G while maintaining internal stability.

Let G = (V ,A). By definition, Q has a state-space realiza-

tion (A,Bu,Cy,Dyu), where A, Bu, Cy and Dyu are structured

according to G and partitioned accordingly. So, we have

matrices {Ai j}i, j,{Bu
i j}i, j,{C

y
i j}i, j and {D

yu
i j }i, j for all i, j ∈

{1, . . . ,n} such that they are zero matrices when ( j, i) 6∈ A.

Let the state, input and output vectors be defined according

to the corresponding partitions. Then the dynamics of the

system Q can be written as

xi(k + 1) = ∑
j∈N−

i

Ai jx j(k)+ ∑
j∈N−

i

Bu
i ju j(k)

yi(k) = ∑
j∈N−

i

C
y
i jx j(k)+ ∑

j∈N−

i

D
yu
i j u j(k)

∀i ∈ V (7)

We rewrite the above equations as

xi(k + 1) = Aiixi(k)+ Bu
iiui(k)

+ ∑
j∈N−

i \{i}

Ai jx j(k)+ ∑
j∈N−

i \{i}

Bu
i ju j(k)

= Aixi(k)+ Bu
i ui(k)+ Bν

i νi(k)

yi(k + 1) = C
y
iixi(k)+ D

yu
ii ui(k)

+ ∑
j∈N−

i \{i}

C
y
i jx j(k)+ ∑

j∈N−

i \{i}

D
yu
i j u j(k)

= C
y
i xi(k)+ D

yu
i ui(k)+ D

yν
i νi(k) ∀i ∈ V

where

Ai = Aii, Bu
i = Bii, C

y
i = C

y
ii, D

yu
i = D

yu
ii ,

Bν
i = hor [Ai j

9
9
9

Bu
i j] j∈N−

i \{i}
, D

yν
i = hor [Cy

i j

9
9
9

D
yu
i j ] j∈N−

i \{i}
,

η ji(k) =

[

x j(k)
u j(k)

]

∀ j ∈ N−
i \ {i},

νi(k) = [η ji(k)] j∈N−

i \{i}
, ∀i ∈ V

where hor(·) is used to denote horizontal concatenation

of matrices. To ensure η ji(k) =
[ x j(k)

u j(k)

]

for all i ∈ V and

j ∈ N−
i \ {i}, we choose C

η
i j =

[

I
0

]

and D
ηu
i j =

[

0
I

]

for

all j ∈ N+
i \ {i}, while C

η
i := [Cη

i j] j∈N+
i
\{i} and D

ηu
i :=

[Dηu
i j ] j∈N+

i \{i}. This choice of C
η
i and D

ηu
i leads to

[ηi j(k)] j∈N+
i \{i} = ηi(k) =

[

xi(k)
ui(k)

]

j∈N+
i \{i}

.

By defining Qi as




xi(k + 1)
yi(k)
ηi(k)



 =





Ai Bu
i Bν

i

C
y
i D

yu
i D

yν
i

C
η
i D

ηu
i 0









xi(k)
ui(k)
νi(k)



 ∀i ∈ V ,

we obtain n sub-systems {Qi}i that interact over the network

G to make the original system Q.

Note that, in defining the n sub-systems, we do not

increase the number of states of the system. Thus, no internal

instability is introduced. If overall number of states are

increased, one needs to show that the additional states do

not result in unstable pole-zero cancellations.

Since any realizable system on the network G, with

input and output partitions as Pu and Py, is an element of

S(G,Px,Pu,Py) for some state partition Px and any element

of S(G,Px,Pu,Py) is realizable over G for any Px, we can

say that the set S(G,Pu,Py) represents the set of all discrete-

time, causal FDLTI systems that are realizable over a causal

network interconnection G. We denote the set of all stable

systems in S(G,Pu,Py) by Ss(G,Pu,Py).
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Theorem 1: Given a network represented by a directed

pseudograph G = (V ,A) and the input and output partitions,

Pu and Py, any bounded-input bounded-output (BIBO) stable

system Q(z) ∈ T(G,Pu,Py) is realizable over the network G
for some state partition Px.

In general, a similar result as Theorem 1 cannot be applied

to unstable transfer function matrices in T(G,Pu,Py) while

maintaining internal stability. Specific unstable transfer func-

tion matrices in T(G,Pu,Py) may be shown to be realizable

over G but not every element of T(G,Pu,Py) can be shown

to be network realizable. Note that the procedure followed

in the later part of the paper only requires the network

realizability property for stable systems in T(G,Pu,Py).
We denote the set of all stable real-rational proper transfer

function matrices with input and output partitions as Pu and

Py, and satisfying the delay and sparsity constraints imposed

by the causal network interconnection G by Ts(G,Pu,Py).
Note that, if Q(z) = [Qi j(z)]i, j ∈ Ts(G,Pu,Py), then Qi j(z) ∈
RH∞ for all i, j. One can show that S

s(G,Pu,Py) and

Ts(G,Pu,Py) are equivalent and represent the same set of

all stable interconnected systems realizable over G given the

input and output partitions Pu and Py.

B. All stabilizing network realizable controllers

In this section, we characterize the set of all stabilizing

controllers realizable over a given network for the given

interconnected system by means of the following theorem.

Theorem 2: Given an interconnected system P over a

causal network G with a state-space representation given

by (6) with block-diagonal Bu and Cy and corresponding

partitions Px, Pw, Pu, Pz and Py. Given that P is stabilizable

and detectable and given are matrices F and L structured

according to G such that A + BuF and A + LCy are stable.

F is partitioned according to (Pu,Px) and L is partitioned

according to (Px,Py). Then the set of all stabilizing (FDLTI

and causal) controllers, realizable over G, for the given

system P is parametrized by a lower fractional transformation

(LFT) as

K = lft(J,Q), (8)

where Q is FDLTI, causal, stable and realizable over the

network G,

J =





A + BuF + LCy −L −Bu

F 0 −I

−Cy I 0



 , (9)

which is also realizable over the network G.

Note that Theorem 2 requires matrices F and L, structured

according to G and partitioned accordingly, such that A +
BuF and A + LCy are stable. In this paper, we assume that

matrices F and L with the above mentioned properties exist.

The conditions for the existence of such matrices along with

the procedure for generating the matrices will be addressed

in future. However, note that for stable systems, F and L can

always be chosen to be zero matrices.

C. Optimal solution for H2 problem

In this section, we provide an optimal solution for the

H2 control problem under the constraint that the designed

controller is realizable over the given network represented

by G.

The distributed H2 control problem can be written as

min ‖Tzw‖2

subject to K ∈ S(G,Py,Pu),

Tzw is internally stable

(10)

where Tzw denotes the closed-loop mapping from w(k) to

z(k).
First, note that the set of FDLTI, causal and stable systems

realizable over the causal network interconnection G are

given by Ss(G,Py,Pu) or Ts(G,Py,Pu). Thus, we can as-

sume that Q(z) ∈ Ts(G,Py,Pu) to parametrize all stabilizing

controllers realizable over G. The set of all closed-loop

transfer matrices from w(k) to z(k) can be obtained using

Theorem 2 and the results from [15] as

Tzw = lft(T,Q) = {T11 + T12QT21 : Q ∈ T
s(G,Py,Pu)}

where T is given by

T =

[

T11 T12

T21 T22

]

=









A + BuF BuF Bw −Bu

0 A + LCy −Bw −LDyw 0

Cz + DzuF DzuF Dzw −Dzu

0 −Cy Dyw 0









.

Since the closed-loop transfer matrix is simply an affine

function of the controller parameter matrix Q while the delay

and sparsity constraints on the transfer function of Q are

linear, we can rewrite the distributed H2 problem in (10) as

a convex optimization problem

min ‖T11 + T12QT21‖2

subject to Q ∈ T
s(G,Py,Pu),

(11)

Vectorization techniques can be applied to write the op-

timization problem in (11) as an equivalent unconstrained

problem. To represent the vectorization of a transfer function

matrix, we make a slight change of notation for representing

the matrices. Instead of treating Qi j as a sub-matrix of Q,

we consider Qi j to be the element of the matrix Q in the ith

row and jth column.

Let vec(Ts(G,Py,Pu)) = {vec(Q)|Q ∈ Ts(G,Py,Pu)} de-

note the set of vectorized elements of Ts(G,Py,Pu). If

Pu = {P1
u , . . . ,Pn

u} denotes the output partition, then denote

nu = ∑iP
i
u to represent the total number of outputs. Similarly,

denote ny to represent the total number of inputs. It can

be seen that vec(Ts(G,Py,Pu)) ∈ RH
nuny×1
∞ is a sub-space

due to the delay and sparsity constraints imposed by the

network G. Let a denote the total number of elements of

Q ∈ Ts(G,Py,Pu) that are not constrained to be zero. It

can be shown that there exists a matrix H ∈R
nuny×a
p whose

340



columns form an orthonormal basis for vec(Ts(G,Py,Pu)).
Thus, we know that

Q ∈ T
s(G,Py,Pu) ⇐⇒ vec(Q) = Hx for some x ∈RHa×1

∞ .

Note that H contains the delay and sparsity constraints

imposed by the causal network interconnection G. Using the

results of vectorization, we get that

‖T11 + T12QT21‖2 = ‖vec(T11 + T12QT21)‖2

=
∥

∥vec(T11)+ (T t
21 ⊗T12)vec(Q)

∥

∥

2

=
∥

∥vec(T11)+ (T t
21 ⊗T12)Hx

∥

∥

2

Thus, we can pose the problem (11) as an unconstrained

H2 problem

min
∥

∥vec(T11)+ (T t
21 ⊗T12)Hx

∥

∥

2

subject to x ∈RHa×1
∞

(12)

which can be solved using standard techniques. Let x⋆ denote

the solution of the optimization problem (12). Then the

corresponding optimal Q⋆ is given by Q⋆ = vec−1(Hx⋆).
Since Q⋆ ∈ Ts(G,Py,Pu), we can obtain a realization

(A⋆

Q,B⋆

Q,C⋆

Q,D⋆

Q) (using Theorem 1) that satisfies the con-

straints imposed by the causal network interconnection G
and the corresponding controller is given by K⋆ = lft(J,Q⋆),
where J is given (9). From Theorem 2, we can see that

K⋆ thus designed is not only optimal but also realizable

over the causal network G. Note that the observer-based

parametrization of all stabilizing and network realizable

controllers followed in this paper requires the existence of

a nominal stabilizing controller that is also realizable over

the network. We shall address the issue of existence of such

nominal controllers, in more detail, in future.

VI. CONCLUSIONS

In this paper, we discussed the structural constraints im-

posed on the state-space and input-ouput descriptions of

interconnected systems that are built on a causal network.

We also discussed about the notion of realizability over

causal networks and showed that any state-space represen-

tation with state-space matrices satisfying some structural

constraints is network realizable. We also showed that any

stable transfer function matrix satisfying some delay and

sparsity constraints is also realizable over the given causal

network. Using these two network realizability results, we

parametrized the set of all stabilizing controllers realizable

over the given network for a class of interconnected plants.

This parametrization allowed us to convert a distributed H2

control problem into an unconstrained convex optimization

problem. Thus, we are able to obtain an optimal stabilizing

controller realizable over the given causal network for a given

interconnected plant over the same network.
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