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Abstract— This paper addresses the synchronization control
problem of a class of chaotic systems. The synchronization is
obtained by using an adaptive control law, which guaranties
a global asymptotical convergence of the error between the
outputs of driving and response systems in the presence of
parametric uncertainties in both systems. The method of
synchronization can be applied to a wide class of systems though
the present work focuses only on a particular case, mainly,
Micro Electro Mechanical Systems (MEMS). As an example of
application, an electrostatic MEMS resonator with unknown
damping and stiffness actions is synchronized with a Duffing
chaotic oscillator and a MEMS chaotic oscillator. This compo-
nent can be used in such applications as secure communication.
Numerical simulations are carried out to confirm the validity
of the developed control schemes.

I. INTRODUCTION

Chaos synchronization [1] is a phenomenon which may

occur when a chaotic system drives another one by coupling

them in a correct way and ensuring that both systems evolve

in synchrony. Since the pioneering work of [2], a lot of

research has been conducted concerning chaos synchroniza-

tion, which is nowadays a widely understood phenomenon

and an active topic of research [3].

Chaos synchronization is important in many fields, includ-

ing biology, nonlinear optics, fluid dynamics, and electronics

[1]. In particular, it finds applications in secure communi-

cations, where different methods have been developed to

encode data in a chaotic signal. One of the methods consists

in using a chaotic driving system to produce a chaotic carrier

modulated by a message conforming the transmitter. The

receiver includes a chaotic response system synchronized

with the driver, in such a way that a replica of the chaotic

carrier can be obtained in the receiver, and the message can

be decoded by subtracting the “chaotic” part of the signal.

This standard application of chaos synchronization has

motivated a great deal of research activity and many methods

have been proposed to synchronize chaotic systems, includ-

ing parametric perturbations [4], adaptive control [5], [6],

[7], [8], variable structure control [9], impulsive control [4],

backstepping [10], H∞ control [11], [12], and so on.

It is interesting to note that in order to apply the ideas

from chaos synchronization in secure communications, the
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H3C 3A7, Canada (e-mail: guchuan.zhu@polymtl.ca,
lahcen.saydy@polymtl.ca).

Manuscript received April 6, 2011.

response system does not have to be the same as the driving

system [5], [6], [7], [8], or as we note in the results of

this paper, it does not have to be even chaotic. To obtain

their results, many works using chaos synchronization and

claiming applications in secure communications do not use

the fact that the response system should be chaotic. However,

it is common that assumptions on the dynamics of the system

or its structure, such as boundedness of the solutions and

Lipschitz conditions, should be easy to fulfil if the response

system is chaotic since it evolves over time into a strange

attractor [13].

In this paper, an algorithm to synchronize two systems

is given, one of which, the driving system, is chaotic. The

response system can be chaotic or not, can have the same

form as the driving system, or can even be structurally

different. In order to apply this idea, affine control systems

are considered.

Many MEMS devices exhibit chaotic behavior in certain

operational conditions [14], [15], [16], [17]. These MEMS

can be seen as chaotic capacitors, which can be used, for

instance, in the transmitter or the receiver circuitry in secure

communication schemes using chaos [18]. In addition, as

have been observed in recent results concerning the improve-

ment of the output energy in oscillators using MEMS [19],

controlling MEMS in chaotic mode can be useful to increase

the amplitude of the periodic oscillations of these systems.

Therefore, introducing chaos in MEMS by synchronizing

them with a chaotic system can also be useful in improving

the performance of different systems in which an accurate

control of amplitude of oscillation is mandatory.

The organization of the rest of the paper is as follows.

In Section II the dynamic of a chaotic MEMS actuator is

briefly explained based on a model given in [20], [14]. Next,

in Section III, the synchronization scheme using adaptive

control is explained in details. Section IV presents two case

studies along with the simulation results. Finally, conclusions

are given in Section V.

II. DYNAMICS OF A CHAOTIC MEMS ACTUATOR

The chaotic MEMS model used in this study is presented

in Fig. 1, which is taken from [20], [14]. The MEMS is

modeled by a nonlinear mass-spring-damper system with

external electrostatic actuation expressed as

mz̈ + bż + c1z + c3z
3 = F, (1)

where m is the mass of the movable structure, b is the

damping constant, c1 and c3 are the linear and cubic stiffness
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Fig. 1. Schematic of the electrostatically actuated MEMS.

coefficients, respectively, and F is the electrostatic actuation

force given by

F =
1

2

C0 d

(d − z)
2 (VDC + u)

2
−

1

2

C0 d

(d + z)
2 V 2

DC . (2)

In (2) C0 is the capacitance of the actuator at rest, which

has an initial gap d between the plates and the resonator.

The input voltage Vi = (VDC + u) is applied as shown in

Fig. 1, and has two components: a DC voltage VDC and a

forcing voltage u, which is the actual control signal. Note that

in the present work, we ignore the dynamics of the driving

circuit by assuming that they are much faster than that of

the mechanical structure. Note also that for simplicity, we

do not take into account contact dynamics. This means that

the system should operate in such a way that the moveable

and fixed plates will not come into contact.

For the sake of simplicity in control design and analysis, it

is convenient to describe the system dynamics in normalized

coordinates [21]. We introduce then the following dimen-

sionless variables:

τ = ω0t, ω =
Ω

ω0
, x =

z

d
, µ =

b

mω0
, σ =

c1

mω2
0

,

η =
c3d

2

mω2
0

, γ =
C0V

2
DC

2mω2
0d

3
, A = 2γ

1

VDC

, Au = u′,

where ω0 is the natural frequency defined by ω0 =
√

c1/m.

In the normalized coordinates, by assuming that the DC

voltage VDC is much higher than the forcing voltage u, the

nondimensional equation of motion becomes

ẍ + µẋ + σx + ηx3 =γ

(
1

(1 − x)2
−

1

(1 + x)2

)

+
u′

(1 − x)
2 .

(3)

System (3) behaves chaotically by selecting u =
VAC sin (ωt), and the set of parameters AVAC = 0.04,

ω = 0.5, γ = 0.338, µ = 0.01, σ = 1, and η = 12, as

may be observed in the phase diagram of Fig. 2 and the

Lyapunov exponents diagram of Fig. 3. The existence of one

positive Lyapunov exponent confirms the chaotic behavior of

the system.
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Fig. 2. State space evolution for the system (3) with the set of parameters
γ = 0.338, AVAC = 0.04, ω = 0.5, σ = 1, µ = 0.01, and η = 12.
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Fig. 3. Lyapunov exponents for the system (3) with the set of parameters:
γ = 0.338, AVAC = 0.04, ω = 0.5, σ = 1, µ = 0.01, and η = 12.

III. SYNCHRONIZATION OF AFFINE CHAOTIC SYSTEMS

Consider a class of two-dimensional uncertain chaotic

system

ẋ = F (x)α + f (t,x) (4)

which is named the driving or master system, and

ẏ = G (y) β + g (t,y) + h (y) u (5)

which is named the response or slave system, where x =(
x1 x2

)T
∈ R

2 and y =
(

y1 y2

)T
∈ R

2 are

bounded state vectors, α =
(

α1 α2 · · · αn

)T
∈ D ⊂

R
n, with D a subset of R

n which guarantees that the driving

system is chaotic, and β =
(

β1 β2 · · · βp

)T
∈

R
p are uncertain parameters, F (x) : R

2 → R
2 × R

n and

G (y) : R
2 → R

2 × R
p are matrices defined by

F (x) =

[
0 0 · · · 0

F21 (x) F22 (x) · · · F2n (x)

]
=

[
0

F2

]

G (y) =

[
0 0 · · · 0

G21 (y) G22 (y) · · · G2p (y)

]
=

[
0

G2

] (6)
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f (t,x) : R
+ × R

2 → R
2, g (t,y) : R

+ × R
2 → R

2 and

h (y) : R
2 → R

2 are vectors given by

f (t,x) =

[
x2

f (t,x)

]
,g (t,y) =

[
y2

g (t,y)

]
, (7)

h (y) =
[
0 h2(y)

]T
, (8)

and u (t,x,y) : R
+ × R

2 × R
2 → R is a scalar control

input. We suppose that F (x), f (t,x), G (y), g (t,y), and

h (y) satisfy some regularity conditions, such as Lipschitz

continuity, to ensure, e.g., the existence and the uniqueness

of solutions of systems (4) and (5).

The control objective is to design a state feedback control

u such that the states of the response system, y, asymp-

totically track that of the driving system, x, or equivalently,

the response system synchronizes the driving system. To this

end, we define the error vector by e = y − x =
(
e1 e2

)T
∈

R
2 and the parameter estimation errors as α̃ = α − α̂,

β̃ = β − β̂, where α̂, β̂ are the estimated values of α and

β, respectively. The control objective can then be thought

as to asymptotically stabilize the error dynamics around the

origin, implying lim
t→∞

‖e‖ = 0.

Based on these definitions, one can assert the following

result.

Theorem 1: For given positive constants k1, k2, γ1, and

γ2, if the control input u is given by

u = h−1
2 (y)

(
−G2β̂ + F2α̂ − g (t,y) + f (t,x)

− k−1
2 (k1e1 + k2e2) − k−1

2 k1e2

)
,

(9)

and the parameters are updated according to the laws

˙
α̂

T = − γ1 (k1e1 + k2e2) k2F2,

˙
β̂

T
= γ2 (k1e1 + k2e2) k2G2,

(10)

then the response system (5) synchronizes the driving system

(4) globally and asymptotically.

Proof: It can be derived from (4) and (5) that the

synchronization error dynamics are given by

ė = ẏ − ẋ = G (y) β + g (t,y) + h (y) u (t,x,y)

− F (x)α − f (t,x).
(11)

The derivatives of the parameter estimation errors are

˙̃α = − ˙̂α,

˙̃
β = −

˙̂
β.

(12)

By defining the following Lyapunov function candidate:

V
(
e, α̃, β̃

)
=

1

2

(
(k1e1 + k2e2)

2 + 2k1k2e
2
1

+
1

γ1
α̃

T
α̃ +

1

γ2
β̃

T
β̃

)
,

(13)

and taking its time derivative, one obtains

V̇
(
e, α̃, β̃

)

=(k1e1 + k2e2) (k1ė1 + k2ė2)

+ 2k1k2e1ė1 +
1

γ1
α̃

T ˙̃α +
1

γ2
β̃

T ˙̃
β

= (k1e1 + k2e2) [k2G2β − k2F2α

+k2h2 (y) u (t,x,y) + k2g (t,y) − k2f (t,x)

+k1e2] + 2k1k2e1e2 −
1

γ1
α̃

T ˙̂α −
1

γ2
β̃

T ˙̂
β

= (k1e1 + k2e2) k2G2β̃ − (k1e1 + k2e2) k2F2α̃

− (k1e1 + k2e2)
2

+ 2k1k2e1e2 −
1

γ1
α̃

T ˙̂α

−
1

γ2
β̃

T ˙̂
β,

(14)

which can be written as

V̇
(
e, α̃, β̃

)
= −

(
1

γ1

˙̂α
T

+ (k1e1 + k2e2) k2F2

)
α̃

−

(
1

γ2

˙̂
β

T

− (k1e1 + k2e2) k2G2

)
β̃

− k2
1e

2
1 − k2

2e
2
2.

(15)

By replacing (10) into (15), one obtains

V̇
(
e, α̃, β̃

)
= −k2

1e
2
1 − k2

2e
2
2 ≤ 0, (16)

which is negative semi-definite. Then we conclude that

V
(
e, α̃, β̃

)
≤ V (0) and the error dynamics are stable.

Noting that with the control given in (9) the synchronization

error dynamics are autonomous, we can apply LaSalle’s

invariance theorem to show the asymptotic stability of the

error dynamics. To this end, we consider the set E ={
(e1, e2) ∈ R

2 | V̇ = 0
}

. Since the equilibrium point of the

error dynamics (e1 = 0, e2 = 0) is the unique invariant set

in E, we can conclude that lim
t→∞

‖e‖ = 0. Hence (5) follows

(4) globally and asymptotically, which completes the proof.

IV. CHAOS SYNCHRONIZATION OF MEMS RESONATOR

AND SIMULATION VALIDATION

The synchronization method presented above can be

applied to a great variety of systems, such as Duffing,

Helmholtz, pendulum, MEMS, and many other chaotic os-

cillators. In order to confirm the generality of the developed

method, we apply it firstly to synchronize two structurally

different systems: a chaotic Duffing system and a non chaotic

MEMS. Then we will apply this method to synchronize two

structurally similar systems, a chaotic MEMS with a non

chaotic one.

A. Synchronizing a chaotic Duffing System with a MEMS

In this example, the driving system is a Duffing system and

the response system is the MEMS described in the Sect. II

with a control input u.
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We consider uncertainties in the parameters of the driving

and response systems for which the damping factor as well

as the linear and cubic nonlinear stiffness coefficients are

unknown constants.

The Duffing system is given by

ẍ = −α1x − α2ẋ − α3x
3 + A cos (ωt) , (17)

which is chaotic for the set of parameters α1 = −1.1, α2 =
0.4, α3 = 25, A = 0.42 , and ω = 1.8. This system can be

written in the form of (4), by defining the state variables x1

and x2 as follows

[
ẋ1

ẋ2

]
=

[
0 0 0

−x1 −x2 −x3
1

]


α1

α2

α3



 +

[
x2

A cos (ωt)

]
. (18)

In a similar way, the response system is given by

ÿ + β1y + β2ẏ + β3y
3

=γ

(
1

(1 − y)
2 −

1

(1 + y)
2

)
+

u

(1 − y)
2

(19)

and can be written in the form of (5), by taking

[
ẏ1

ẏ2

]
=

[
0 0 0

−y1 −y2 −y3
1

]


β1

β2

β3


 +

[
y2

g1 (y, t)

]

+

[
0

1

(1 − y)2

]T

u

(20)

with g1 (y, t) given by

g1 (y, t) = γ

(
1

(1 − y1)
2 −

1

(1 + y1)
2

)
. (21)

The control objective is to design a control u such that the

states (y1, y2) track asymptotically the states (x1, x2). The

matrices F(x), G(y) and the vectors f(x, t), g(y, t), and

h(y) are of the form

F(x) =

[
0 0 0

−x1 −x2 −x3
1

]
=

[
0
F2

]
,

G(y) =

[
0 0 0

−y1 −y2 −y3
1

]
=

[
0

G2

]
,

f(x, t) =

[
x2

A cos (ωt)

]
, g(y, t) =

[
y2

g1 (y, t)

]
,

h(y) =
[

0 1
(1−y)2

]T

.

Based on Theorem 1, the control signal is given by

u3 = (1 − y)
2
(
y1β̂1 + y2β̂2 + y3

1β̂3 − x1α̂1

− x2α̂2 − x3
1α̂3 − g1 + A cos (ωt)

− k−1
2 (k1e1 + k2e2) − k−1

2 k1e2

)
(22)

where the parameters are updated by the laws

˙̂α
T

= − γ1 (k1e1 + k2e2) k2F2

= − γ1 (k1e1 + k2e2) k2

[
−x1 −x2 −x3

1

]
, (23)
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Fig. 4. Trajectories of the synchronized systems (18) and (20) with control
gains k1 = k2 = 1: (a) (x1, y1); (b) (x2, y2).
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Fig. 5. Error signals for the synchronized systems (18) and (20): (a) error
between the states (x1, y1); (b) error between the states (x2, y2).

˙̂
β

T

= γ2 (k1e1 + k2e2) k2G2

= γ2 (k1e1 + k2e2) k2

[
−y1 −y2 −y3

1

]
. (24)

In this way, the error can be asymptotically diminished and

the response system synchronizes the driving one. Figure 4

shows the trajectories of x1, y1, and x2, y2, from which we

can observe how the systems evolve in synchrony for gains

k1 = 1 and k2 = 1. For higher values of the gains, the

simulation shows a better agreement between the signals. In

Fig. 5, the evolution of the errors for different gains can

be observed. It is shown how the errors diminish whatever

the gain be, although they decrease faster when the gain

increases. Figure 6 illustrates the evolution of α and β
parameters and shows how they tends to a bounded stationary

value.
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Fig. 6. Estimation of the parameters: (a) α1; (b) β1; (c) α2; (d) β2; (e)
α3; (f) β3.

B. Synchronization of two chaotic and non chaotic MEMS

In this example, the driving system is the chaotic MEMS

presented in Sect. II and the response system is the MEMS

given by the equation (19). The driving system can be written

in the form of (4)

[
ẋ1

ẋ2

]
=

[
0 0 0

−x1 −x2 −x3
1

] 


α1

α2

α3



 +

[
x2

f1 (x, t)

]
(25)

with

f1 (x, t) =γ

(
1

(1 − x1)
2 −

1

(1 + x1)
2

)

+
A

(1 − x1)
2 sin (ωt) .

(26)

The response system can be written in the form of (5) as

in (20), in such a way that one can apply Theorem 1 by

identifying the matrices F(x), G(y) and the vectors f(x, t),
g(y, t), and h(y) as

F(x) =

[
0 0 0

−x1 −x2 −x3
1

]
=

[
0
F2

]
,

G(y) =

[
0 0 0

−y1 −y2 −y3
1

]
=

[
0

G2

]
,

f(x, t) =

[
x2

f1 (x, t)

]
,g(y, t) =

[
y2

g1 (y, t)

]
,

h(y) =
[

0 1
(1−y)2

]T

,

and obtaining the following control signal

u3 = (1 − y)
2
(
y1β̂1 + y2β̂2 + y3

1β̂3 − x1α̂1

− x2α̂2 − x3
1α̂3 − g1 + f1 (x, t)

− k−1
2 (k1e1 + k2e2) − k−1

2 k1e2

)
(27)

with parameters updated by the laws

˙̂α
T

= − γ1 (k1e1 + k2e2) k2F2

= − γ1 (k1e1 + k2e2) k2

[
−x1 −x2 −x3

1

]
, (28)

˙̂
β

T

= γ2 (k1e1 + k2e2) k2G2

= γ2 (k1e1 + k2e2) k2

[
−y1 −y2 −y3

1

]
. (29)

Figure 7 shows how the systems are synchronized, with

an excellent agreement between signals after a transient

time. The error between the synchronized states decreases

asymptotically with time, as shown in Fig. 8. The estimation

of the unknown parameters α and β is given in Fig. 9.

V. CONCLUSIONS

This paper presents an adaptive control scheme for syn-

chronization of a class of chaotic systems with parametric

uncertainties. The developed method is applied to the syn-

chronization of two structurally different systems, a Duffing

system and a MEMS, and structurally similar systems, a

chaotic MEMS resonator and a non-chaotic MEMS. It is

confirmed that in chaotic synchronization, the response sys-

tem does not have to, but can be chaotic. This is a very

important property that can be used in such application as

secure communication. Other advantage of synchronizing
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Fig. 7. Trajectories of the synchonized systems (25) and (20) with control
gains k1 = k2 = 1: (a) (x1, y1); (b) (x2, y2).
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Fig. 8. Error signals for the synchronized systems (25) and (20): (a) error
between (x1, y1); (b) error between (x2, y2).

MEMS with a chaotic system is that this would allow an

enhancement of the amplitude of the oscillation when MEMS

are used as resonators and recovered from the chaotic state

by controlling it. This is an important aspect for applications

which require an accurate control of oscillation amplitude.

Finally, it is worth noting that the scheme developed in the

present work is based on state-feedback. For more realistic

applications, output feedback should be considered. This

issue is beyond the scope of this paper and remains an

interesting topic of future work.
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