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Abstract— This paper adresses the identification of a class
of hybrid dynamical systems which can be represented by a
Piecewise Affine Autoregressive Exogenous (PWARX) model.
These systems are composed of an usually unknown number of
ARX sub-models, each of which corresponds to a polyhedral
region of the regression space. It is proposed a Split and
Merge clustering algorithm, used under a clustering based
identification framework, to estimate the correct number of
sub-models. The main advantages of this clustering algorithm
is that it requires no initialization and there is only one tuning
parameter to be adjusted. The resulting identification procedure
is applied in a practical example in the identification of a DC
motor with dead zone and saturation.

I. INTRODUCTION

In recent years, there has been a growing interest in hybrid

systems. Hybrid models are used to describe systems that

evolve according to the interaction of continuous and discrete

dynamics, i.e., differential equation and logical rules [1], [2]

Piecewise Affine (PWA) systems represent an attractive

model structure for the identification of hybrid systems

due to their universal approximation properties and their

equivalences to several classes of hybrid systems [2], [3].

According to [2], there are four main frameworks for the

identification of PWA systems: the clustering approach [3],

[4], the Bayesian approach [5], the bounded error approach

[6] and the algebraic procedure [7].

The clustering based approach, proposed by [3] consists of

four steps: local regression; construction of feature vectors;

clustering of the feature vectors; and parameter estimation.

Another possible clustering based approach is the one used

in [4], which consists of the following steps: clustering

measured data; estimating of the boundary hyperplane on

regression space; parameter estimation of each sub-model. In

both frameworks, clustering is the most crucial step, since it

determines the number of modes and the points which will

be used to estimate their parameters.

Determining the number of clusters in a data set is a

fundamental problem in cluster analysis and numerous ad

hoc methods have been suggested for it (see e.g. [8] and

references therein). These methods can be classified in two

main groups: one which assumes that the elements of the

dataset follow a known probability distribution and other that

assumes a known geometrical dispersion. However, in the

context of identification of PWA systems, the generated data
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form a group of disjoint clouds with sparse outliers whose

elements rarely meet either assumption.

This paper focuses on estimating the number of sub-

models in the PWARX model, which is one of the key

problems for the identification of PWA systems based on the

clustering approach. Most authors assume that the number of

sub-models is given a priori, a situation in which well known

clustering techniques can be used [2], [3]. More recently,

[4], [9] proposed clustering procedures to automatically

determine the number of sub-models in a PWA system.

However, these methods either rely on multiple runs in order

to obtain the best estimate according to a validation criteria

and/or are very sensitive to initialization. To overcome these

drawbacks this work proposes a clustering algorihtm, based

on the split and merge concept, that automatically identifies

the number of clusters in a dataset.

Another aspect of this paper is the use of the technique

in a practical example. Though the identification of PWA

systems has been applied to real practical examples, such

as in [10]–[12], most contributions remains in a theoretical

perspective, identifying systems already presented as PWA

systems.

This paper is organized as following: in Section II the

PWA system identification problem is formulated; in Section

III, the identification framework is proposed, in Section IV

the proposed technique is applied in a practical example of

a DC motor. An analysis of the procedure is carried out in

Section V and finally a conclusion is presented in Section

VI

II. PROBLEM FORMULATION

Let X ⊆ Rn be the regression space, and Xi, i =
1, 2, . . . , s, ∪s

i=1Xi = X and Xi∩Xj = ∅fori 6= j represent

convex polyhedral subsets of X . A PWARX model is defined

by

yk =



































θT1

[

xk

1

]

+ ek if xk ∈ X1,

...

θTs

[

xk

1

]

+ ek if xk ∈ Xs,

k = 1, 2, . . . , N (1)

where θi, i = 1, . . . , s,Θ ⊆ Rn+1 is the parameter vector,

yk ∈ Rp, xk ∈ Rn, and ek ∈ Rp are the output vector,

the regression vector, and noise at time k, respectively. The

regression vector is given by:
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xk =

[

yT
k−1

. . . yT
k−ny

uT

k−1
. . . uT

k−nu

]T

, (2)

where uk ∈ Rm is the output at time k, n = pny +mnu

with non-negative integers ny and nu denoting the delay

order of y and u respectively.

For the identification procedure, it is convinient to define

the vector containing N output data samples and their

regression vector as:

zk =

[

xk

yk

]

∈ Rn+p, k = 1, 2, ..., N (3)

In this paper it is assumed that the order of each

subsystem,ny and nu, is known and equal to all submodels

and seek to estimate the number of modes s and the

parameter matrices θi, i = 1, 2, ...s.

Problem Definition: Given a set of points zk = (xk, yk)
assuming it was generated by a structure described by the

model (1), estimate the correct number of sub-models s,

the regions Xi, i = 1, 2, . . . , s and the parameters matrices

θi, i = 1, 2, ...s.

III. PROPOSED IDENTIFICATION FRAMEWORK

This paper presents a framework for the identification of

PWA systems based on a clustering approach, similar to the

one presented by [2], where the major contribution is in

phase 2:

Assumption 1: After a mode transition, the system stays

in the new mode for at least a minimum time tw, for which

enough samples are available for an ARX identification.

Phase 1- Identify local sub-models: the complete collected

input-output dataset is divided in small local datasets. For

each local dataset (LD), an ARX model is generated through

the standard least squares (LS) method [13], according to the

given order ny and nu of the system.

Phase 2 Clustering of the sub-model’s parameters: similar

identified parameters are grouped together through the pro-

posed split and merge algorithm, which also automatically

detects the number of modes in the PWA model. The mean

of each cluster is taken as each mode’s parameter vector.

Phase 3 Partitioning of the Regression Space: with the

identified models, the dataset is relabeled to indicate which

points in the regression space were generated by each model

and the estimation of the boundary hyperplanes which sepa-

rate each region of the regression space is carried out. This

is achieved with the use of Support Vector Machine (SVM)

[14].

A. Identification of each sub-model

A LD is built by dividing sequential N elements of the

set zk into sub-sets Wj . Local parameter vectors, θLS
j , j =

1, . . . , NLD, are then estimated for each data set Wj by the

LS method [13]:

θ̂ = (φTφ)−1φTY (4)

where φ is a collection of regressor vectors xi and Y

a collection of the respective yi vector. It is common to

distinguish between LDs containing only elements generated

by the same sub-model, which are referred to as pure LDs,

otherwise they are called mixed LDs [3]. Mixed LDs are

expected to be found when a transition between modes

occurs.

B. Clustering Algorithm

Most frameworks for identification of PWA systems based

on the clustering approach, rely mainly on classical cluster-

ing algorithms and its derivations: the k-means [3], [2], [9],

the Expectation Maximization for Gaussian Mixture Models

[4] and Single Linkage [15].

Although widely used, these methods are very sensitive

to initialization (such as initial points and mean), tuning

parameters and the stop condition. Because of this, most

application of these techniques require multiple runs from

different starting points and with different tuning parameters

and comparison between the results of all the runs. This is a

tedious process that involves a lot of heuristics and can lead

to imprecise results.

This section presets a split and merge algorithm which

uses the silhouette index as a validation criteria.

The two most important aspects of the split and merge

algorithm proposed are the splitting phase and the validation

index. If the splitting is done in a unordered matter, the

algorithm may diverge to the point of having clusters with

only one point. The validation index is a key feature of

the algorithm, given that it is the stopping condition which

should yield the correct number of clusters and the best

configuration.

1) Splitting : In the first step of the split and merge

algorithm, the well-known Kahunen-Loeve transform (KL)

is employed, also known as Principal Component Analy-

sis(PCA), described in [16]:

For a given d-dimensional dataset, the mean vector µ

and the covariance matrix Σ is computed. The eigenvectors

e1, . . . , el and the associated eigenvalues λ1, . . . , λl are

calculated and sorted according to decreasing eigenvalue.

Usually there will be just a few large eigenvalues. The

eigenvectors associated to these large eigenvalues can be

seen as the direction of dispersion of the elements in a

dataset, with the largest eigenvalue representing the greatest

dispersion and the smallest representing the least dispersion.

Taking only the l eigenvectors having the largest eigenvalues

and forming a d × l matrix A, it is possible to project the

data onto the l-dimensional subspace according to:

x′ = F 1(x) = At(x− µ) (5)

The PCA is used in this algorithm to split a given dataset

into two. In this case only the most significant eigenvalue

is taken, all data points are projected into one axis with the

mean dislocated to the origin, such that the projected points

with positive values belong to one group and the ones with

negative values to another. Note that for systems of higher
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order, it is necessary to consider more than one significant

eigenvalue when using PCA.

2) Validation index : In this algorithm the Silhouette [17]

is used for cluster validation. As observed in [17], given

no a priori information, the silhouette index outperforms

other internal validation indices, such as Dunn’s indices and

Hubert’s correlation with distance matrix.

The silhouette index is the average, over all clusters, of

the silhouette width of their points. First, given a point x in

the cluster Ci and ni is the number of points in Ci, compute

a(x), the average distance between x and all other points in

the cluster Ci:

a(x) =
1

ni − 1

∑

y∈Ci,y 6=x

d(x,y) (6)

in this work the Mahalanobis Distance is used as the

measure d(x,y). Next compute the minimum of the average

distance between x and all other points in the other clusters:

b(x) = min
h=1,...,I,h 6=I





1

nh

∑

y∈Ch

d(x,y)



 (7)

The silhouette index of the complete dataset is defined as:

S(x) =
b(x)− a(x)

max[b(x), a(x)]
(8)

The silhouette width for each point x ranges from -1 to 1

and represents a degree of fitness associated with the cluster

to which it belongs. Values close to -1 indicate that the point

is closer, on average, to points of another cluster than the

one to which it belongs. On the other hand, values close

to 1 indicate that the average distance between x and the

other points in the same cluster is smaller, on average, than

the distance to points belonging any other cluster. Data-set

partitioning resulting in compact and well separated clusters

yields silhouette indexes close to 1.

The proposed Split and Merge algorithm is described in

Algorithm 1

C. Estimation of the boundary hyperplanes in the regression

space

Here a support vector machine (SVM) structure is em-

ployed for classifying two adjacent clusters in the regression

space and determine the separating hyperplane between

them. As suggested by [4], [9], first the adjacency between

the labeled sets is tested. The procedure employed here

was the Delaunay triangulation [18] which describes the

adjacency of the cells in the Voronoi diagram associated with

the dataset. In this case two clusters are said to be adjacent

if there is at least one branch between two parameter vector

in two different clusters. In this work it is assumed that only

two clusters were adjacent and there were no holes in the

regression space.

Once the adjacent clusters were determined, any SVM

could be used to estimate the separating hyperplane, but

considering the dataset was generated with noise the sets

may not be linearly separable, which will require a so

Algorithm 1 Split and Merge

1: The set of clusters C contains only one cluster, s = 1, with all the data points,

and initially the silhouette index S(C) = −1
2: Split cluster C into two new subsets, using the Kahunen-Loeve transform

3: Create a new cluster set C′, with the two new subsets

4: Calculate the global silhouette index,S(C′), for this new set C′

5: C = C′

6: while S(C) < K ∗ S(C′) do

7: for i = 1:s do

8: Split cluster C(i) into two new subsets, using the Kahunen-Loeve

transform

9: Create a new cluster set C′, removing C(i) from C and adding the two

new subsets to the end of C

10: Calculate S(C′)
11: if S(C) < K ∗ S(C′) then

12: C = C′, s = s + 1
13: Exit FOR

14: end if

15: end for

16: end while

17: S(C) = S(C′)
18: repeat

19: Flag = 0

20: for i = 1 : s do

21: for j = 1 : s, i 6= j do

22: Create a new cluster set C′, removing cluster C(i) from C and

merging with a different cluster C(j) from C

23: Calculate S(C′)
24: if S(C) < S(C′) then

25: Exit FOR

26: end if

27: end for

28: if S(C) < S(C′) then

29: C = C′, s = s − 1
30: Flag = 1

31: Exit FOR

32: end if

33: end for

34: until Flag = 0

called soft-margin SVM [19]. In this work the Lagrangian

Support Vector Machine (LSVM) proposed by [20] is used.

This is a fast and simple algorithm based on an implicit

Lagrangian formulation of the dual of the standard quadratic

programming of a linear support vector machine.

The algorithm used is a direct implementation of the

algorithm presented in [20].

IV. NUMERICAL EXAMPLE

The proposed framework was tested with an example

inspired by [12], where a DC motor with saturation and

dead zone is identified as a PWA system with the help of the

Matlab HIT Toolbox. The referred work shows the necessary

adjustments for tuning parameters, as well as multiple runs

in order to find an adequate PWA model. As it will be shown,

this framework requires much less effort and heuristics. This

is a very suitable example of a highly nonlinear single input

single output (SISO) system with very distinguished behavior

depending on the input.

A typical model for a DC motor is given by:

di

dt
=

Vapp

L
− R

L
i− KΦ

L
ω (9)

dω

dt
= KΦ

J
i− b

J
ω (10)

where i is the current in the armature, ω is the angular

speed, b is the viscous friction, J is the moment of inertia
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for the motor load and K1 is the armature or emf constant

and K2 the torque constant.

This model was set up in MATLAB’s simulink with added

dead zone, saturation (±9V ) which can be seen as a limi-

tation of the actuator, input noise (normal distribution with

µ = 0, σ2 = 0.0013), and the following motor parameters:

L = 0.1H, J = 0.001Kg.m2, b = 0.05, R = 2Ω and

K1 = K2 = KΦ = 0.3, for simplicity.

The identification procedure was similar to the one de-

scribed in [12]. Two different input output data-sets were

collected one for the identification procedure and a second

one for validation. For the identification data-set a sine wave

with period of 40s and amplitude of 12V and sample period

of 0.001s was taken as the input signal, the angular velocity

was the measured output of the system. The validation data-

set was generated with a sine wave with period of 20s and

amplitude of 8V . In both data-sets the input and output

signals were normalized as to vary between −1 and 1, as

shown in Fig. 1(a) and 1(b) respectively.

The characteristics of this input signal may not seem

usual, specially compared to classical identification proce-

dures. However, establishing an adequate input signal for the

identification procedure of hybrid systems, including PWA

models, remains an open issue [5], [21], [22]. Taking this

into account a choice was made to follow a similar procedure

proposed in [12].

As the first step in the identification procedure the identifi-

cation dataset was partitioned into sub-sets, each containing

200 elements, Wj , j = 1, . . . 200. Next, for each sub-set an

ARX model was obtained generating a new set of parameter

vectors θLS
j . Over this new dataset the split and merge

algorithm was applied and the results can be seen in Fig.

2. The algorithm separated the identified parameter vectors

in 5 clusters, which as will be latter shown, represents the

dead zone, positive dynamical zone, positive saturation zone,

negative dynamical zone and negative saturation zone.

For each identified cluster the mean was taken as the

parameters representing that sub-model and their values are:

θ̂1 =
[

0.0147 −0.0438 −0.9377
]T

θ̂2 =
[

−0.0413 1.9854 0.6463
]T

θ̂3 =
[

−0.0081 0.0107 0.0048
]T

θ̂4 =
[

−0.0069 1.8856 −0.5990
]T

θ̂5 =
[

0.0044 0.0096 0.8869
]T

(11)

The next step was to label all the points in the regression

space to indicate which sub-model it created. Before apply-

ing the LSVM algorithm the sub-sets containing θLS
j had

to be reordered according to the adjacency between the sets

with the Delaunay triangulation.

The LSVM algorithm was applied to this labeled dataset

in order to detect the hyperplanes which separate each

adjacent set in the regression space. The previously estimated

parameter vectors are represented by the regions in the

subspace according to the following bounding hyperplanes:
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(b) I/O Validation Data

Fig. 1. Identification and Validation Data
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Fig. 3. Estimated and Measured Output for the Identification Data-set

Data-set MSE

Identification Data-set 1.103 × 10
−4

Validation Data-set 0.0028

TABLE I

MSE FOR IDENTIFICATION AND VALIDATION DATA-SET

ĥ12 =
[

−5.2962 20.2830 11.6105
]T

ĥ23 =
[

3.9342 7.5439 2.6622
]T

ĥ34 =
[

3.5837 8.2973 −2.8331
]T

ĥ45 =
[

0.9595 13.6510 −11.5655
]T

Once an identified model is produced, it is necessary to

validate it with a different experimental dataset. First to

check if the identified model was reasonable, the output of

the system subject to the input of the identification dataset

was estimated. A close observation to fig 3 indicates that this

model is a good approximation for this dataset.

Next the same model was used with the validation dataset.

The result can be seen in Fig 4. Table IV shows the mean

square error for both cases.

V. ANALYSIS

The results from the previous section shows that the

proposed framework is adequate to the identification of

PWA models for nonlinear systems. The main advantage of

the proposed framework is the clustering algorithm which

was able to identify the right number of sub-models in the

identification data-set with no a priori knowledge.

Most procedures adopted for the automatic estimation of

the number of clusters for the identification of PWA models

rely on testing validation indices through a different number

of clusters and seek for an elbow point, which should indicate

a minimum for the tested criteria. There is also the issue

of adjusting various parameters as well as setting initial

conditions. The necessary adjustments for each algorithm is

shown in table (V).
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Fig. 4. Estimated and Measured Output for the Validation Data-set

Initialization Tuning Parameters

E.M with G.M.M. (αi), (µi),(Σi) (ǫ)

C-means (µi). (s) (c), (σ), (ǫ)

Single Linkage none (ℓ), (c)

Split and Merge none (K)

TABLE II

INITIAL AND TUNING PARAMETERS

The statistical clustering approach (Expectation Maxi-

mization with Gaussian Mixture Models) used in [4] requires

the initialization of the weighting parameters (αi), the initial

covariance matrices (Σi), the initial mean vectors (µi) and

the convergence tolerance(ǫ), which implies the need for

multiple starts and multiple runs with different given number

of clusters. The method based in Fuzzy C-Means clustering

and competitive learning proposed by [9], besides the initial

mean vectors (µi), also requires the tuning of the initial num-

ber of clusters(s), the acceptable degree of membership(σ),

the convergence tolerance(ǫ) and a constant c which indicates

the cardinality of each set.

In the single-linkage procedure used by [15] there is also

the need to tune parameters related to the minimal distance

between clusters (ℓ) and the cardinality of each set (c).

Though this algorithm has only two tuning parameters, they

reflect guesses about the resulting clusters.

The work of [12] shows the difficulty in adjusting various

parameters in a ready made software kit.

The greatest advantage of this proposed clustering algo-

rithm is the fact that it requires no initialization, and there is

only one tuning parameter to be set. Increasing this tuning

parameter will stimulate splitting in the first phase of the

algorithm. Beyond a threshold if will lead to ill-partitioning

of the clusters, resulting in a poor validation (Silhouette)

index.

The stop criterion in the SM algorithm is the Silhouette

index, which indicates a degree of fitness for the resulting

configuration. In this way there is no need to set or guess

values for both initialization and validation. The tuning

parameter, constant K, is used to seek best results, that is,
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the greatest value for the Silhouette index.

Although there is some freedom to adjust the constant K in

the SM algorithm, it’s value should not be much greater than

one. In this example this parameter gave the best result when

tunned to 1.15, which yielded the global silhouette index of

0.9787.

Regarding the identification framework, the experimental

results shows the correct detection of the number of modes

for an adequate PWA model for the identified nonlinear

system. Another aspect is the correct grouping of the locally

identified parameters vectors θLD
j since this information was

used to estimate the parameter vector for each mode. The

size of the LD is another constant which has to be set

in this framework, it should be large enough to provide a

good estimation of local the local parameter vector, but small

enough to generate many points for the clustering algorithm.

In this experiment the LDs where formed with 200 points. It

was observed that below 100 points the estimation of the

various θLD
j was very poor and above 300 there were a

small amount of parameter vectors, negatively affecting the

clustering phase.

From the estimated output associated to the validation

data-set in figure 4, it is possible to observe a good repre-

sentation of the nonlinearities features associated with each

mode, which indicates a good estimation of the separating

hyperplanes. A small gain error is evident comparing the

peak values of the estimated and measured output for the

validation data-set. This can be a result of the fairly naive

approach of taking the mean of each cluster as the parameter

vector for each mode. Due to process noise and the identi-

fication in transition periods (mixed LD’s) some incorrect

points are associated with each vector. In this case a robust

estimation of the parameters vectors for each cluster could

lead to a better model, but overall the proposed framework

was able to find a consistent PWA model for a highly

nonlinear system.

VI. CONCLUSION

This work presented an algorithm for automatic detection

of the number of modes to be used as part of a framework for

the identification of PWA systems. Different from previous

algorithms of the litterature, the proposed algorithm requires

no initialization of parameters and there is only one tuning

parameter to be adjusted. This avoids the need for multiple

runs in search for the best value of a certain criteria. In fact

the algorithm searches for the best clustering configuration

of the dataset.

Another contribution of this work is the application to

a practical example. The proposed framework was capable

of successfully identifying a model of a DC motor with

saturation and dead zone, a highly complex nonlinear system.
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