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Abstract— This paper is concerned with an approach for a
nonlinear optimal control of polynomial systems. The Hamilton-
Jacobi-Bellman (HJB) equation is relaxed into HJB inequalities.
Both an upper bound and a lower bound on the cost function, as
well as a suboptimal controller, can be computed from solutions
of the resulting inequalities. Solving the HJB inequalities can
be cast as state-dependent matrix inequalities (SDMIs), whose
derivation is based on representation of the given polynomial
system in a linear-like form. The resulting SDMI for the upper-
bound computation is nonconvex in the decision variables, and
hence an iterative procedure is proposed to deal with the non-
convexity. On the other hand, the resulting SDMI for the lower-
bound computation can be written as a state-dependent linear
matrix inequality (SDLMI), which is a convex optimization
problem solvable by existing numerical tools. A numerical
example is provided to illustrate the proposed approach.

I. INTRODUCTION

Nonlinear optimal control is known to be a difficult and

challenge problem in control theory. Computation of the

optimal performance can be formulated in terms of the

Hamilton-Jacobi-Bellman (HJB) equation [1]. In the case of

linear systems, the HJB equation is reduced to the Riccati

equation, which can be efficiently solved. On the other hand,

for a general nonlinear system, the resulting HJB equation

is difficult to solve. Due to its importance, however, several

approaches has been proposed to find approximation schemes

to the HJB equation, e.g., a power series expansion approach

[10] and the Galerkin spectral approach [2]. An alternative

approach based on relaxation of the HJB equation with

its counterpart inequalities has been considered by several

researchers. Various approaches have been proposed to solve

such HJB inequalities in order to obtain upper bounds or

lower bounds on the optimal performance. An approach

based on gridding on the given state-space region was

proposed in [7]. In [19], the author proposed an algorithm

to iteratively improve bounds on the optimal performance.

Recently, an approach based on robust-linear-matrix-

inequality (robust-LMI) [3], [12], [17] formulation with the

sum-of-squares (SOS) relaxation [15], [17] was considered

in [16]. In particular, joint search of Lyapunov functions

and controller variables satisfying the HJB inequalities can

be formulated as state-dependent linear matrix inequalities

(SDLMIs), which are special cases of robust LMIs. This
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formulation is based on representing nonlinear systems in

a state-dependent linear-like form. This approach is quite

promising since an SDLMI is a convex constraint and can

be relaxed into a standard LMI via the SOS technique.

Furthermore, upper bounds on the optimal performance, as

well as stabilizing controllers can be efficiently obtained

when the systems are of low orders. However, the SDLMI

formulation is conservative in the sense that such linear-

like representation is not unique and the success of the

synthesis depends on the chosen representation. Ichihara [6]

addressed this conservatism issue by introducing polynomial

annihilators, which can represent the non-uniqueness of the

linear-like representation, in the design problem.

In this paper, we present a novel approach to a nonlinear

optimal control problem for polynomial systems operating in

a compact domain. Similarly to [6], [16], Our approach relies

on state-dependent matrix inequalities (SDMIs) and the SOS

relaxation. The differences between the current approach and

the approaches of [6], [16] are threefold. Firstly, both upper

bounds and lower bounds on the optimal performance are

available in the current approach, unlike [6], [16] which con-

sider only upper bounds on the optimal performance. More

precisely, computation of the lower bounds is formulated

as a convex SDLMI, which can be efficiently solved. Such

formulation for the lower bounds has not been proposed in

the literature. Contrary to the lower-bound case, however,

computation of the upper bounds yields a nonconvex SDMI

in a Lyapunov matrix and a polynomial annihilator. An

iterative procedure will be proposed to separately solve the

decision variables and convert the nonconvex constraint to

an SDLMI. Secondly, we suggess a new parameterization

of the polynomial annihilator, which can reduces number

of decision variables and equality constraints in the SDLMI

conditions. Hierarchical improvement of both the upper

bounds and the lower bounds can be done via increasing the

degrees of the polynomial annihilators. Once an upper bound

and a lower bound is computed, if the gap between the two

bounds is small, the suboptimal performance is concluded to

be nearly optimal. Finally, the proposed formulation can be

applied to polynomial systems whose operating domains are

more general than those considered in [6].

The notation used in this paper is rather standard. The

symbols O and I denote the zero matrix and the identity ma-

trix of proper dimensions respectively. For a real symmetric

matrix A, the inequality A � O means that A is positive

semidefinite. Similarly, A ≻ O indicates that A is positive

definite. Finally, the symbol He(B) stands for B + BT for

a square matrix B.
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II. PRELIMINALIES

A. Sum-of-squares technique

In this section, we will summarize about the sum-of-

squares (SOS) technique, which plays an important role for

solving optimization problems with polynomial objectives

and constraints. Recent developments of the sum of squares

technique and its applications in various types of control

problems can be found in [13], [17], [8].

The computational method used in this report relies on the

sum-of-squares decomposition of multivariate polynomials.

A multivariate polynomial f(x) ( x ∈ R
n) is a sum of

squares if there exist polynomials f1(x), . . . , fm(x) such that

f(x) =
∑m

i=1 f
2
i (x). This can be shown equivalent to the

existence of a special quadratic form stated in the following

proposition.

Proposition 1: Let f(x) be a polynomial in x ∈ R
n of

degree 2d. In addition, let z(x) be a column vector whose

elements are all monomials in x with degree no greater than

d. Then f(x) is a sum of squares iff there exists a positive

semidefinite W such that

f(x) = z(x)TWz(x)
Proof: See [13].

The result of Proposition 1 tells us that finding a sum

of squares decomposition for f(x) can be done by solving

an LMI. Even though the sum of squares condition is not

necessary for nonnegativity, numerical experiments seem to

indicate that the gap between sum of squares and nonnega-

tivity is small [14].

The idea of the sum of squares can also be extended to

the polynomial-matrix case. We say that a symmetric matrix

F (x) of dimension m × m is a (matrix) SOS iff it can be

expressed as F (x) = T (x)TT (x) [8], [17] where T (x) is

a polynomial matrix in x. Note that T (x) is not necessarily

be a square matrix. Very similar to the scalar polynomial

case, every SOS polynomial matrix is globally positive

semidefinite. Moreover, a polynomial matrix F (x) of degree

2d is SOS iff there exists a positive semidefinite matrix W
such that F (x) = [z[d] ⊗ Im]TW [z[d] ⊗ Im] (see [8] for a

proof) where z[d] is also the vector containing all monomials

of degree d or less and A⊗B denotes the Kronecker product

between A and B. Similarly to Proposition 1, we can find

W by solving an LMI.

B. State-dependent LMIs and sum-of-squares relaxations

The methodology in Section II-A is used to solve state-

dependent LMIs (SDLMIs) which are formulated from

the state-feedback optimal control problem considered in

the succeeding sections. We firstly consider a parameter-

dependent LMI, which is a semi-infinite convex optimization

problem of the form

min. cT y
s.t. F0(x) +

∑m
i=1 yiFi(x) � O, ∀x ∈ X ,

}

(1)

where Fi(x)’s are symmetric matrix functions of the pa-

rameter x ∈ R
n and X ⊆ R

n is a given set. If x is a

state variable of a system, the parameter-dependent LMI

(1) is called a state-dependent LMI (SDLMI). Solving the

above optimization problem leads to solving an infinite set

of LMIs and hence computationally difficult. However, when

the Fi(x)’s are symmetric polynomial matrices in x, and the

set X is described by

X = {x ∈ R
n | gj(x) ≥ 0, j = 1, . . . , k}, (2)

with polynomials gi(x)’s, the sum of squares decomposition

can provide a computational relaxation for (1). The idea is

to consider the optimization problem

min. cT y

s.t. F0(x) +

m
∑

i=1

yiFi(x) = S0(x) +

k
∑

j=1

gj(x)Sj(x),











(3)

where Si(x)’s are SOS polynomial matrices with appropriate

degrees. Note here that the set Rn can be represented in the

form (2) with gj(x) ≡ 0, j = 1, . . . , k. It is clear that any

solution to the sum of squares optimization problem (3) is

also a solution to the SDLMI (1). However, (3) is easier to

solve than (1) since searching for y and Si(x)’s satisfying

the constraint in (3) can be performed by solving LMIs (see

[17] for details). The mentioned idea can be easily extended

to SDLMIs with multiple constraints. Transformation from

the SOS problem to an LMI problem can be performed by

the software SOSTOOLS [15] or YALMIP [9]. If X satisfies

some technical assumptions, the optimal value of the relaxed

problem (3) tends to the global optimal value of the original

SDLMI when we let the degrees of Si(x)’s grow [17].

III. OPTIMAL CONTROL PROBLEM

We start with a problem description. Consider a nonlinear

dynamical system

ẋ(t) = f(x(t)) +B(x(t))u,

where x ∈ R
n is the state and u ∈ R

m is the input.

The vector f(x) and the matrix B(x) are assumed to be

polynomials in x. We consider regulation at the origin, thus

we require that f(0) = 0.

For the above system, we consider a state-feedback con-

troller u = u(x), and assume that the closed-loop system

is operated on a compact domain X ⊂ R
n containing the

origin. Throughout this paper, We assume that

X = {x | aTk z(x) ≤ 1, k = 1, . . . , l} (4)

where z(x) is a vector of dimension N that contains x and

monomials of higher degrees in x, and ak ∈ R
N , k =

1, . . . , l are given constant vectors. Note that a polytope, an

ellipsoid, a generalized ellipsoid in [6], and some classes of

semi-algebraic sets can be represented in the form of (4)

with appropriate z(x) and ak’s. For example, the set X =
{x ∈ R

2 | x1 − x2
2 ≤ 1, x2

1 + x2
2 ≤ 4} can be represented

in the form (4) with z(x) =
[

x1 x2 x2
1 x2

2

]T
, a1 =

[

1 0 0 −1
]T

, and a2 =
[

0 0 1
4

1
4

]T
.
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As a measure of system performance under the control

input u we will consider the cost function

J(x0, u) =

∫

∞

0

(z(x)TQz(x) + uTRu)dt, (5)

with given matrices Q � O and R ≻ O. Here, the initial

condition is x(0) = x0. Our objective is to compute the

value of

J∗(x0) = min
u

J(x0, u), ∀x0 ∈ X , (6)

and the controller u that minimizes the cost function.

Existence of an upper bound and a lower bound on

J∗(x0) is guaranteed by existence of solutions of the HJB

inequalities as stated in the following propositions.

Proposition 2 (Upper bound): Let V : X → R be a con-

tinuously differentiable function satisfying V (x) > 0 (∀x ∈
X\{0}), V (0) = 0, and

minu

(

∂V (x)T

∂x
(f(x) +B(x)u) + z(x)TQz(x) + uTRu

)

< 0, ∀x ∈ X\{0}.
(7)

If there exists a number ρ > 0 such that the set

X = {x ∈ R
n | V (x) ≤ ρ}

is included in X , then V (x0) ≥ J∗(x0) for all initial

conditions x0 ∈ X ⊂ X , and û(x) = − 1
2R

−1BT(x)∂V (x)
∂x

attaining the minimum of the left-hand side of (7) for each

x ∈ X is a stabilizing controller for the system.

Proposition 3 (Lower bound): Let W : X → R be a con-

tinuously differentiable function satisfying W (x) > 0 (∀x ∈
X\{0}), W (0) = 0, and

minu

(

∂W (x)T

∂x
(f(x) +B(x)u) + z(x)TQz(x) + uTRu

)

> 0, ∀x ∈ X\{0}.
(8)

Then W (x0) ≤ J∗(x0) for all initial conditions x0 such that

x(t) ∈ X for all t, and ũ(x) = − 1
2R

−1BT(x)∂W (x)
∂x

attains

the minimum of the left-hand side of (8) for each x ∈ X .

The proofs of Propositions 2 and 3 are omitted due to space

limitation. However, they can be done along the same line

as those of Theorems 1 and 2 in [7], respectively.

Searching for functions V (x) and W (x) satisfying (7) and

(8) is a difficult task. However, restriction of the search of

V (x) and W (x) to polynomials leads to more numerically

tractable conditions. Computation of such polynomial solu-

tions is discussed in the next section.

IV. MAIN RESULTS

An approach to compute polynomial-solution candidates

of (7) and (8) is discussed in this section.

We firstly consider solution candidates of (7) in the form

of

V (x) = z(x)TY −1z(x) (9)

with Y ≻ O, where z(x) is the monomial vector defined in

Section III. It is obvious that the solution V (x) of the form

(9) satisfies V (0) = 0. In order to search for a solution in

the form of (9), we write the given polynomial system in the

following state-dependent linear-like representation:

ẋ = A(x)z(x) +B(x)u, (10)

where A(x) is a polynomial matrix in x. It is notable that

the representation f(x) = A(x)z(x) is not unique for each

z(x).
Before proceeding, we define additionally L(x) to be a

N × n polynomial matrix whose (i, j)-element is given by

Lij(x) =
∂zi
∂xj

(x), i = 1, 2, . . . , N, j = 1, 2, . . . , n.

The gradient of V (x) can be obtained by the formula
∂V
∂x

(x) = 2LT(x)Y −1z(x).
An upper bound on J∗(x0), as well as a suboptimal

controller can be computed via the following theorem.

Theorem 1: For the system ẋ = A(x)z(x) + B(x)u
with the domain X, suppose that there exist a matrix Y , a

polynomial matrix N(x) of dimension N ×N , and a scalar

β > 0 such that

Y ≻ O, (11)
[

M(x) +N(x)Y + Y N(x)T −Y Q
1

2

−Q
1

2Y −I

]

≺ O,

∀x ∈ X , (12)

N(x)z(x) = 0, ∀x ∈ R
n, (13)

[

β −aTk Y
−Y ak Y

]

� O,

k = 1, . . . , l, (14)

where M(x) := L(x)A(x)Y + Y AT(x)LT(x) −
L(x)B(x)R−1BT(x)LT(x). Then for any initial conditions

x0 in the invariant set

X =

{

x ∈ R
n | z(x)TY −1z(x) ≤

1

β

}

,

it holds that J∗(x0) ≤ z(x0)
TY −1z(x0), and a stabilizing

controller is given by u = −R−1BT(x)LT(x)Y −1z(x).
Proof: Positivity of V (x) = z(x)TY −1z(x) over X\{0}
is guaranteed by (11). Based on Schur complements [5],

inequality (12) is equivalent to

L(x)A(x)Y + Y AT(x)LT(x) +N(x)Y + Y N(x)T

−L(x)B(x)R−1BT(x)LT(x) + Y QY  O.

Pre- and post-multiplication of z(x)TY −1 and Y −1z(x),
respectively, to the above inequality yields

z(x)T(Y −1L(x)A(x) +AT(x)LT(x)Y −1

−Y −1L(x)B(x)R−1BT(x)LT(x)Y −1 +Q)z(x) ≤ 0
(15)

due to (13). Inequality (15) is nothing but a special case of

(7) with the substitution V (x) = z(x)TY −1z(x), f(x) =

A(x)z(x), and û = − 1
2R

−1BT(x)∂V (x)
∂x

. Let ρ := 1/β,

inequality (14) is equivalent to
[

1 −aTk
−ak

Y −1

ρ

]

� O, k = 1, . . . , l.
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Pre- and post-multiplication of
[

1 z(x)T
]

and

[

1
z(x)

]

,

respectively, to the above inequality yields

(1− aTk z(x)) + 0.5(
z(x)TY −1z(x)

ρ
− 1) ≥ 0, k = 1, . . . , l

which implies that

X =
{

x ∈ R
n | z(x)TY −1z(x) ≤ ρ

}

⊂ X .

The constraint (12) is nonconvex in the decision variables

Y and N(x) due to the term N(x)Y +Y N(x)T. If N(x) is

fixed a priori, however, the constraints (11), (12), and (14)

are affine in Y . Indeed, they are SDLMIs in the elements of

Y , and can be solved using the method described in Section

II-B.

Remark: It is notable that the inequality (15) also implies

the existence of an annihilator N(x) satisfying (12) and (13).

This fact can be proved using Finsler’s lemma [5]. Details

of the proof is reported in [6]. Moreover, the existence of

a polynomial annihilator N(x) is also guaranteed when the

domain X is compact [4]. When the solution V (x) is fixed

a priori, i.e., the matrix Y in (9) is fixed a priori, therefore,

the gap between (11)-(14) and the HJB inequality (7) can be

made arbitrarily small by increasing the degree of N(x).
Let us now discuss how to reduce the number of scalar

decision variables by considering the structure of N(x). It

is known from the constraint N(x)z(x) = 0 that the rank

of N(x) is at most N − 1. Based on the maximum rank

decomposition, for each polynomial annihilator Nb(x) of

dimension (N − 1)×N with rank(Nb(x)) = N − 1, there

exists a polynomial M(x) of dimension N × (N − 1) such

that N(x) = M(x)Nb(x). Note that in case of z(x) = x,

the explicit form of Nb(x) is given as

Nb(x) =











−x2 x1 0 · · · 0
0 −x3 x2 · · · 0
...

...
...

. . .
...

0 · · · 0 −xn xn−1











.

Construction of Nb(x) for a general monomial vector z(x)
can be founded in [11]. With the new parameterization of the

polynomial annihilator, Theorem 1 is modified as follows.

Theorem 2: For the system ẋ = A(x)z(x) +B(x)u with

the domain X and for a given Nb(x), suppose that there

exist a matrix Y , a polynomial matrix M(x) of dimension

N × (N − 1), and a scalar β > 0 such that

Y ≻ O, (16)
[

M(x) + He(M(x)Nb(x)Y ) −Y Q
1

2

−Q
1

2Y −I

]

≺ O,

∀x ∈ X , (17)
[

β −aTk Y
−Y ak Y

]

� O,

k = 1, . . . , l, (18)

where M(x) := L(x)A(x)Y + Y AT(x)LT(x) −
L(x)B(x)R−1BT(x)LT(x). Then for any initial conditions

x0 in the invariant set

X =

{

x ∈ R
n | z(x)TY −1z(x) ≤

1

β

}

,

it holds that J∗(x0) ≤ z(x0)
TY −1z(x0), and a stabilizing

controller is given by u = −R−1BT(x)LT(x)Y −1z(x).
Since the polynomial matrix M(x) has less number

of elements than that of N(x), the modified constraints

in Theorem 2 has less number of scalar variables than

those in Theorem 1. However, we still have a nonconvex

constraint in the variables Y and M(x) due to the term

M(x)Nb(x)Y + Y Nb(x)
TM(x)T in (17). Therefore, an

iterative algorithm is provided to solve the problem, that is,

the polynomial matrix M (i)(x) and the Lyapunov matrix

Y (i) at the ith iteration are solved alternatively. The iteration

procedure is as follows:

Iterative Algorithm:

(I) By fixing the variable M(x) to M (i)(x), we solve the

constraints (16)–(18) in the variable Y and β. In this step,

we obtain the matrix Y (i), the scalar β(i), and the upper

bound z(x0)
T(Y (i))−1z(x0).

(II) For fixed Y (i), we solve a matrix M̃(x) and scalars

α > 0, β > 0 satisfying

[

M̃(x) + He(M̃(x)Nb(x)Y
(i)) −αY (i)Q

1

2

−αQ
1

2Y (i) −I

]

≺ O,

∀x ∈ X , (19)
[

β −αaTk Y
(i)

−αY (i)ak αY (i)

]

� O,

k = 1, . . . , l, (20)

where M̃(x) := L(x)A(x)(αY (i))+(αY (i))AT(x)LT(x)−
L(x)B(x)R−1BT(x)LT(x). In this step, we fix the degree

of M̃(x) to dM , and thus the constraints (19)–(20) are just

SDLMIs in the scalars α, β, and the coefficients of M̃(x).
(III) With M (i+1)(x) = M̃(x)/α, we solve Y (i+1), β(i+1)

satisfying (16)–(18) and obtain the new upper bound

z(x0)
T(Y (i+1))−1z(x0).

Once M(x) is known in Step (I) or (III), we may optimize

the upper bound by introducing a new variable T such that

T � Y −1. Here, a good upper bound can be obtained by

minimize Trace(T ) subject to (16)–(18) and

[

T I
I Y

]

� O.

The last inequality is equivalent to T � Y −1 by Schur

complements.

If the problem in Step (II) is feasible, then the constraints

(16)–(18) are also feasible with M(x) = M̃(x)/α and

Y = αY (i). As a result, V (x) = z(x)T(αY (i))−1z(x)
is a valid Lyapunov function of the closed-loop system

with the controller u = −R−1BT(x)LT(x)(αY (i))−1z(x).
Moreover, we have J∗(x0) ≤ z(x0)

T(αY (i))−1z(x0), and

maximization of α in Step (II) may improve the upper bound.

The above algorithm will be proceeded until the value

|z(x0)
T(Y (i+1))−1z(x0) − z(x0)

T(Y (i))−1z(x0)| is less

than some threshold. It is notable that increasing the degree
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dM in Step (II) may decrease the upper bound as shown in

the numerical example in Section V.

The rest of this section is devoted to the lower bound

computation. Here, we then consider solution candidates of

(8) in the form of W (x) = z(x)TXz(x), X ≻ O. A

lower bound on J∗(x0) can be computed via the following

theorem.

Theorem 3: For the system ẋ = A(x)z(x) +B(x)u with

the domain X and for a given Nb(x) suppose that there exists

a matrix X and a polynomial matrix E(x) such that

X ≻ O, (21)
[

N (x) XL(x)B(x)R−
1

2

R−
1

2BT(x)LT(x)X I

]

≻ O,

∀x ∈ X , (22)

where N (x) := XL(x)A(x) + AT(x)LT(x)X + Q +
He(E(x)Nb(x)). Then J∗(x0) ≥ z(x0)

TXz(x0) for any x0

such that x(t) ∈ X for all t.
Proof: The proof can be done similarly to that of Theorem 1.

Inequality (21) guarantees positivity of W (x) over X\{0},

while inequality (22) is equivalent to

XL(x)A(x) +AT(x)LT(x)X +Q+Nb(x)
TET(x)

+E(x)Nb(x)−XL(x)B(x)R−1BT(x)LT(x)X � O,

based on Schur complements. Since Nb(x)z(x) = 0, the

above inequality implies

z(x)T(XL(x)A(x) +AT(x)LT(x)X +Q
−XL(x)B(x)R−1BT(x)LT(x)X)z(x) ≥ 0,

(23)

which is a special case of (8) with the substitution

W (x) = z(x)TXz(x), f(x) = A(x)z(x), and ũ =

− 1
2R

−1BT(x)∂W (x)
∂x

.

If we fix the degree of the polynomial annihilator E(x),
the constraints (21)-(22) are SDLMI constraints in X and the

coefficients of E(x). Therefore, this problem can be solved

by the method in Section II-B with the help of softwares

SOSTOOLS or YALMIP. Using the same heuristic as in

the upper bound computation, a good lower bound can be

computed by maximizing Trace(X) subject to (21)-(22).

By similar arguments to the upper bound computation,

the inequality (23) also implies the existence of a polyno-

mial matrix E(x) satisfying (22). This fact can be proved

using Finsler’s lemma [5] and exploiting the compactness

of the domain X . In the current problem setting, hence,

the gap between (21)-(22) and the HJB inequality (8) can

be made arbitrarily small by increasing the degree of E(x).
As opposed to the upper bound computation, however, the

upper bound computation yields the convex constraints in

the decision variables, and hence no iterative algorithm is

required for computing a lower bound. Moreover, the best

value of Trace(X) with respect to each choice of the solution

candidate W (x) = z(x)TXz(x) is always achieved, in an

asymptotic sense, due to the convexity of the problem.

V. NUMERICAL EXAMPLE

In this section, we provide an example to illustrate the

underlined ideas in Section IV. This example is executed on

Matlab 7.5, by using YALMIP as a solver for SOS-based

problems.

Example We consider the system ẋ = f(x) +B(x)u with

f(x) =

[

−x1 + x2
1 +

1
4x2 −

3
2x

3
1 − x2

1x2 −
3
4x1x

2
2 −

1
2x

3
2

0

]

,

and B(x) =
[

0 1
]T

. The quadratic cost (5) with Q =
diag(1, 1) and R = 1 is considered, where the domain X is

described by

X = {x ∈ R
2 | − 3 ≤ x1 ≤ 3,−3 ≤ x2 ≤ 3}.

The initial point is x0 =
[

1 1
]T

.

The system is represented as the linear-like form

ẋ = A(x)x+B(x)u,

with the following system matrix A(x):

A(x) =

[

−1 + x1 −
3
2x

2
1 −

3
4x

2
2

1
4 − x2

1 −
1
2x

2
2

0 0

]

.

We firstly compute upper bounds on the optimal perfor-

mance index (6) by solving the constraints in Theorem 2

with the iterative algorithm provided in Section IV.

To start the algorithm, we fix M (0)(x) = 0. By minimizing

the objective function Trace(T ), we obtain an upper bound

xT
0 (Y

(0))−1x0 = 2.6862, with Trace(T ) = 2.2634. We

reduce the upper bound by iteratively solve Y and M(x)
of a fixed degree. The algorithm is performed until the

decrease of the upper bound is less than some threshold.

Table I summarizes the final results with respect to M(x)
of various degrees.

As is seen from the table, the upper bound is signifi-

cantly improved when increasing the degree of M(x) up

to 1. However, further increase of the degree seems to not

improve the upper bound. The invariant sets, as well as, the

trajectories of the closed-loop systems with respect to the

cases of degM(x) = 0 and degM(x) = 1 are shown in

Fig. 1.

For the computation of a lower bound, we repeatedly

increase the degree of E(x) in Theorem 2 and solve the cor-

responding robust SDP until the improvement of the optimal

value of Trace(X) stops. In this example, the best value of

Trace(X) as well as the best lower bound, are achieved with

E(x) of degree 1, and further increase of the degree of E(x)
does not improve the results. The improvement of Trace(X)
and the lower bound with respect to the degree increase of

E(x) are summarized in Table II.

We observe from the numerical results that there is still a

small gap between the best values of both bounds. This may

be due to several reasons shown below:

(1) In this example, only quadratic solution candidates to the

HJB inequalities are considered for the computation of both

the upper bounds and the lower bounds. This conservatism

may be improved by considering solution candidates of

higher degrees.

(2) The iterative algorithm does not guarantee that the
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Fig. 1. The invariant sets with the closed-loop trajectories. In the case of
degM(x) = 0 (blue line), and in the case of degM(x) = 1 (red line).

computed upper bound will converge to its best value after

long iteration. In fact, it only guarantees that the upper bound

obtained the present step is not worse than that obtained from

the previous step.

TABLE I

UPPER BOUNDS ON THE PERFORMANCE INDEX

Degree of M(x) 0 1 2

Trace(T ) 1.7132 1.1463 1.1463

Upper bound 1.9346 1.2113 1.2112

x
T

0
Y

−1
x0

TABLE II

VARIATION OF LOWER BOUNDS WITH THE DEGREES OF E(x)

Degree of E(x) 0 1 2

Trace(X) 1.0235 1.0447 1.0447

Lower bound 0.9011 0.9997 0.9997

x
T

0
Xx0

VI. CONCLUSION

The nonlinear optimal control of polynomial systems has

been addressed in this paper. Finding polynomial solutions

of the HJB inequalities, in order to computed bounds on the

optimal cost, was formulated into SDMIs in terms of constant

matrices and polynomial annihilator matrices. For the upper

bound computation, the iterative algorithm is provided to

solved the resulting nonconvex SDMI by separating the

joint search of decision variables. The problem is therefore

converted into an SDLMI, which can be efficiently solved

based on the notion of SOS matrices. On the other hand, the

resulting SDMI for the lower bound computation is just a

convex SDLMI, and thus can be directly solved without any

iteration. Increase of the degrees of the polynomial annihila-

tors leads to improvement of both the upper bound and the

lower bounds. Possible extensions of the current approach

include controller design of nonlinear systems affected by

bounded disturbances and/or parametric uncertainties.
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[9] J. Löfberg, YALMIP: A Toolbox for Modeling and Optimization
in MATLAB, in Proc. of the CACSD Conference, Taipei, Taiwan,
September 2004.

[10] Y. Nishikawa, N. Sannomiya, and H. Itakura, A Method for Subopti-
mal Design of Nonlinear Feedback Systems, Automatica, vol. 7, pp.
703–712, 1971.

[11] Y. Oishi, A Region-Dividing Approach to Robust Semidefinite Pro-
gramming and Its Error Bound, in Proc. of the 2006 American Control

Conference, Minneapolis, USA, June 2006, pp. 123–129.
[12] A. Ohara and Y. Sasaki, On Solvability and Numerical Solutions

of Parameter-Dependent Differential Matrix Inequality, in Proc. of

the 40th IEEE Conference on Decision and Control, Orlando, USA,
December 2001, pp. 3593–3594.

[13] P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic

Geometry Methods in Robustness and Optimization, PhD Thesis,
California Institute of Technology, May 2000.

[14] P. A. Parrilo and B. Sturmfels, Minimizing Polynomial Functions,
in Algorithmic and Quantitative Real Algebraic Geometry, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science,
Vol. 60, pp. 83–99, AMS.

[15] S. Prajna, A. Papachristodoulou, and P.A. Parrilo, Introducing SOS-
TOOLS: A General Purpose Sum of Squares Programming Solver,
in Proc. of the 41st IEEE Conference on Decision and Control, Las
Vegas, USA, December 2002, pp. 741–746.

[16] S. Prajna, A. Papachristodoulou, and F. Wu, Nonlinear Control Syn-
thesis by Sum of Squares Optimization: A Lyapunov-based Approach,
in Proc. of the Asian Control Conference, Melbourne, Australia, July
2004, pp. 157–165.

[17] C. W. Scherer and C. W. J. Hol, Matrix Sum-of-Squares Relaxations
for Robust Semi-Definite Programs, Mathematical Programming Se-

ries B, vol. 107, nos. 1–2, pp. 189–211, 2006.
[18] M. Vidyasagar, Nonlinear Systems Analysis, 2nd Edition, SIAM,

Philadelphia, USA, 2002.
[19] A. Wernrud, On Approximate Policy Iteration for Continuous-Time

Systems, in Proc. of the 44th IEEE Conference on Decision and

Control, and the European Control Conference 2005, Seville, Spain,
December 2005, pp. 1453–1458.

286


