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Abstract— If M is an R-module over an abelian ring R, then
the set of all total submodules of M2 is a seminearring (T,+, ·),
where (+) is relation addition, and (·) is composition. If B
is a Bezout domain of linear surjections on M, we construct a
subseminearring Q of T consisting of so-called rational relations
on M. An example is the set Q of single-input single-output
relations defined by linear time-invariant (LTI) differential
equations. A subseminearring of this Q is the field F of transfer
functions, which approximate such relations as operators by
neglecting their free response. Since rational relations include
the free response, we propose using them instead of transfer
functions to model and analyze LTI systems. Connections to
results in behavioral systems theory are described.

I. BACKGROUND

In [4], a linear time-invariant (LTI) dynamic system is
modelled as a behavior, defined as the kernel of a matrix of
polynomial differential operators. For a single-input single-
output (SISO) system, a behavior takes the form

r = {(u,y) ∈C2
∞ : ua(D) = yb(D)}. (1)

where u is the input, y is the output, a ∈ R[x] and b ∈ R[x]
are real polynomials with b 6= 0, and D : C∞ → C∞ is the
differential operator.1

In this paper, we view (1) as a binary relation on C∞.
Since the operators a(D) and b(D) in (1) are also binary
relations, we may write r = a(D)b(D)−1, i.e. the composition
of a(D) with the converse of b(D). If deg(b)> 0, the relation
r = a(D)b(D)−1 is nondeterministic: for every input u ∈C∞,
there are (infinitely) many outputs y ∈ C∞ satisfying (1).
Naturally, we call r a rational relation.

A related notion is introduced in [6], where the polynomi-
als a and b in (1) are replaced by rational functions. This in-
troduces a redundancy in (1) for controller parameterization.
Every rational function G ∈ R(x) defines a unique rational
representation G(D). Given G= ab−1, with a and b coprime,
G(D) is defined as r in (1) above (see pp. 228-229 of [6]). In
contrast, a rational relation r = a(D)b(D)−1 does not require
a and b to be coprime. Thus, the set of all rational relations
is larger than the set of all rational representations (the set
of all rational functions). Rational relations also should not
be confused with fractional representations [1]. The former
relate signals, while the latter relate transfer functions (e.g.
proper stable transfer functions).

It is shown in [4] that addition (a parallel connection) or
composition (a series connection) of two rational relations
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1Postfix notation is used in (1) so that the order of composition of
operators and relations agrees with their order in block diagrams drawn
from left to right, from input to output. Postfix is also used in semigroup
theory, and binary relations form a semigroup under composition.

always yields a rational relation, and rules for adding and
composing them are given there.2 If Q is the set of all binary
relations in the form of (1), then it follows that (Q,+, ·) is
a closed algebraic system, where + denotes addition and ·
denotes composition.

But what type of algebraic system is (Q,+, ·)? Unlike
rational functions, which form a field, we will show that
(Q,+, ·) is not even a ring or a semiring or a near-ring, but
rather a (noncommutative) seminearring, i.e. a ring lacking
additive inverses and one distributive law. However, it does
have some field-like properties: negation yields a unique
inverse3 for the additive semigroup (Q,+), and converse
yields an inverse3 for the multiplicative semigroup (Q, ·). We
will also show that the set of all total linear relations on C∞

is also a seminearring, i.e. a superseminearring of (Q,+, ·).
Our results are developed in an abstract algebraic frame-

work and then applied to LTI systems as a special case. In
Section IV, given an R-module M and a Bezout domain B of
linear surjections on M, we construct a seminearring (Q,+, ·)
of rational relations on M. In the case of LTI systems, M is
the R-module of smooth functions and B = R[D] is the set
of polynomial differential operators.

We also utilize results and notions that apply to binary
relations generally, such as the converse of a relation, which
generalizes the inverse of an operator. For example, in
Section VII, the relation from the reference to the error of a
closed-loop system is found to be (1+CP)−1, where C is the
control relation and P is the plant relation. This expression is
valid for nonlinear multiple-input multiple-output (MIMO)
systems. For SISO LTI systems, it reduces to a rational
relation if C and P are rational relations such that CP 6=−1.

II. MOTIVATION

Before rational relations can replace transfer functions, it
must be determined how the algebra of rational relations
differs from that of transfer functions. Rational relations
are preferred because they include the free response of
LTI systems and are thus more suitable for analyzing their
stability and performance. Here, we briefly describe some
limitations of transfer functions. Similar observations have
been made in the literature on behavioral models, such as [4]
and [6].

A transfer function approximates the nondeterministic
relation (1) by a deterministic one (i.e. an operator). A
simple way to define the transfer function is to restrict the

2These rules translate into equations (13) and (14) of Theorem 2 in this
paper.

3inverse in the semigroup sense only; the term pseudoinverse may be
used to distinguish this from inverse in the group sense.

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 699



signal space to causal signals (i.e. y(t) = 0 for t ≤ 0). Then,
kerb(D) = {0}, so b(D) is injective. Since b(D) is also
surjective, it is bijective, and thus its converse b(D)−1 is
deterministic (i.e. an operator). This makes a(D)b(D)−1 an
operator, called the transfer function. The transfer function
neglects the free response, which is noncausal. Other con-
structions of transfer functions (e.g. via operational calculus
or the Laplace transform) similarly neglect the free response.

The free response can usually be inferred from the denom-
inator of the transfer function, but not reliably. For example,
consider the relation r = (D− 1)(D2− 1)−1, i.e. the set of
all input-output pairs (u,y) ∈C2

∞ such that

u(D−1) = y(D2−1), (2)

Restricting to causal signals reduces r to the transfer function
(D+ 1)−1, which is stable, whereas the original relation r
given by (2) is unstable since the stable input u(t) = 0 relates
to an unstable output y(t) = et . The (noncausal) free response
et is neglected by the transfer function (D + 1)−1, which
maps u(t) = 0 to y(t) = 0.

In [4], it is shown that the relation (1) is uncontrollable
(i.e. no controllable state-space representation exists) if a
and b have any common factors. The uncontrollable mode
et of (2) cannot be inferred from the transfer function
due to a pole-zero cancellation at 1. It is not possible to
exclude uncontrollable systems such as (2) because the set
of uncontrollable systems is not closed under composition
or addition: series and parallel connections of controllable
subsystems are not necessarily controllable.4

III. MODULE RELATIONS

It turns out that the set of all rational relations (Q,+, ·)
defined in Section I has the same algebraic structure (plus
some additional structure) as the set of all total linear
relations on C∞. This section establishes the structure of the
latter, in the general context of abstract algebra, by finding
the structure of the set of all total linear relations on any
R-module. Other module representations of linear dynamic
systems have appeared previously in [2].

It is assumed that the reader is familiar with standard
algebraic systems such as semigroups, groups, semirings,
rings, Bezout domains, fields, modules, and linear spaces.
Lesser-known terms mentioned in Sections I, such as module
relations and seminearrings, are defined and discussed in this
section.

An binary relation (or simply relation) on a set M is a
subset of M2. The set of all such relations is the power
set P(M2). If (u,y) ∈ r ∈P(M2), we express this in infix
notation as ury. For example, 1 < 2 means (1,2) ∈<. The
composition of two relations r1 ∈P(M2) and r2 ∈P(M2)
is the relation

r1r2 = {(u,y) ∈M2 : ∃x ∈M,ur1x,xr2y}. (3)

Composition is associative and has identity 1 = {(u,u) ∈
M2}. Hence, (P(M2), ·) is a monoid.

4For this reason, the set of all (SISO) rational representations defined
in [6] is not algebraically closed under addition and composition of relations.

The converse r−1 of a relation r ∈P(M2) is the relation

r−1 = {(y,u) ∈M2 : (u,y) ∈ r}. (4)

If M is an R-module over a commutative ring R, then
we can define addition and negation in P(M2) as follows,
where r,r1,r2 ∈P(M2):

r1 + r2 ={(u,y1 + y2) ∈M2 : ur1y1,ur2y2}. (5)

−r ={(u,−y) ∈M2 : ury} (6)

Since y1 + y2 is addition in the group M, the addition
of relations is commutative and associative. The additive
identity is 0 = {(u,0) ∈M2}.

The following definitions, which may be found in [3], will
be useful for characterizing the properties of (P(M2),+, ·).

Definition 1: Given a semigroup (Q, ·) and r ∈ Q, an
inverse r+ ∈ Q of r is an element satisfying

rr+r =r, (7)
r+rr+ =r+. (8)

Definition 2: A semigroup (Q, ·) is a regular semigroup
if every r ∈ Q has an inverse. If every r ∈ Q has a unique
inverse, then (Q, ·) is an inverse semigroup. A regular (resp.
inverse) monoid is a regular (resp. inverse) semigroup with
an identity.

Lemma 1: A regular semigroup is an inverse semigroup
if, and only if, its idempotents commute [3].

Lemma 2: Suppose M is a module over an abelian ring R
and that S = P(M2) is the set of all binary relations on M.
Then,

1) (S,+) is a commutative inverse monoid; the identity
is 0 = {(u,0) ∈M2}, and for each r ∈ S, its negation
−r is its inverse,

2) (S, ·) is a regular monoid; the identity is 1 = {(u,u) ∈
M2}, and for each r ∈ S, its converse r−1 is an inverse.

Proof: It follows from (5) and (6) that negation satisfies
the inverse properties (7) and (8) (applied additively): r +
(−r)+ r = r and (−r)+ r +(−r) = −r. Hence (S,+) is a
regular monoid. Commutativity of (M,+) implies that of
(S,+). This and Lemma 1 imply that (S,+) is an inverse
monoid. Property 2 (well-known in relation algebra) follows
from Definitions 1 and 2 and equations (3), (7), and (8).
The image of a subset M1 ⊆M under a relation r ∈P(M2)
is denoted M1r = {y ∈ M : ∃u ∈ M1,ury}. If M1 = {u}, we
identify {u} with u and write its image simply as ur. Thus,
we may write ury as ur 3 y . If ur is also a singleton, we
write ury as ur = y. The range of r is Mr, and the domain of
r is Mr−1. The kernel of r is 0r−1. A relation r ∈P(M2) is
called surjective (or onto) if Mr = M and is called injective
(or one-to-one) if u1ry and u2ry imply that u1 = u2. It is
total if its converse is surjective (i.e. Mr−1 = M), and it is
deterministic if its converse is injective.

The set of all total relations on M is closed under
composition, addition, and scaling, but not closed under
converse. The same is true of all deterministic relations. A
deterministic relation is called a partial function, while a
total relation is called a nondeterministic (or multivalued)
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function. A total deterministic relation r is called a function
(or operator), in which case ury⇔ ur = y for all u,y ∈M. If
the converse of a function is a function, then it is the inverse
of the function. The set of all functions M → M is called
End(M), which forms a ring under addition and composition.

If M is an R-module over an abelian ring R, then M2

becomes a module by defining addition in M2 by (u1,y1)+
(u2,y2) = (u1 + u2,y1 + y2) for all u1,y1,u2,y2 ∈ M and
defining scalar multiplication by α(u1,y1) = (αu1,αy1) for
all α ∈R. We define a linear relation on M as a submodule of
M2. Let PR(M2)⊆P(M2) denote the set of all submodules
of M2, i.e. all linear relations on M. If R is a field, then the
module M is called a linear space, and the linear relations
are subspaces of M2.

Let TotR(M) ⊆ PR(M2) be the set of all total linear
relations on M. A subset of TotR(M) is the set of all module
endomophisms on M, denoted EndR(M)⊆End(M). Whereas
EndR(M) is a ring, we will show that TotR(M) is only a
seminearring.

Definition 3: An algebraic system (Q,+, ·) is a semi-
nearring [5] if

1) (Q,+) is a commutative monoid.
2) (Q, ·) is a monoid.
3) For all r,s, t ∈ Q, (r+ s)t = rt + st.
The etymology of seminearring is as follows. A semiring

is a ring that may lack additive inverses, while a nearring
is a ring that may lack one distributive law. Hence, a
seminearring may lack additive inverses and one distributive
law, as in Definition 3.

Theorem 1: Let M be a module over an abelian ring R,
and let TotR(M) be the set of all total linear relations on M.
Then (TotR(M),+, ·) is a seminearring. Also, (TotR(M),+)
is an inverse monoid.

Proof: Properties 1 and 2 of Definition 3 fol-
low from Properties 1 and 2 of Lemma 2 and the
facts that (TotR(M),+) and (TotR(M), ·) are sub-monoids
of (P(M2),+,0) and (P(M2), ·,1), respectively. That
(TotR(M),+) is also an inverse monoid follows from the
fact that negation is closed in TotR(M).

To prove Property 3 of Definition 3, we apply (3) and (5)
to obtain, for all u,y ∈M and all r,s, t ∈ TotR(M),

(u,y) ∈ (r+ s)t⇔∃x1,x2 ∈M,urx1,usx2,(x1 + x2)ty (9)
(u,y) ∈ rt + st⇔∃x1,x2,y1y2 ∈M,

urx1,x1ty1,usx2,x2ty2,y1 + y2 = y (10)

Suppose (u,y) ∈ rt + st. Adding x1ty1 and x2ty2 from (10)
yields (x1 + x2)t(y1 + y2). Setting y1 + y2 = y from (10)
gives (x1 + x2)ty, and thus (9) gives (u,y) ∈ (r+ s)t. Hence,
(r + s)t ⊇ rt + st. Conversely, suppose (u,y) ∈ (r + s)t and
apply (9). Since t is total, there exists y1 ∈M such that x1ty1.
Subtracting x1ty1 from (x1 + x2)ty in (9) gives x2ty2, where
y2 = y− y1. Hence, the r.h.s. of (10) is satisfied and thus
(u,y) ∈ rt + st. Therefore, (r+ s)t ⊆ rt + st. Combining this
with (r+ s)t ⊇ rt + st gives (r+ s)t = rt + st.

IV. RATIONAL RELATIONS

Definition 4: If M is an R-module over an abelian ring R,
then a Bezout domain of linear surjections (BLS) on M is a
Bezout domain of R-module endomorphisms B ⊆ EndR(M)
with the property that every nonzero b ∈ B is surjective, i.e.
Mb = M.

Definition 5: Given an R-module M, a BLS B on M, and
a,b ∈ B, the rational relation a/b is defined as

a
b
≡ ab−1 = {(u,y) ∈M2 : ua = yb}. (11)

Let Q⊆ TotR(M) denote the set of all total rational relations:

Q = {a
b

: a ∈ B,b ∈ B\{0}}. (12)

Theorem 2: Given an R-module M and a BLS B on M, the
set of rational relations (Q,+, ·) in (12) is a sub-seminearring
of (TotR(M),+, ·). Also, (Q,+) is an inverse monoid and
(Q, ·) is a regular monoid. For all a1,a2 ∈B, and all b1,b2,g∈
B\{0},

coprime(b1,b2)⇒
a1

gb1
+

a2

gb2
=

a1b2 +a2b1

gb1b2
, (13)

coprime(b1,a2)⇒
a1

b1g
ga2

b2
=

a1a2

b1b2
, (14)(

a1

b1

)−1

=
b1

a1
. (15)

Proof: Commutativity in (B, ·) is used throughout.
Since B is a Bezout domain and hence a Greatest Common
Divisor (GCD) domain, every sum of rational relations can
be expressed as the l.h.s. of (13), and every product can be
expressed as the l.h.s. of (14).

To prove (14), suppose (u,y) ∈ a1
b1g

ga2
b2

. Then, by (11)
and (3), there exists x ∈M such that ua1 = xgb1 and xga2 =
yb2. Multiplying these two equations through by a2 and b1,
respectively, and eliminating xgb1a2 gives ua1a2 = yb1b2,
and thus (u,y) ∈ a1a2

b1b2
. Hence, a1

b1g
ga2
b2
⊆ a1a2

b1b2
. Conversely,

suppose (u,y) ∈ a1a2
b1b2

, so that ua1a2 = yb1b2, and suppose
b1 and a2 are coprime. Since B is a Bezout domain, there
exists c1,c2 ∈ B such that

1 = b1c1 +a2c2. (16)

Since g is surjective, there exists x ∈M such that

xg = ua1c1 + yb2c2. (17)

Multiplying (17) by b1 and substituting ua1a2 = yb1b2
and (16) gives xgb1 = ua1. Similarly, xga2 = yb2. Hence
(u,y) ∈ a1

b1g
ga2
b2

, and thus a1
b1g

ga2
b2
⊇ a1a2

b1b2
. Combining this with

a1
b1g

ga2
b2
⊆ a1a2

b1b2
gives a1

b1g
ga2
b2

= a1a2
b1b2

.
To prove (13) for the case g = 1, suppose (u,y) ∈ a1

b1
+ a2

b2
.

Then there exists y1,y2 ∈M such that ua1 = y1b1, ua2 = y2b2,
and y1 + y2 = y. Multiplying ua1 = y1b1 through by b2 and
multiplying ua2 = y2b2 through by b1, and adding the result-
ing equations gives u(a1b2 +a2b1) = (y1 + y2)b1b2 = yb1b2,
and thus (u,y)∈ a1b2+a2b1

b1b2
. Hence, a1

b1
+ a2

b2
⊆ a1b2+a2b1

b1b2
. Con-

versely, suppose(u,y) ∈ a1b2+a2b1
b1b2

, so that u(a1b2 + a2b1) =
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yb1b2, and suppose b1 and b2 are coprime. Then there exists
d1,d2 ∈ B such that

1 = b1d1 +b2d2. (18)

Let

y1 =ua1d1−ua2d2 + yb2d2, (19)
y2 =ua2d2−ua1d1 + yb1d1. (20)

Multiplying (19) by b1 and substituting u(a1b2 + a2b1) =
yb1b2 and (18) gives y1b1 = ua1. Similarly, y2b2 = ua2.
Adding (19) and (20) and substituting (18) gives y1+y2 = y.
These last 3 results give (u,y) ∈ a1

b1
+ a2

b2
, and thus a1

b1
+ a2

b2
⊇

a1b2+a2b1
b1b2

. Combining this with a1
b1

+ a2
b2
⊆ a1b2+a2b1

b1b2
gives

a1
b1
+ a2

b2
= a1b2+a2b1

b1b2
. Finally, multiplying this last equation by

g−1 = 1/g and applying the distributive property (Property 3
from Theorem 1), along with (11) and the fact that converse
is an involution (i.e. (gb)−1 = b−1g−1), gives(

a1

b1
+

a2

b2

)
1
g
=

a1b2 +a2b1

b1b2

1
g

(21)

a1

gb1
+

a2

gb2
=

a1b2 +a2b1

gb1b2
(22)

Thus, (13) is proved for a general g 6= 0.
Since Q is a subset of TotR(M) and is closed under addi-

tion, multiplication, and negation, Q is a sub-seminearring of
TotR(M) and is additively an inverse monoid (since TotR(M)
is).

Finally (11) and (ab−1)−1 = ba−1 gives (15). Every a/b∈
Q has a (semigroup) multiplicative inverse given by(a

b

)+
=

{
0 if a = 0

(a/b)−1 if a 6= 0
. (23)

Applying (14) and (15) verifies that these relations satisfy the
properties of an inverse given by (7) and (8). Thus, (Q, ·) is
a regular monoid.

Note that the converse operation is only a partial unary
operator in Q: if a1 = 0 in (15), then the converse of a1/b1
exists in P(M2), but not in Q.

The rules (13) and (14) for addition and multiplication
in Q, which are already known from [4], generalize the
corresponding rules in the field of quotients Quot(B). It may
be shown that if the nonzero elements of B are bijective, then
the rational relations in Q are deterministic, and Q becomes a
field isomorphic to Quot(B). Thus, if any nonzero elements
of B are not injective, then the additive and multiplicative
groups of Quot(B) are weakened to inverse and regular
semigroups, respectively, and one distributive law is lost.

V. RATIONAL RELATIONS AS LTI SYSTEMS

Let M be the group of smooth functions (C∞,+) which is
an R-module over R. Since R is a field, this module is also
a linear space. By Theorem 1, the system of all total linear
relations (TotR(C∞),+, ·) on C∞ is a seminearring.

Let B = {p(D) : p a polynomial}, which is a Bezout
domain. Since every nonzero p(D) : C∞→C∞ is linear and
surjective on C∞, B is a BLS. Let (Q,+, ·) be the system

of rational relations defined in (11) and (12). Then, by
Theorem 2, (Q,+, ·) is a seminearring.

The following examples illustrate how algebra in (Q,+, ·)
differs from that of transfer functions. The pair (u,y) in (2)
belongs to the rational relation

D−1
D2−1

6= 1
D+1

. (24)

Composition of rational relations is not commutative in
general. For example, the following (postfix) compositions
are different:

1
D−1

D−1
D+1

=
1

D+1
, (25)

whereas
D−1
D+1

1
D−1

=
D−1
D2−1

⊃ 1
D+1

. (26)

A pole-zero cancellation occurs in (25), but a zero-pole
cancellation does not occur in (26).

The rational relation r = 1/(D+1) has no additive inverse
in the group sense, but it does have one in the semigroup
sense, namely −r =−1/(D+1). Indeed, we have

1
D+1

+
−1

D+1
=

0
D+1

⊃ 0. (27)

However, −r is the unique relation that satisfies the semi-
group inverse properties: r + (−r) + r = r and (−r) + r +
(−r) =−r. Thus, (Q,+) is an inverse semigroup.

Although (Q\{0}, ·) is not a group, (Q, ·) is a regular
semigroup. If the numerator of r ∈ Q is zero, then 0 is a
multiplicative inverse3 of r. Otherwise, the unique inverse3

r−1 of r is its converse, which equals its reciprocal; for
example, (

D+1
D+2

)−1

=
D+2
D+1

, (28)

which is not an inverse in the group sense since

D+1
D+2

(
D+1
D+2

)−1

=
D+1
D+1

⊃ 1. (29)

Composition is not left-distributive over addition, but it
is right-distributive. An example of the failure of the left-
distributive law is

0 =
0
D

0 =
0
D
(1−1) 6= 0

D
(1)+

0
D
(−1) =

0
D
. (30)

In contrast, right distribution always holds; for example,

0
D

= 0
0
D

= (1−1)
0
D

= (1)
0
D
+(−1)

0
D

=
0
D
. (31)

Another example is discrete-time LTI systems described
by difference equations. Let M = (Z → R) be the set of
all discrete-time signals. Let L denote the left-shift operator,
defined as xL(k) = x(k+ 1), where x ∈M. Let B = {p(L) :
p a polynomial}, and define the set of rational relations Q
by (11) and (12). These relations have the same advantages
over transfer functions as those in the first example. For
example the rational relation

L−2
L−2

, (32)
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has an unstable (and noncausal) output 2k when its input is
zero. In contrast, if we restrict signals to be causal (which
implies zero initial conditions), this relation reduces to a
stable operator, namely the identity transfer function 1, and
fails to model the uncontrollable mode 2k.

VI. RATIONAL RELATIONS ON THE CIRCLE GROUP

A geometric example illustrating Theorems 1 and 2 is
given by the circle group M = T = R/Z, which is an R-
module over R=Z. Let B=Z and define Q by (12) and (11).
Theorem 1 of Section III implies that the set of all total linear
relations (TotZ,+, ·) on T is a seminearring. Given a∈Z and
b ∈ Z\{0}, (11) defines the rational relation

a
b
= {(u,y) ∈ T2 : ua = yb}. (33)

By Theorem 2, the system (Q,+, ·) of all such relations is
a sub-seminearring of (TotZ,+, ·). These relations behave
in the same way as the LTI SISO relations introduced in
Section V. Analogous expressions for equations (2) and (24)
through (28) in this seminearring are, respectively,

u2 = y6, (34)

2
6
⊃ 1

3
, (35)

1
2

2
3
=

1
3
, (36)

2
3

1
2
=

2
6
⊃ 1

3
, (37)

1
3
+
−1
3

=
0
3
⊃ 0, (38)(

3
5

)−1

=
5
3
, (39)

3
5

(
3
5

)−1

=
3
3
⊃ 1. (40)

Unlike the examples of Section I, the graphs of these
relations may be visualized. The module T2 in (33) is the
surface of a torus (donut). The coordinates (u,y) of a point
are its longitude and latitude: graphs of constant u are minor
circles, while graphs of constant y are major circles. For
example, the circle y = 0 could be the inner annulus (the
hole) of the torus. Points are added component-wise modulo-
1 (which approximates vector addition near the origin of the
torus). Scaling a point or one of its coordinates by a ∈ Z
means adding it to itself a times.

The graph of the relation a/b ∈ Q in (33) appears as
windings on the torus. The pitch of the windings is a/b ∈Q
(i.e. a/b viewed as a rational number). If a and b are coprime,
then there is a single continuous winding that undergoes a
minor rotations for every b major rotations. In general, a/b
contains c disjoint parallel windings of pitch a/b, where c is
the greatest common divisor of a and b. For example, 2/6 ∈
Q consists of two parallel windings of pitch 1/3∈Q, one of
which is the primary winding 1/3∈Q which passes through
the origin. This agrees with (35). Note that the winding 1/3

and the double-winding 2/6 are both submodules of the torus
T2.

Equations (36) and (37) show that composition of wind-
ings (as relations) is not commutative: a cancellation (of
windings) occurs in (36) but not in (37). Equation (38)
shows that adding the winding 1/3 to its additive (semigroup)
inverse −1/3 yields 3 parallel circles having zero pitch, i.e.
3 parallel latitudinal circles including the additive identity
0/1, which is the u-coordinate circle y = 0. Equations (39)
and (40) show that composing 3/5 with its multiplicative
inverse yields 3 windings with a pitch of 1, which include
the primary winding 1= 1/1∈Q, the compositional identity.

VII. CONTROL APPLICATIONS

Consider the set Q in (12) of all rational relations rep-
resenting SISO LTI DEs, defined in the first example of
Section V. Let P= a/b∈Q represent a plant to be controlled
and suppose uPy, where u ∈C∞ = M is the plant input and
y ∈C∞ is the plant output. The goal is to specify u so that y
follows a given reference trajectory r ∈C∞.

Rational relations may be used to explain why open-
loop control cannot stabilize an unstable plant. Given an
unstable plant P ∈ Q and a reference r ∈ C∞, the control
signal u ∈ C∞ is chosen to satisfy uPr. Subtracting uPy
from this gives 0M(P−P)e where e = r− y is the tracking
error. Equation (13) of Theorem 2 gives P− P = a/b−
a/b = 0B/b⊃ 0Q, and hence 0M(P−P)e implies 0M(0B/b)e,
which is equivalent to eb = 0M by (11). Since kerb includes
unstable signals, e can be unstable. This conclusion cannot
be obtained from transfer functions: if the (nondeterministic)
relation P is approximated by a (deterministic) transfer
function P̂, then P̂− P̂ = 0, which incorrectly implies that
e = 0.

Module relations can model general feedback control
systems. Suppose that M is a module over an abelian ring
R and that P(M2) is the set of all binary relations on M.
Suppose a relation P ∈P(M2) represents a plant and that
C ∈P(M2) represents a controller. A feedback relation is
defined by

uPy (41)
eCu (42)
e = r− y, (43)

where u is the plant input, y is the plant output, r is the de-
sired value of y, and e is the error. In the case of continuous-
time nonlinear systems, M = C∞, R = R, and P and C are
relations defined by nonlinear differential equations. The goal
of feedback design is to choose C so that the relation between
input r and output e has desireable characteristics, usually to
make e small in some sense.

Composing (42) and (41) gives eCPy. Adding this to e1e
gives e(1+CP)(y+ e), which implies e(1+CP)r by (43).
This gives r(1+CP)−1e. Conversely, if r(1+CP)−1e, then
the definitions of addition, composition, and converse in
P(M2) imply the existence of u,y∈M satisfying (41), (42),
and (43). Thus, the goal is to design (1+CP)−1 via C.
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Note that the closed-loop relation (1 +CP)−1 is well-
defined in all cases. For example, CP = −1 gives (1 +
CP)−1 = 0−1, which constrains r to zero while e can have any
value in M. The relation 0−1 is partial and nondeterministic.

If C and P are total linear relations and the same is required
of (1+CP)−1, then 1+CP must be surjective. If C and P are
rational relations representing LTI DEs, then this condition is
met if C = ac/bc is proper and P = ap/bp is strictly proper;
i.e. degb> dega. In this case, (1+CP)−1 is a proper rational
relation, which may be found as follows.

Let g1 ∈GCD(bc,ap) and g2 ∈GCD(ac,bp) so that CP =
a′cg2
g1b′c
· g1a′p

g2b′p
, coprime(b′c,a

′
p), and coprime(a′c,b

′
p). Then, ap-

plication of (13), (14), and (15) of Theorem 2 gives

(1+CP)−1 =

(
1+

a′cg2

b′cg1
·

g1a′p
g2b′p

)−1

(44)

=

(
1+

a′cg2

b′c
·

a′p
g2b′p

)−1

(45)

=

(
g2b′cb′p +g2a′ca′p

g2b′cb′p

)−1

(46)

=
g2b′cb′p

g2(b′cb′p +a′ca′p)
, (47)

so g2 divides the characteristic polynomial g2(bcb′p +a′cap),
and hence kerg2 ⊆ 0M(1+CP)−1. Since (41), (42), and (43)
are equivalent to r(1+CP)−1e, (47) implies that every e ∈
kerg2 is a solution when r = 0. If kerg2 includes unstable
signals, then e can be unstable. In contrast, g2 cancels from
the transfer function approximation of (1+CP)−1. Similarly,
any uncontrollable modes in C or P (e.g. common divisors
of a′p and b′p) appear in (47), but not in the transfer function.

To find the (r,u) relation from (41), (42), and (43),
add uP(r − e) to the converse of eCu (i.e. uC−1e) and
take the converse of the result to obtain r(C−1 + P)−1u.
Conversely, r(C−1 + P)−1u implies the existence of the
realization (41), (42), and (43).

If ac 6= 0, then application of (13), (14), and (15) of
Theorem 2 gives

(C−1 +P)−1 =

(
g1b′c
g2a′c

+
g1a′p
g2b′p

)−1

(48)

=

(
g1b′cb′p +g1a′pa′c

g2a′cb′p

)−1

(49)

=
g2a′cb′p

g1(b′cb′p +a′pa′c)
. (50)

If ac = 0, then the converse of C = ac/bc is not in Q, and so
(C−1+P)−1 must be evaluated in P(M2). Applying (4), (5),

and (11), along with the fact that P is total gives

(C−1 +P)−1 =

(
bc

0
+P
)−1

(51)

=

(
bc

0

)−1

(52)

=
0
bc
. (53)

This special case also agrees with (50), since bc = g1b′c and
since ac = 0 gives g2 = bp ∈GCD(0,bp), a′c = 0, and b′p = 1.

Expressions for other closed-loop rational relations (such
as from disturbance to error) may be found similarly as
functions of the rational relations C and P.

VIII. CONCLUSIONS

In [4], feedback loops are reduced to closed-loop behaviors
by eliminating latent variables. In Section VII, we observed
that this reduction can be performed via operations (i.e.
addition, multiplication, and converse) on rational relations,
similar to the reduction of systems of transfer functions.

The set of (total) rational relations Q forms a semin-
earring. However, since every controllable rational relation
is identical in form to its transfer function expressed in
reduced form (i.e. with coprime numerator and denominator),
it follows from Theorem 2 that that any controllable rational
relation obtained from addition, composition, and converse
of other rational relations may be computed by treating them
as transfer functions and reducing the final transfer function.
Thus, the algebra of rational relations is practically the same
as the algebra of transfer functions, but rational relations
model the free response.
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