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Abstract— In this paper, a method of adjustment of the loop
gain for second order sliding modes is proposed. This approach
is based on the equivalent gain kn concept. Selection of the
loop gain is realized via introduction of a compensator which
is designed with the use of the frequency domain methods. The
proposed approach involves the describing function method.
An example of design, simulations and experimental results
are presented.
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I. INTRODUCTION

Frequency domain analysis of Second Order Sliding

Modes (SOSM) [1], [2], [3] gives a new incite on the

performance and design methods of control systems that

utilize these principles. In particular, this approach allows

for the introduction of such methods of system performance

enhancement as the chattering attenuation [4] and nonideal

disturbance rejection [5]. These two problems are a result

of the presence of parasitic dynamics in the system and are

analyzed with the use of such frequency domain methods

as the Describing Function method [6] and the Locus of a

Perturbed Relay System (LPRS) [7].

Nonideal disturbance rejection is analyzed for the averaged

motion with the use of the concept of the equivalent gain kn.

This problem is solved through increasing kn [5], which is

done via introduction of a compensator.

In this paper, a method of adjustment of the loop gain for

second order sliding modes is proposed. This approach is

based on the equivalent gain kn concept. Selection of loop

gain is realized via introduction of a compensator which is

designed with the use of the frequency domain methods. The

proposed approach involves the describing function method.

An example of design, simulations and experimental results

are presented.

The structure of this paper is as follows. Section II

contains the problem statement. Section III presents the De-

scribing Function analysis of the Twisting and Sub-Optimal

algorithms. Section IV contains the design method for the

equivalent gain: in a general form and for each of the

considered algorithms. In Section V, an example of design

is presented, with the comparison between the theoretical

results, simulations and experimental results.

II. PROBLEM STATEMENT

Consider the control loop as in Fig. 1, where W (s)
comprises the principal and parasitic dynamics of the plant,
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actuator and measurement sensor. The Second Order Sliding

Mode is the controller and D is an external disturbance.

Fig. 1. General Diagram

Due to the presence of parasitic dynamics in the system

controlled by the Second Order Sliding Mode algorithm,

which is revealed through the chattering [2] and [3], the per-

formance of the averaged dynamics is deteriorated causing

nonideal disturbance rejection [5].

The concept of the equivalent gain is applied to the steady

state analysis of systems controlled by the Second Order Sli-

ding Modes with disturbance and parasitic dynamics present.

Similar to [2] and [8], for averaged motion analysis the

SOSM is replaced with equivalent gain, kn, and the control

loop is analyzed as a linear loop. With this methodology

applied, the final value theorem can be used for the steady

state analysis. Also, the non-ideal disturbance rejection can

be mitigated via the increase of the equivalent gain.

Let the serially connected linear compensator Wc be

aimed at the increase of the equivalent gain. Replacement

of the SOSM algorithm with the equivalent gain and the

introduction of Wc in the control scheme Fig. 1 leads to the

following diagram.

Fig. 2. General Diagram Linearized

Applying the final value theorem to the system Fig. 2 we

can find the output value in the steady state via the following

formula:

yss =
D

kn + 1
(1)

from which one can see that the increase of the equivalent

gain will lead to the decrease of the error in the steady state.
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The proposed compensator Wc, has the transfer function

as in [5]:

Wc(s) =
s

δω0

+ 1
s
ω0

+ 1
(2)

where δ > 0 and ω0 is the characteristic frequency (recipro-

cal of the time constant).

The main goal of this work is to develop a way of

increasing the equivalent gain through a linear compensator

design Wc, with the objective of partial disturbance rejection

in SOSM systems.

For the design of compensator Wc and computing of the

equivalent gain, the frequency domain methods are used.

III. DESCRIBING FUNCTION FOR HOSM

This section contains some results on the describing func-

tion analysis of the Twisting and Sub-optimal algorithms

from [2] and [3], which apply to the stated purpose of the

present analysis.

A. Twisting algorithm and its Describing Function

The twisting algorithm is defined as

u = −c1sign(y)− c2sign(ẏ), (3)

where c1 > c2 > 0 are parameters of the algorithm.

Considering (3), we can present the system with the

Twisting algorithm as the following diagram, where it is

assumed that D = 0.

Fig. 3. Diagram of twisting algorithm.

The describing function for the Twisting algorithm can be

derived (considering Fig. 3) as follows [1]:

N = N1 + sN2 ≈
4c1
πa1

+ jΩ
4c2
πa2

=
4

πa1
(c1 + jc2) (4)

where a1 is the amplitude of the input to the nonlinearity

(amplitude of output y), a2 = Ωa1 and Ω is the frequency

of y(t).
Now, to obtain the periodic solution in the system y(t) (or

chattering parameters) the harmonic balance equation must

be considered and solved:

W (jω) = −
1

N(a1)
, (5)

where W (jω) is the frequency response (Nyquist plot) of

the plant. Then considering (4), one can rewrite the harmonic

balance equation as follows:

1

N(a1)
=

πa1
4

c1 − jc2
(c2

1
+ c2

2
)

(6)

Therefore, both the amplitude a1 and the frequency Ω
of chattering can be found from the point of intersection

of the Nyquist plot of the plant and the negative reciprocal

describing function of the Twisting algorithm (as in Fig. 4).

Fig. 4. DF analysis of Twisting

Once we have obtained the parameters of chattering ,

we can now compute the equivalent gains of the relays

(with respect to the propagation of constant or averaged

components of the motion) using the following formula:

knTw1 =
2c1
πa1

knTw2 =
2c2
πa1Ω

(7)

The model of the system, in which the relays are replaced

with equivalent gains, describes the dynamics with respect to

the averaged motions in the system. It will be used below for

analysis of propagation of constant (or slow varying) control

inputs and disturbances through the system.

B. Sub-Optimal algorithm and its Describing Function

The Sub-optimal algorithm is defined as follows:

u = −c · sign(y − βyMi) (8)

where c (control magnitude) and β (anticipation parameter)

are the controller parameters and yMi is the latest “singular

point” of y, i.e., the value of y at the most recent time instant

tMi (i = 1, 2, ...) where ẏ(t) = 0. This algorithm can be

presented as a relay with variable hysteresis - as shown in

Fig. 5.

Fig. 5. Diagram of Sub-Optimal algorithm

However, the describing function for Sub-Optimal is the

describing function of a relay with hysteresis the value of
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Fig. 6. DF analysis of Sub-Optimal

which is actually unknown. But assuming that during a

periodic motion, the extreme values of the output coincide,

in magnitude, with the amplitude of the oscillation, we can

obtain the describing function of the algorithm as follows:

N(ay) =
4c

πay

√

1−
b2

a2y
+ j

4bc

πa2y
(9)

where b = βymi and ay = yM . After some manipulations

(9) can be rewritten as follows:

N(ay) =
4c

πay

(

√

1− β2 + jβ
)

(10)

Like in the case of the Twisting algorithm, the parameters

of chattering in the system with the Sub-optimal algo-

rithm can be found from the harmonic balance equation

W (jω)N(a1) = −1, which can be rewritten as follows (see

also Fig. 6):

−
1

N(ay)
= −

πyM
4c

(

√

1− β2 − jβ
)

(11)

The obtained equation can be easily solved for the fre-

quency of chattering, after which the amplitude ay is ob-

tained as follows:

ay =
4cW (jΩ)

π
(12)

The equivalent gain for the Sub-Optimal algorithm knsub
is given by the following formula:

k∗n =
2c

πay
√

1− β2

knsub = k∗n (1 + β) (13)

The replacement of the algorithm with the equivalent gain

provides one with the model of propagation of constant or

slow varying control inputs and disturbances through the

system.

IV. WAY OF COMPUTING THE EQUIVALENT GAIN

The main idea was to find an expression that relates the

equivalent gain value with the compensator, Wc, particularly

with the design parameters, δ and ω0. Then with help of the

harmonic balance equation we obtained the next equation

Wc(jω)W (jω) = −
1

N(a)
(14)

where transfer function of Wc is presented above. Now

considering that the negative reciprocal of the describing

function for SOSM has real part and imaginary part, equation

(14) can be written as

[ReWcReW − ImWcImW (jω)] +

j [ReWcImW + ImWcReW ]

= −Re
1

N(a)
− jIm

1

N(a)
(15)

ReW and ImW are real part and imaginary part of sys-

tem(plant+parasitic dynamics), respectively. For Wc (2) real

part and imaginary part are given as

ReWc =

ω2

δω2

0

+ 1

ω2

ω2

0

+ 1

ImWc =
ω

δω0

− ω
ω0

ω2

ω2

0

+ 1

the characteristic frequency ω0 (reciprocal of the time con-

stant) of the compensator is selected from the following

consideration: the mid-frequency of the compensator ωmid =
√

δω2

0
must coincide with the mid-frequency of the range

between the maximal frequency of the plant input and the

frequency of chattering:

ωmid =
√

δω2

0
=

√

ωmaxΩ

ω0 =

√

ωmaxΩ

δ
(16)

where ωmax is the maximal frequency of the system band-

width and Ω is the frequency of chattering.

Therefore, equating the real and imaginary parts of (15)

and considering that N(a) can be written as N(kn), we

obtain the following two equations

ReWΩ2
0 + ϕ2ReW − ImWΩ0ϕ

1

x
+ ImWϕx

x2Ω2

0
+ ϕ2

= −Re
1

N(kn)
(17)

ImWΩ2

0
+ ϕ2ImW +ReWΩ0ϕ

1

x
−ReWϕx

x2Ω2

0
+ ϕ2

= −Im
1

N(kn)
(18)

where ReW = ReW (jΩ0), ImW = ImW (jΩ0), x =
√
δ

and ϕ =
√
ωmaxΩ. Then, replacing right part of (17) and

(18) by the negative reciprocal of the describing function of

a SOSM, there is a set of equations which can be solved for

finding the two variables desired, δ and kn.

Two SOSM, Twisting and Sub-optimal, are considered in

this work. The equations corresponding to this algorithms

are shown in following subsection.
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A. Adjustment of equivalent gain for Twisting

Considering the right-hand part of (4) and the equivalent

gain (7) the negative reciprocal of the describing function

for Twisting as a function of knTw is:

−
1

N(knTw)
=

2c21
4knTw (c2

1
+ c2

2
)
− j

2c1c2
4knTw (c2

1
+ c2

2
)

(19)

Then replacing (19) in (17) and (18) we can solve the set

of equations as shown below. The value of knTw is obtained

from (17).

knTw =

2Ω2
0c

2
1x

2 + 2ϕ2c21
4 (c2

1
+ c2

2
)
[

ReWΩ2

0
+ ϕ2ReW − ImWΩ0ϕ

1

x
+ ImWΩϕx

]

(20)

Via replacing knTw in (18), δ(or x2) is obtained as

[

c2
c1
ImWΩ0c1ϕ−ReWΩ0ϕ

]

x2

+

[

ImWΩ2

0
+ ImWϕ2 +

c2
c1
ReWΩ2

0
+

c2
c1
ReWϕ2

]

x

+

[

ReWϕ−
c2
c1
ImWΩ0ϕ

]

= 0 (21)

In summary, the adjustment of the equivalent gain can be

done via the following steps:

1) With the steady state value (1) we compute the equiva-

lent gain knTw which corresponds to the desired steady

state.

2) Select some initial value for frequency Ω0 (will be-

come mid frequency between Ω−1decade and Ω) and

compute ReW and ImW
3) Find the value of δ through (21) and the values of step

2, and replace them in knTw

4) Compare the value of knTw obtained with the value

desired at step 1, if knTw not is satisfactory, return to

step 2 to find the desired knTw.

B. Adjustment of equivalent gain for Suboptimal

For the case of Sub-optimal the developed approach is

similar to the case of the Twisting algorithm and the itera-

tions are similar; the only difference is the use of respective

equations for knsub and δ.

Considering (11), (13) and (17), write the expression for

knsub

knsub =

−
1

2

(1 + β) Ω2
0x

2 + (1 + β)ϕ2

ReWΩ2

0
+ ϕ2ReW − ImWΩ0ϕ

1

x
+ ImWΩ0ϕx

(22)

and the expression for calculating δ is

[ReWΩ0ϕ−BImWΩ0ϕ] x
2

−
[

ImWΩ2

0 + ImWϕ2 +BReWΩ2

0 +BReWϕ2
]

x

+ [BImWΩ0ϕ−ReWΩ0ϕ] = 0 (23)

where B = β√
1−β2

.

As one can see, for the Sub-optimal algorithm knsub does

not depend on parameter c. Therefore, we can conclude that

c does not “participate” in the disturbance rejection. The

only parameter that has an effect on that is β. Unlike in

the Sub-optimal algorithm, in the Twisting algorithm the

two parameters, c1 and c2, have effect on the disturbance

rejection.

In the following section we present an example of the

equivalent gain adjustment.

V. TEST EXAMPLE

Consider the following mass-spring-damper system of

Education Control Products ECP, see Fig. 7

Fig. 7. Mass-Spring-Damper system, ECP

The model of system of Fig. 7 is shown below

ẋ1 = x2

ẋ2 = −
k1 + k2
m1

x1 −
c1
m1

x2 +
k2
m1

x3 +
1

m1

ua

ẋ3 = x4 (24)

ẋ4 =
k2
m2

x1 −
k2 + k3
m2

x3

y = x3

The model is divided in two parts, with the objective

of having the principal and parasitic dynamics, x1 and x2

are the dynamics of actuator(parasitic dynamics), ua is the

actuator input generated by the SOSM. The input of the plant

is x1 and, x3 and x4 are the position and velocity of mass,

respectively, then the output y is the position of the mass x3.

The maximum displacement of y is ±3 (cm).

The values of the parameters of system ECP are, consid-

ering Fig.7 from left to right: damper coefficient c1 = 15,

spring constant k1 = 800[N
m
], mass m1 = 1.28[kg], spring

constant k2 = 800[N
m
], mass m2 = 1.05[kg], and spring

constant k3 = 450[N
m
].

The objective of control is to keep the position of the mass

y in the equilibrium point despite the presence of disturbance

using the Twisting algorithm and Sub-optimal algorithm. The

equilibrium point is the position y = 0 (m).

The model of mass-spring-damper (24) can be obtained as

the next block diagram which is the control diagram of the

test, where ua is the actuator input, u is actuator output and

control input of the plant.
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Fig. 8. Block Diagram with mass-spring-damper system

Then, computed the equivalent gain kn of SOSM, the

steady state error of the output y for the disturbance d is

yss =
952380 · d

1011900+ 595.2381 · kn
(25)

So that increasing the equivalent gain kn of SOSM the effect

of the disturbance d in the plant can be attenuated.

The SOSM controllers used in the test are

uTw = −8 · sign(y)− 6 · sign(ẏ) (26)

usub = −10 · sign(y − 0.5yMi) (27)

The maximal frequency of the system input is wmax =
50.1(rad/sec), the amplitude of the oscillations, the fre-

quency of oscillations and the equivalent gain, for both uTw

and usub, are shown in Fig. 9 and Fig. 10, respectively.

Let D = 1(cm) as the disturbance in the system. The

steady state values using (25) of the output of system are:

yssTw = −8.3(mm)

yssSub = −7.2(mm)

where yssTw is the steady state value for system controlled

by Twisting and yssSub is the steady state value for Sub-

optimal.

Now, applying the proposed algorithm to the computing of

the equivalent gain, we start with Step 1. The desired values

are yssTw = −7.1(mm), 15 percent down of the uncom-

pensated system and yssSub = −5.7(mm), 20 percent down

of the uncompensated system. Therefore, the equivalent gain

value required for the Twsiting and Sub-optimal algorithms

are knTw ≈ 550 and knsub ≈ 1100.

Step 2: the frequencies selected for finding ReW and

ImW are as follows: for Twisting ΩTw = 31(rad/sec) and

for Sub-optimal ΩSub = 32(rad/sec). Step 3: the values

obtained in Step 2 give the following result: δTw = 7.6830
for Twisting and δSub = 4.6253 for Sub-optimal. The

corresponding compensators are

WcTw
(s) =

0.007989s+ 1

0.06138s+ 1
(28)

WcSub
(s) =

0.01043s+ 1

0.472s+ 1
(29)

Step 4: the Fig. 9 and Fig. 10 show the equivalent gains

and oscillations parameters obtained with WcTw and Wcsub,

respectively.
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Fig. 9. DF analysis for uncompensated and compensated system controlled
for Twisting
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Fig. 10. DF analysis for uncompensated and compensated system con-
trolled for Sub-optimal

In tables I and II the values of Fig. 9 and Fig. 10,

respectively, are compared with the desired values of steps

1 and 2.

It can be seen from the tables that the result of adjustment

of knTw and knSub has a good approximation, because

the desired values are similar to the computed values. The

percentage of steady state error desired for each algorithm is

the percentage most big reach with the proposed algorithms.

The results of the simulations of steady oscillatory

modes(chattering) of the system controlled by Twisting and

Sub-optimal are in the table III.

A. Exprimental results

The disturbance constant is applied inclining the system,

see Fig. 11, then with the disturbance about the system, the

experiment is the next: the first 5 seconds the system without
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TABLE I

COMPARISON TABLE OF ADJUSTMENT OF knTw

Values yssTw(mm) knTw ΩTw(rad/sec)
Desired −7.1 550 31
Calculated (FD) −7.2 530.5 31.1

TABLE II

COMPARISON TABLE OF ADJUSTMENT OF knsub

Values yssSub(mm) knSub ΩSub(rad/sec)
Desired −5.7 1100 32
Calculated −5.9 1040.6 32.1

compensator is present, finally the compensator is activated

in the interval from 5 to 10 seconds. The experimental results

are present for both algorithms in the Fig. 12.

Fig. 11. Disturbed system
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Fig. 12. Experimental results of steady state for Twisting (Above) and
Sub-optimal (below)

As can be seen, the experimental results show the effect of

compensator about the steady state of the system, there are

difference between the theoretical results, obtained with DF,

with the simulation and experimental results but the values

are close.

VI. CONCLUSIONS

The design of the equivalent gain for SOSM controlled

systems aimed at the adjustment of the loop gain for dis-

turbance rejection is proposed. This is done with the use

of a compensator. The way proposed allow to choose the

TABLE III

COMPARISON TABLE OF ADJUSTMENT

Values yssTw(mm) yssSub(mm)
Simulation −5.4 −7
Experiment −5.2 −6.6

chattering frequency and steady state error considering the

operation desired of the system.

The provided example of design and simulations show

a good approximation between the theoretically predicted

performance, the performance assessed via simulations and

the experimental results.

This work has a logical direction of development: the

approximate method of analysis used in the present work can

be replaced with the exact LPRS (Locus of a perturbed relay

systems) method; and the same methodology can be extended

to other second-order sliding mode control algorithms.
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