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Calibrating Energy Conversion Networks for Utility
Optimization and Risk Management

Patrick Mousaw and Jeffrey Kantor

Abstract— We demonstrate modeling and pa-
rameter estimation of flexible energy systems used
in campus and municipal scale utilities with com-
plex energy requirements, multiple fuel sources,
and requiring substantial operational flexibility.
Useful models should accurately predict the work
production of these flexible utilities. A framework
for such a model is a class of bilinear models for
estimating the efficiency of complex and flexible
energy utilities [9]. This framework, which we
call Energy Conversion Networks (ECN), may be
used to determine financially optimal operating
conditions and opportunities for financial and
operational hedging by the utility operator [8],
[10].

Given an ECN model, we compute a unique
input-output mapping from the decision variables
and heat input to work output.

Multiple network realizations may be possible
from a given input/output model. Work output
from these models are expressed as rational
functions of entropy flux with parameters of
temperatures, thermal conductances, and engine
efficiencies.

Using plant data from a report published by
the California Energy Commission [6], we demon-
strate fitting this data on several network realiza-
tion examples. We use measured work output as a
function of heat input to calibrate a model. Heat
rate curves are the most common way these data
are typically available. We developed a data fitting
procedure to determine the parameters resulting
in the best calibrated model given a particular
network model and data set.

I. INTRODUCTION

Management of energy utilities is challeng-
ing due to the uncertainties and limited op-
erational flexibility. Sources of uncertainties
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include market prices for fuels and purchased
electricity and the demand for heating, cooling,
and electricity. An operator also has limited
operational flexibility such as deciding whether
to generate or purchase options and futures on
fuels, purchase and store certain fuels, and enter
into interruptible contracts for fuel and elec-
tricity. Financial optimization of energy utilities
must incorporate these uncertainties and flexi-
bilities to determine an optimal strategy.

The focus of our research is on developing
models, techniques, and providing insight in
characterizing the financial operation of flex-
ible fuel energy systems. Integration of the
energy utility operations, financial instruments,
and contractual elements must be incorporated
to maximize the value of energy production.
Our group [1], [2], [8], [10] and others [3],
[4], [11] have shown the value of integrating
hedging with operational decisions in energy
applications. In particular, we previously intro-
duced a class of bilinear models for Energy
Conversion Networks (ECN) that incorporate
principles from finite-time thermodynamics [5].
In this paper we show how to calibrate these
models for use in the economic optimization
and risk management of flexible fuel utilities.

This paper seeks development and calibra-
tion of the bilinear models capturing the com-
plex behavior between heat input and work
output in an energy conversion utility. The data
for the heat input and work output behavior are
often captured in the form of heat rate curves.

A network realization consists of several heat
nodes and at least one engine connected by
thermal links. Multiple network realizations are
possible for a given heat input/work output
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model. The heat input and work output from
these models can be expressed as rational func-
tions of entropy flux σ and the parameters.

Parameters are estimated for a given network
realization using the least squares method. Fi-
nancial optimization with a calibrated model
allows for risk management analysis to be done.

The following sections of this paper include
a review of the ECN framework, network real-
ization illustration that demonstrates that heat
input and work output can be expressed as
rational functions of entropy flux σ, followed
by parameter estimation to plant data using the
least squares fit method.

II. ENERGY CONVERSION NETWORK
FRAMEWORK

The basic concept behind the ECN frame-
work is to break down the energy utility into
simple building blocks. These building blocks
include heat nodes, heat transport via thermal
links, heat engines, heat pumps, and work
nodes. The collection of these building blocks
form a class of bilinear models that incorpo-
rates the first and second laws of finite-time
thermodynamics and are used to estimate the
efficiency and predict the performance of real
energy utilities.

Heat Node: Heat nodes (Fig. 1) are the most
common building blocks of the models. Each
heat node is characterized by a temperature
Ti and external heat flux Qi. Heat nodes are
connected by thermal links, heat engines, or
heat pumps. A heat node accepting a heat flux
represents the energy flux or power entering the
node while one emitting a heat flux represents
the rejection of heat.

Qk Tk

Fig. 1. External heat transport to a heat node

Heat Transport and Thermal Links: Heat
transport between two heat nodes is represented
by a thermal link (Fig. 2). We use Newton’s law
for heat transport in this model (Eq. 1).

Ti

Tj

Qi→j

Fig. 2. Heat Transport between two heat nodes

Qi→j = Kij (Ti − Tj) (1)

Heat Engines: Equipment producing work
are represented by heat engines in our frame-
work (Fig. 3). Each heat engine is modeled
between two heat nodes and is assumed to
be externally adiabatic (Q+ = Q− +W ) and
is characterized by an isentropic efficiency η,
work flux W , and entropy flux σ. The equa-
tions for isentropic efficiency, entropy flux, heat
fluxes, and work output for the mth heat engine
(m indexing all heat engines and pumps) are
(Eq. 2-6):

Tim

σm

Q+
m

Tjm

Q−m

Wm

Tjm

σm

Q−m

Tim

Q+
m

Wm

Fig. 3. Heat Engine and Heat Pump

ηm = Wm

WRev
m

(2)

σm =
Q+
m

Tim
(3)

Q+
m = σmTim (4)

Wm = ηmσm (Tim − Tjm) (5)

Q−m = (1− ηm)σmTim + ηmσmTjm (6)

Heat Pumps: Equipment that consumes
work is represented by heat pumps in our
framework (Fig. 3). Work flux is negative for a
heat pump but positive for a heat engine. The
modeling and characterization of heat pumps in
this framework are the same as with heat en-
gines with each heat pump being characterized
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by an isentropic efficiency η, a work flux W ,
and entropy flux σ and modeled between two
heat nodes assumed to be externally adiabatic.
The equations for heat fluxes and work output
for the mth heat pump are (Eq. 7-11):

ηm =
WRev
m

Wm
(7)

σm =
Q+
m

Tim
(8)

Q+
m = σmTim (9)

Wm =
1

ηm
σm (Tim − Tjm) (10)

Q−m =

(
1− 1

ηm

)
σmTim +

1

ηm
Tjm (11)

Work Nodes: Work nodes combine work
output and input from heat engines and pumps
to provide a cumulative work flux. This allows
work of the same value to be combined. Con-
servation of work at a work node is required.
This is particularly important when a heat pump
requires work from a heat engine to operate; a
heat pump can only use the amount of work
generated by the heat engine, a constraint cap-
tured by the work node in between them. Work
nodes are represented by a small circle where
work fluxes are combined.

Bilinear Models: The collection of these
simple building blocks form bilinear models.
These models are combined with a financial ob-
jective function to form an optimization prob-
lem, given by Eq. 12a - 12d:

min
T,σ

f = Rᵀq − Sᵀw (12a)

s.t. q =

(
K +

∑
m
Emσm

)
T (12b)

w =

(∑
m
Wmσm

)
T (12c)

TL ≤ T ≤ TU

σL ≤ σ ≤ σU

qL ≤ q ≤ qU

wL ≤ w ≤ wU

(12d)

This optimization problem has the following
structure. N , M , and P are the number of
heat nodes, engines, work nodes, respectively.
q is a length N vector of heat flux and w is
a length M + P vector of work flux. R is
a length N vector of heat input (fuel) costs
and S is a length M + P vector of work
values. K is a M × M matrix of thermal
links. Em is a N × N matrix containing the
isentropic efficiency (ηm) for the mth engine
and is used for the heat flux calculation. Wm

is a (M + P )×N matrix containing isentropic
efficiency for the mth engine and is used for
the work flux calculation.

This optimization problem is bilinear in na-
ture since both q and w have the term σT
present. We reported a solution technique to
this bilinear optimization problem in a previous
paper [9] but it will not be discussed in this
paper.

III. NETWORK REALIZATION
ILLUSTRATION

We review three network realizations for use
in fitting heat input/work output data. These are
a two heat node/one engine realization (Fig. 4),
a three heat node/one engine realization (Fig.
5), and a four heat node/one engine realization
(Fig. 6).

T1

σ W

T2

Q1

Q2

Q+

Q−

K12(T1 − T2)

Fig. 4. 2 heat nodes/one engine

The two heat node/one engine system has
the following equations for the heat nodes and
work:

Q1 = K12 (T1 − T2) + σT1 (13)
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Fig. 5. 3 heat nodes/one engine
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Fig. 6. 4 heat nodes/one engine

Q2 = −K12 (T1 − T2)
− (1− η)σT1 − ησT2 (14)

W = ησ (T1 − T2) (15)

Since we assume T1 is an unknown constant,
T1, η, and K12 are parameters and T2 is a know
constant, Eq. 13 and Eq. 15 are the rational
functions of σ and the parameters for Q1 and
W , respectively for the 2 heat node/one engine
realization.

The three heat node/one engine system has
the following equations for heat nodes and
work:

Q1 = K12 (T1 − T2) (16)

0 = −K12 (T1 − T2)
+K23 (T2 − T3) + σT2 (17)

Q2 = −K23 (T2 − T3)
− (1− η)σT2 − ησT3 (18)

W = ησ (T2 − T3) (19)

Using these equations and solving for W in
terms of σ and the parameters result in Eq. 20:

W = ησ

(
−T3σ +K12 (T1 − T3)

σ +K12 +K23

)
(20)

Solving for Q1 in terms of σ and the parameters
result in Eq. 21:

Q1 =
K12T1σ +K12K23 (T1 − T3)

σ +K12 +K23
(21)

The equations for the four heat node/one
engine and work for this system are:

Q1 = K12 (T1 − T2) (22)

0 = −K12 (T1 − T2)
+K23 (T2 − T3) + σT2 (23)

0 = K23 (T2 − T3) +K34 (T3 − T4)
− (1− η)σT2 − ησT3 (24)

Q2 = −K34 (T3 − T4) (25)

W = ησ (T2 − T3) (26)

Using these equations and solving for W in
terms of σ and the parameters results in Eq.
27:

W = ησ

(
f (σ)

g (σ)

)
(27)

where f (σ) and g (σ) are given by Eq. 28 and
Eq. 29, respectively:

f (σ) = (−K12T1 −K34T4)σ

+K12K34 (T1 − T4) (28)

g (σ) = −ησ2 + (K34 − ηK12)σ

+K12K23 +K12K34 +K23K34 (29)

Solving for Q1 in terms of σ and the parameters
results in Eq. 27:

Q1 =
h (σ)

g (σ)
(30)
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where g (σ) is given above (Eq. 29) and h (σ)
is given by Eq. 31:

h (σ) = −ηK12T1σ
2 +K12K34T1σ

+K12K23K34 (T1 − T4) (31)

Eq. 20 and Eq. 27 are not equivalent, thus
the three heat node/one engine and four heat
node/one engine systems are not equivalent.
However, one simplifying case where these
models are equivalent is when the four heat
node/one engine system has the following prop-
erty:

K34 →∞ (32)

This can be shown by dividing both the
numerator and denominator of Eq. 30 by K34.
As K34 → ∞, this manipulation will make
all terms except those containing K34 in this
equation to go towards zero. The remaining
terms produce Eq. 20.

IV. PARAMETER ESTIMATION

The following example uses data from a
California Energy Commission report from
1998 [7]. The report contains detailed heat
input/work output data for the Moss Landing
7 and Hunters Point 3 units. This example
focuses on these units to demonstrate param-
eter estimation using the network realizations
introduced above.

Given a set a work input/heat output data,
we seek a network realization that captures the
behavior of the data. More complex network
realizations help to fit the data better but also
requires more parameters to estimate.

One method of finding estimates of these
parameters is by using the least squares fit. If
p represents the parameters to estimate and Qi
and Wi are the heat input and work output,
respectively, for the ith data point, the least
squares method is given by Eq. 33.

min
p

∑
i

(
Ŵ (p,Qi)−Wi

)2
(33)

Using each set of network realizations and
each set of data, parameters were estimated

using the least squares fit. We assumed the
initial temperature T1 is an unknown constant
for all realizations and the final heat node (T2
in the two heat node/one engine, T3 in three
heat node/one engine model, T4 in the four heat
node/one engine model) has a temperature of
277.6 K. For each simulation, the parameters
to estimate were T1, all thermal links, and η
(the isentropic efficiency of the engine).

Fig. 7 summarizes the residual using each
of these models on the Moss Landing 7 unit.
Fig. 8 summarizes the residuals using each of
these models on the Hunters Point 3 unit. There
is a vast improvement in fit going from a two
heat node/one engine to a three heat node/one
engine network realization. There is very lit-
tle improvement in fit going to the four heat
node/one engine from the three heat node/one
engine network realization.

Fig. 7. Residuals for each model on Moss Landing 7 data

Table I and II summarize the results for both
network realizations.

Parameter 2 Heat Node 3 Heat Node
K12 N/A 41.50 MW/K
K23 0.469 MW/K 0.745 MW/K
T1 562.1 K 518.0 K
η 0.822 1.0

error2 1958.9 118.0

TABLE I
MOSS LANDING 7 PARAMETER ESTIMATES
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Fig. 8. Residuals for each model on Hunters Point 3 data

Parameter 3 Heat Node 4 Heat Node
K12 N/A 10.61 MW/K
K23 0.103 MW/K 0.218 MW/K
T1 439.9 K 426.9 K
η 0.789 1.0

error2 103.0 1.143

TABLE II
HUNTERS POINT 3 PARAMETER ESTIMATES

V. CONCLUSIONS

Three network realization were reviewed and
equations for the heat input and work output as
rational functions of entropy flux and the pa-
rameters for each realization were determined.
These network realizations were used to fit
plant data. Going from a two heat node/one
engine to a three heat node/one engine network
realization resulted in a significant fit improve-
ment. The improvement in fit of going to a
four heat node/one engine network realization
is minimal.
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