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Abstract— An active fault diagnosis (AFD) approach for
different kinds of faults is proposed. The AFD approach excites
the system by injecting a so-called excitation input. The input
is designed off-line based on a sensitivity analysis in order that
the maximum sensitivity for each individual system parameter
is obtained. Using the maximum sensitivity results in better
precision in the estimation of the corresponding parameter. The
fault detection and isolation is done by comparing the nominal
parameters with those estimated by an extended Kalman filter.
In this study, Gaussian noise is used as the input disturbance as
well as the measurement noise for simulation. This method is
implemented on a large scale livestock hybrid ventilation model
which was obtained during previous research.

I. INTRODUCTION

THE performance of modern control systems typically

depends on a number of strongly interconnected compo-

nents. Component faults may degrade the performance of

the system or even result in a loss of functionality. In

applications such as climate control systems for livestock

buildings, this is unacceptable as it may lead to a loss

of animal life. The methods for detection and isolation of

component faults are either passive or active. Passive fault

diagnosis (PFD), without acting upon the system decides if

a fault has occurred based on observations of the system

input and output. In active fault diagnosis (AFD), a diagnoser

generates a so-called excitation input, which shapes the

input to the system, in order to decide whether the output

represents normal or faulty behaviour and if it is possible

to decide which kind of fault has occurred. There are two

perspectives for the benefit of AFD. The first one is to

identify the faults that may be hidden due to the regulatory

actions of controllers during the normal operation of the

system. The second is to isolate the faults in systems with

slow responses. Fault diagnosis of hybrid systems attracts the

attentions of researchers because complex industrial systems

involve both discrete and continuous components. Examples

of AFD for linear system are in [3], [11], [12], [13] and

[16]. AFD of hybrid systems has been addressed in [2], [5],

[7], [6], [15] and [17]. In [17] and [7] the AFD approach is

based on generating the excitation inputs online, and using

model predictive control (MPC). The idea of AFD in [5]

is quite different and uses selectively blocking or executing

controllable events such that the fault detection is faster

and more precise. In [2] the problem is addressed as a
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Nomenclature

k, leak, c, d constants
a opening angle of the inlets
∆Pinlet the pressure difference across

the opening area of the inlet
i the zone number
ρ the outside air density
Vref the ambient wind speed
CP the wind pressure coefficient
H Height
HNLP NLP stands for the neutral pressure level
Pi pressure inside zone i
g gravity constant
Vfan fan voltage of the chimney in the stable
CPoutlet

the wind pressure coefficient
Ti and To temperature inside and outside the stable
m1,m2 constants,

qsti−1,i, q
st
i,i+1

stationary flows between two adjacent zones

Qin,i, Qout,i heat transfer by mass flow
Qi−1,i heat exchange from zone i− 1 to zone i
Qi,i−1 heat exchange from zone i to i− 1
Qconv convective heat loss through the building

envelope and described as
UAwall(Ti − To)

Qsource the heat source
ṁ mass flow rate
cP heat capacity
FA actuator faults
Ni regions neighbouring region i

θ̂, θ∗, θN and θ ∈ Rl the estimated, true, nominal and running
parameter vectors of the system

v(k) and w(k) disturbance and measurement noises
ym and y output prediction and the measurement
ζ, ξ a white Gaussian sequence
σ, λ singular and eigenvalue
fi vector fields of the state space description.
gi a known function.

discrete event system and a finite state machine is used

to guide the identification. In this paper, as in [13] and

[14], we design the excitation inputs for AFD in an off-line

mode. A benefit of off-line input design is that the online

computational efforts of the fault diagnoser can focus only on

the detection/isolation problem. This benefit is considerable

when the system comprises a large number of inputs. Our

approach embarks from a sensitivity analysis in order to

generate the inputs. Here, the amplitude and frequency of the

inputs are defined such that the maximum sensitivity value

for each parameter of the system is obtained. Note that it

is also possible to limit the value of the input signal by

defining a boundary on the signal in the sensitivity analysis

problem. Shaping the input according to the sensitivity

analysis allows faults in the parameters to be easily identified.

Finding the highest sensitivity for each parameter is a non-

convex optimization problem. In order to solve a non-convex

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 244



optimization problem with classical approaches, it must be

reformulated as a convex problem. This reformulation is

possible as long as some necessary conditions are satisfied,

which is not always feasible. Hence we have used a genetic

algorithm (GA) to solve the problem. The excitation inputs

are applied in open loop and the required parameters of the

system are estimated by the extended Kalman filter (EKF).

By comparing the normal with the estimated parameters

of the system, different incipient and severe faults can be

identified. Note that it is not desirable to disturb a system

continuously, therefore at first, the abnormal behaviour of the

system is observed by a common PFD method, and then the

AFD approach is applied over a shorter period. The climate

control problem, used in the current research, is stable in

open loop mode and application of the AFD over a short

period does not destabilize it. However, for systems which

are unstable in open loop, stabilization guarantees should

be considered in the AFD algorithm. These guarantees are

provided by the satisfaction of stability constraints.

This paper is organized as follows. Section II presents

the preliminaries and problem formulation. The design of

the input using sensitivity analysis is discussed in Section

III. Section IV is dedicated to the EKF setup. An example

is presented in Section V, and the experimental setup is

discussed in VI. The results are given in Section VII, while

the conclusion is presented in the last section.

II. PRELIMINARIES AND PROBLEM

FORMULATION

A. State-Input Dependent Nonlinear Switching Systems

The class of systems considered here are hybrid nonlinear

systems with uncontrollable state-input dependent switching:

x(k + 1) = fi(x(k), u(k), k, θ, FA, v(k)), for

[

x(k)
u(k)

]

∈ Xi

(1)

ym(k) = Cx(k) + Fs + w(k), (2)

where FA and Fs are the actuator and sensor faults, u(k) ∈
R

m is the control input and x(k) ∈ R
n is the state, and

ym(k) ∈ R
p is the output. All variables are at time k, the

sets

Xi∆{
[

x(k)Tu(k)T
]T |gi(x, u) ≤ Ki, i = 1, . . . , s} (3)

are manifolds (possibly un-bounded) in the state-input space,

θ ∈ Rl is the parameter vector, v(k) and w(k) are the

disturbance and measurement noise respectively, fi are vec-

tor fields of the state space description, and gi is a known

function. Here, it is assumed that the hybrid system is

continuous:

fi(x∗(k), u∗(k)) = fj(x∗(k), u∗(k) j ∈ Ni (4)

where (x∗(k), u∗(k)) are the sampling points corresponding

to the boundary between two neighbouring regions and Ni is

the region neighbouring region i. Here, only the actuator fault

is considered; however, we believe that it is also possible to

detect the sensor fault by this parameter estimation technique

and this will be considered in future work.

B. General Problem of AFD and Main Work

In the current research, the system parameters are related

to the actuators. Assume that a faulty actuator is used rarely

during the normal operation of the system, and hence has

little effect on the system response. Consequently, its param-

eter is not identified correctly and a fault is not detected. In

order to detect correctly the faulty behaviour of the system,

a sequential input signal over a finite time interval is applied

to the system. At the end of the interval, a fault isolation

algorithm is executed to isolate the fault. Excitation of the

system by the input leads the actuator to affect the system

response; therefore the parameter may be estimated more

precisely and the fault becomes observable. The main work

is separated into two parts:

1) Design of the excitation input, off-line and relying on

so-called sensitivity analysis in order that the maxi-

mum sensitivity for each individual system parameter

is obtained.

2) Deriving the fault isolation algorithm, based on estima-

tion of the system parameters with EKF and comparing

those parameters with the normal values. The values

are considered as a prior knowledge of the system.

III. DESIGN OF EXCITATION INPUT USING GA

AND SENSITIVITY ANALYSIS

The goal is to design the excitation input using sensitivity

analysis for more precise parameter estimation and conse-

quently better fault isolation. To achieve this goal, first we

analyse a parameter estimation algorithm based on a least

mean square (LMS) method where the measurement signal

includes noise, and a criterion for better estimation by the

LMS algorithm in the presence of noisy signal is shown.

Then the correspondence between the parameter estimation

LMS algorithm and sensitivity analysis is described. Finally

the excitation input signal is designed using GA and sensi-

tivity analysis.

Let us assume that the problem is to estimate the system

parameters through the following LMS approach.

θ̂ = argmin
θ

P (u, y, θ, ξ) (5)

where the performance function P is given by

P (u, y, θ, ξ) =
1

2N

N
∑

k=1

ǫ2(k, u, y, θ, ξ) (6)

ǫ(k, θ, ξ) = ym(k, θ)− y(k, ξ), (7)

where ξ is the noise signal, y(k, ξ) is the measurement

signal approximated as y(k, ξ) = ym(k, θ∗, ξ), ym(k, θ∗, ξ)
is the output of the model when it depends on the noise

signal ξ, and ym(k, θ) is the output of the model when

it does not depend on the noise signal ξ, we assume ξ

is zero. Estimated, running and true parameter vectors are
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represented by θ̂, θ, θ∗. In the following we omit u and y

from the notation. Consider the following definitions:

θ∗ = argmin
θ

P (θ∗, 0) ⇒ [DθP ] (θ∗, 0) = 0 (8)

θ̂ = argmin
θ

P (θ̂, ξ) ⇒ [DθP ] (θ̂, ξ) = 0. (9)

Let the performance function be approximated using the

first and second order terms of a Taylor series expansion with

respect to θ and ξ at θ∗ and 0:

P (θ, ξ) ≈ P (θ∗, 0) + [DθP ](θ∗, 0)(θ − θ∗) + [DξP ](θ∗, 0)ξ
(10)

+(θ − θ∗)T [Dθ,θP ](θ∗, 0)(θ − θ∗) + ξT [Dξ,ξP ](θ∗, 0)ξ

+ξT [Dθ,ξP ](θ∗, 0)(θ − θ∗) + (θ − θ∗)[Dξ,θP ](θ∗, 0)ξ

where DθP = ∂P
∂θ

and Dθ,ξP = ∂2P
∂θ∂ξ

. In order to derive the

parameter θ from the smooth performance function P (θ, ξ),
we apply the partial derivative of (9) on the performance

function, the result is:

2[Dθ,θP ](θ∗, 0)(θ̂ − θ∗) + ξT [Dθ,ξP ](θ∗, 0) (11)

+[Dξ,θP ](θ∗, 0)ξ = 0 ⇒
H(θ̂ − θ∗) = ζ,

where H = [Dθ,θP ](θ∗, 0), and ζ = ξT [DθξP ](θ∗, 0) +
[DξθP ](θ∗, 0)ξ. ζ is the noisy signal, thus its large error

should cause a small error in θ̂ − θ∗. This means that the

condition number of matrix H should be small [14]. The

condition number of the matrix H is:

κ(H) =
σmax(H)

σmin(H)
, (12)

where σmax and σmin are the maximum and minimum of the

singular values of the Hessian matrix H . In fact, assuming

a small value of the condition number κ(H), the LMS

algorithm is able to estimate the parameter of the system

more precisely in the presence of the noise.

Here, we specify the importance of (12) from the sen-

sitivity analysis point of view. According to [9], a larger

value of sensitivity for parameter θ leads to a smaller

deviation of θ from the true value θ∗ generates significant

deviation in the value of ǫ. This fact results in more precise

parameters estimation, as it is obvious from (5) to (7), and

as discussed in detail in [9]. For obtaining high sensitivity

for the entire system parameters, the ratio of maximum to

minimum sensitivity should be small, i.e,

R =
Smax

Smin

=

√
λmax√
λmin

=
σmax(H)

σmin(H)
(13)

where the sensitivity is S = ∂ǫ
∂θ

and λ is the eigenvalue

of the Hessian matrix of H . As is obvious, the ratio in

(13) is equal to the condition number (12), which shows

the correspondence between the sensitivity analysis and

parameter estimation algorithm based on the LMS approach.

In the following, we assume the input is a sinusoidal signal

and its amplitude α and frequency f are designed so that the

minimum R is obtained:

U = αsin(2πft) (14)

(α, f) = argmin
α,f

R (15)

s.t.







(1)
αmin 6 α 6 αmax

fmin 6 f 6 fmax

where αmin and αmax are minimum and maximum values

of α, and fmin and fmax are the minimum and maximum

values of f. In some cases, it may be necessary to consider

more than one periodic signal in U for estimation of different

parameters.

Equation (15) is non-convex and non-differentiable. To

solve the problem with classical approaches, the problem

must be changed to a convex problem by defining some

constraints. Obtaining these constraints is not always feasible

and is considered an open issue in the literature: see [10]. Us-

ing evolutionary search algorithms such as GA avoids having

to change the problem to a convex one. As the optimization

problem is calculated off-line, the computational effort is not

important. The reader is referred to [4] for more details of

the GA.

IV. THE EKF SETUP

The aim of using the EKF is to estimate the parameters

after exciting the system by the designed inputs. The abnor-

mal behaviour of the system is detected from the estimated

parameters.

According to a current literature survey about Kalman

filtering (KF), [1] and [18], the EKF is similar to the

parameter estimation procedure using the LMS approach

as in (5). Hence, the result of the sensitivity analysis for

parameter estimation problems based on the LMS approach

is also relevant for the EKF.

The performance of the EKF depends on the matrix

P . This matrix is independent of the system inputs, when

the system operating point is constant, as in the station-

ary Kalman filter. The EKF algorithm approximates the

nonlinear system by a Taylor series expansion around an

operating point for every sample instant. If the operating

point changes in each sample due to the input, the covariance

matrix will depend on the input. The excitation input changes

the operating point such that the covariance matrix rapidly

decreases to zero. However, large variations are in most

cases not desirable over long periods. Hence, at first an

abnormal behaviour of the system is observed by a common

PFD method. Then the AFD algorithm is applied for a short

interval to identify different faults and those hidden during

normal operation of the system.

Fault isolation relies on a simple algorithm. The algorithm

isolates the fault Fi according to the residual generator ri =
θ̂i−θNi, where θNi is the nominal value of the ith parameter

of the system, which is assumed as prior knowledge of the

system, and θ̂i is the parameter estimated by the EKF. The

fault isolation algorithm is given in Table I. If ri is greater
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TABLE I

FAULT ISOLATION ALGORITHM

Algorithm 1

For i = 0 to l

IF ri =
∣

∣

∣
θ̂i − θNi

∣

∣

∣
> δ

F = Fi

End IF
End For

than a predefined threshold δ, the system is subject to the

fault Fi.

V. EXAMPLE

The AFD algorithm is applied to the climate control

system of a live-stock building, which was obtained during

previous research, [8]. The general schematic of the large

scale live-stock building equipped with its climate control

system is illustrated in Fig. 1. In a large stable, the indoor

airspace is incompletely mixed; therefore it is divided into

conceptually homogeneous parts called zones. Due to the

indoor and outdoor conditions, the airflow direction varies

between adjacent zones. Therefore, the system behaviour is

represented by a finite number of different dynamic equa-

tions. The model is intended to be a realistic representation

of internal temperatures for all multi-zone types of livestock

buildings. The model is divided into subsystems as follows:

A. Inlet Model

An inlet is built into an opening in the wall. The following

approximated model for airflow, qini into the zone i is used.

qini = ki(ai + leak)∆P i
inlet (16)

∆P i
inlet = 0.5CPV

2
ref − Pi + ρg(1− To

Ti

)(HNLP −Hinlet)

(17)

where Pi is the pressure inside zone i, ki and leak are

constants, ai is the opening angle of the inlets, ∆P i
inlet is the

pressure difference across the opening area and wind effect,

ρ is the outside air density, Vref is the wind speed, Cp stands

for the wind pressure coefficient. H stands for the height and

HNLP is the neutral pressure level which is calculated from
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Fig. 1. The top view of the test stable

the mass balance equation. Ti and To are the temperature

inside and outside the stable and g is the gravity constant.

B. Outlet Model

The outlet is a chimney with an electrically controlled fan

and plate inside. A simple linear model for the airflow out

of zone i is given by:

qouti = V i
fanci − di∆P i

outlet (18)

∆P i
outlet = 0.5CPV

2
ref − Pi + ρg(1− Ti

To

)(HNLP (19)

−Houtlet)
3

∑

i=1

qini ρ
∆P i

inlet
∣

∣∆P i
inlet

∣

∣

+

3
∑

i=1

qouti ρ = 0 (20)

where ci and di are constants, V i
fan is the fan voltage, and

the number of zones is three. The stationary flows, qsti−1,i

and qsti,i+1, through the zonal border of two adjacent zones

is given by:

qsti−1,i = m1(Pi−1 − Pi) (21)

qsti,i+1 = m2(Pi − Pi+1) (22)

qsti−1,i =
{

qsti−1,i

}+ −
{

qsti−1,i

}

−

(23)

where m1 and m2 are constant coefficients. The use of curly

brackets is defined by:

{

qsti−1,i

}+
= max(0, qsti−1,i),

{

qsti−1,i

}

−

= min(0, qsti−1,i)
(24)

C. Modeling Climate Dynamics

The following formulation for the dynamical model of

the temperature for each zone inside the stable is driven

by thermodynamic laws. The dynamical model includes

four piecewise nonlinear models which describe the heat

exchange between adjacent zones:

Mici
∂Ti

∂t
= Qi−1,i +Qi,i−1 +Qi,i+1 +Qi+1,i +Qin,i

(25)

+Qout,i +Qconv,i +Qsource,i

Q = ṁcpTi, Qi−1,i =
{

qsti−1,i

}+
ρcpTi−1, (26)

Qi,i−1 =
{

qsti−1,i

}

−

ρcpTi

where Qin,i and Qout,i represent the heat transfer by mass

flow through the inlet and outlet, and Qi−1,i denotes the heat

exchange from zone i−1 to zone i caused by stationary flow

between zones. Qconv is the convective heat loss through the

building envelope, Qsource,i is the heat source, ṁ is the mass

flow rate, ci is the heat capacity, and M is the mass of the

air inside zone i.

For the EKF, the state space model must be augmented by

247



the parameter dynamics, i.e.:

Ẋ =

[

Ṫ

θ̇

]

=

[

fj(T, U, q, θ) + v

0l×1

]

for

[

T

U

]

∈ Xj (27)

q = h3(X,P,U, θ) =
[

qini , qst1,2, q
st
2,3, q

out
i

]T
, i = 1, . . . , 3

(28)

h2(P, T, U, θ) = 0, θ =
[

c1, c2, c3
]T

, (29)

U =
[

ai, V
i
fan, Qheater

]T

y = CT + w j = 1, . . . , 4 (30)

where fj is dedicated to each piecewise state space model,

h2 denotes the mass balance equation (20) for obtaining the

indoor pressure in each zone, and U is the system input.

VI. SIMULATION SETUP

Here, only the temperature is measured. The initial con-

ditions are taken as follows: T1 = T2 = T3 = 17.5, To =
2 oC, Vref = 14, P1 = 5.6, P2 = 6 and P3 = 7.

Two kinds of inputs are implemented in the simulation,

one designed based on sensitivity analysis and one chosen

arbitrarily. Their amplitude α and frequency f are given in

Table II. As is seen from the table, there are ten inputs in

the system. Inputs 1 to 6 belong to the angle of the inlets.

The value of 0 represents a closed inlet and 1 represents a

fully open inlet. Inputs 7 to 9 belong to the voltage of the

fans and they change from 0 to 7. The last input belongs

to the temperature of the heating system and it changes

from 0 to 40. The proposed AFD approach is implemented

on a simulated full scale live-stock building with a slow

dynamic behaviour and a sample time of 5 minutes. In

such systems, the fault is sometimes hidden during normal

operation of the system due to the control actions, or the fault

may influence the response of the system only very slowly.

Here, the AFD approach is used for a sanity check of the

actuators, such as the inlets, fans, and heating system. In

the winter due to the cold weather there is no need for full

time ventilation mechanism, therefore the controller closes

the inlets and turns off the fans or excites them very slowly,

and without AFD, it may take a long time to detect the

abnormal behaviour of the actuators. In the following, the

algorithm is applied to detection/isolation of fault in the

fans. The procedure consists of two parts. First, the input

designed off-line using sensitivity analysis is applied to the

system over a time horizon h as; U = {U(0), ... , U(h)}
, and the parameters of the system are estimated by the

EKF. Then, the residual which is the discrepancy between the

normal and estimated parameters is examined at the end of

the time horizon h. In order to simulate realistic conditions,

two Gaussian noises with standard deviation 0.5 and 0.4 are

considered as an input disturbance and measurement noise

VII. RESULTS

The results of the AFD algorithm are illustrated in Figs.

2 and 3. In Fig. 2, the temperature of each zone and the

real and estimated parameters of the fans are shown. As can

be seen, the EKF tracks the fan parameters correctly before

TABLE II

AMPLITUDE AND FREQUENCY OF THE INPUT SIGNALS

α f α f
inputs with with without without

sensitivity sensitivity sensitivity sensitivity

1,3

4,6 0.7 10−3 0.7 10−7

2,5 0.7 2× 10−3 0.7 2× 10−7

7,9 7 2× 10−3 2 0.2× 10−7

8 7 0.08× 10−3 2 0.08× 10−7

10 20 0.01× 10−3 20 0.2× 10−7

the occurrence of any fault. After 3.5 hours, it is assumed

that fan 1 and fan 3 are stuck, and they are turned off. At

first there is a considerable discrepancy between the estimate

and the real values, then this discrepancy decreases quickly,

indicating that the algorithm is able to detect that fan 2 is in

a healthy condition and the other fans are faulty. It is seen in

Fig. 2 that there is a small discrepancy between the estimated

and real values, which can be considered as an admissible

boundary, where it is possible to distinguish between a faulty

and a healthy condition. One of the necessary conditions

for stabilizing the EKF is that the extended system must

be uniformly completely observable [19] which is tested

by looking at the observability matrix. The EKF algorithm

approximates the nonlinear model by a first order Taylor

series expansion at every sample instant. Therefore, the

observability matrix for the linear model is calculated in each

sample. The observations confirm that the matrix is always

full rank.

Next, the simulation is executed with different inputs

without applying the sensitivity analysis. Fig. 3 shows that

there is a large discrepancy between the estimated and real

parameters, in which it is not possible to infer whether a fan

is in a faulty or healthy condition. Here, the condition number

of the observability matrix according to (12) is calculated,

which has the value of 3.0269× 106 for the input from the

sensitivity analysis and the value of 7.3806 × 106 without

sensitivity. It is obvious that the condition number obtained

by the input from the sensitivity analysis has a smaller value,

which shows that the input defined by the sensitivity analysis

leads to better estimation of the parameters.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposed a method for active fault detection

and isolation in hybrid systems, which is based on off-line

design of the excitation signal using sensitivity analysis. De-

riving the signals off-line reduces the computational burden

on the AFD algorithm. The problem of designing the inputs

is formulated as a non-convex optimization problem for

obtaining the maximum sensitivity for each individual system

parameter and it was solved by a genetic algorithm (GA).

The simulation results illustrate that the EKF converges

quickly to the real parameters with the input from the

sensitivity analysis; while it is unable to converge correctly

to the parameters when the inputs are not provided by the

sensitivity analysis.
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Fig. 2. The real and estimated values by EKF for indoor temperature and
parameter of the fan for each zone of the stable. The excitation input is
designed by sensitivity analysis.

The required assumption for the AFD method is that the

value of the system parameter is known and the system is

only subject to actuator fault. This method is more beneficial

in comparison with a bank of EKF where prior knowledge

about the system faults and a model for each individual

fault are required. Dedicating a model for each fault is

computationally expensive for a system with a large number

of sensors and actuators which can also be subject to different

kinds of faults. In the future, the AFD approach will be

applied to closed loop systems, where the faulty model

is assumed as a stochastic process and a necessary and

sufficient condition for exponential stability of the system

is derived.
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