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Abstract— This article aims to improve the positioning per-
formance of piezo-based nano-steppers, which have both large
range and high-precision. The main contribution of this article
is to show that model-based feedforward input can improve
the performance of piezo-based nano-steppers by enabling
operation at higher frequencies.

I. INTRODUCTION

The article aims to improve the performance of piezo-
based nano-steppers. Starting with the initial design in [1],
nano-steppers, such as those using stick-slip actuation, enable
nanoscale precision over relatively large range — by making
multiple nanoscale steps, e.g., [2]-[8]. A challenge with
nano-steppers is to minimize the effect of the stepping
process on the positioning, e.g., to reduce the variation
in positioning velocity during each stepping motion. Such
velocity variations are lower at higher operating frequencies,
provided the piezo can be positioned accurately. However,
unwanted vibrations, can lead to substantial errors in the
desired piezo positioning at higher frequencies, which in
turn can lead to increased positioning error in the nano-
stepper. The main contribution of this article is to show that
model-based feedforward input can improve the performance
of piezo-based nano-steppers by accounting the dynamics-
caused vibrations and thereby enabling operation at higher
frequencies. Towards this, a model of the nano-stepper is
developed and inverted to find feedforward inputs that correct
for the vibrational effects.

It is challenging to achieve large-range and high-
bandwidth simultaneously with piezo-type actuators. Note
that typical smart-material actuators can achieve precision
positioning over relatively-large, hundreds-of-microns range.
The difficulty is that the mechanical, vibrational-resonance
frequencies of the positioner (and therefore, those of the sys-
tem that uses the positioner) tend to be lower for large-range
smart-material actuators. System zeros tend to be interlaced
between these vibrational-resonance frequencies [9] — and
they tend to be fundamental limits to increasing bandwidth.
Note that advanced control techniques can help to reduce
the vibrations and thereby improve the bandwidth (operating
speed) of nanopositioners, e.g., see a recent review in [10].
In particular, starting with the early work in [11], modern
control techniques, e.g. [12]-[15], have enabled an increase
in the operating speed of general nanopositioners.

Nevertheless, zeros in the system imply that the sys-
tem does not have sufficient response, just after the first
vibrational-resonance frequency ω1. Therefore, input sat-
uration can limit the ability to drive the piezo-actuator

(with sufficient output response) beyond ω1 for general
trajectories. (Although specific trajectories, such as sinusoids
at the second vibrational-resonance frequency, could still
be tracked.) The challenge of achieving both large-range
and high-bandwidth has received substantial interest from
the research community, e.g., with novel design approaches
such as flexural-lever arms that amplify a piezo-actuator’s
displacement while minimizing the accompanying reduction
in stiffness [16]-[18].

Nano-steppers can increase range without loss of band-
width because they can achieve large-range positioning by
making multiple steps with its actuators. The amplitude
of each stepping motion of the actuator can be small in
comparison to the overall range. Therefore, relatively smaller
actuators can be used in nano-steppers in comparison to
a single large actuator. Smaller actuators tend to have
higher resonant-vibrational frequencies, which tends to ef-
fectively increase the achievable bandwidth. Moreover, when
a relatively-stiff positioner is needed (to avoid undesirable
vibration effects), it is advantageous to use nano-steppers
rather than increasing the range by using larger actuators.
An additional advantage of nano-steppers is that they can
be designed to hold a position without the use of active
inputs, which is important in applications where the changes
in position are only required once in a while and the
available input is limited. Finally, nano-steppers can be used
as one of the positioners in standard dual-stage approaches
to nanopositioning (e.g., [19], [20]) that are used to increase
the precision and range.

The challenge with nano-steppers is that, during each step,
movement-induced vibrations can lead to positioning errors
in the actuators used in the nano-steppers. These positioning
errors, in turn, lead to loss of positioning ability with the
nano-stepper. This article develops a model of a nano-stepper
and inverts the dynamics to find feedforward inputs [21] to
correct for the vibrational effects, and thereby, potentially
improve the positioning performance.

II. SYSTEM DESCRIPTION

The nano-stepper (see Fig. 1) body is constructed of two
acrylic L-shaped panels, each with three (Lead-Zirconate-
Titanate (PZT) ) piezoelectric, bimorph actuators acting as
legs for the system. The actuators move in a bending fashion
similar to canitilever beams. Control signals, generated from
a PC by using a Digital-to-Analog (D/A) card, are applied
to the piezo actuators through a voltage amplifier. The nano-
stepper runs along a track with sides that restrict it to move,
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forward or backward, along a single axis.

Actuator

Body

Fig. 1. Photo of six-legged nano-stepper.

Motion Generation Motion is generated using the friction
force F between the piezo-actuator tip and the ground as
the piezo-actuator is deflected back and forth as illustrated
in Fig. 2(top). For example, during the backward motion
(negative velocity) of the piezo-actuator tip, over the time
interval (0, T ∗), the friction force F is positive as shown
in Fig. 2. Similarly, during the forward motion (positive
velocity) of the piezo-actuator tip, over the time interval
(T ∗, T ) the friction force F , is negative. The only significant
external force acting in the horizontal direction on the nano-
stepper is this friction force F , and therefore, the motion of
the center of mass Xcm of the nano-stepper is given by

Mt
d2

dt2
Xcm(t) = F (t) (1)

where Mt is the total mass of the system.

Problem The motion of the center of mass Xcm depends
on the friction force F (t) (from Eq. 1), which in turn,
depends on the velocity of the piezo-actuator tip. As the actu-
ation frequency (of the back-and-forth motion of the piezo-
actuator) increases, excitation of the vibrational dynamics
of the piezo-actuator leads to unwanted changes in the tip-
velocity direction, and therefore, leads to loss of control over
the motion of the nano-stepper.

III. THEORETICAL MODEL

A model of the piezo-actuator dynamics, was developed
as the bending w(x, t) of a cantilever beam attached to the
main body that was modeled as a lumped mass Mb whose
position is u(t). Then, the net position ŷ(x, t) of a point x
on the piezo-actuator is given by the sum of the main body
motion u(t) and the deflection w(x, t) of the piezo-actuator,
i.e.,

ŷ(x, t) = w(x, t) + u(t) (2)

where the bending dynamics is given by the Euler-Bernoulli
beam approach as, e.g., [22],

ρA
∂2ŷ

∂t2
+ EI

∂4ŷ

∂x4
= f(x, t) (3)

where ρ is the density, A is the cross sectional area, E is
the elastic modulus, and I is the moment of inertia of the
piezo- actuator.
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Fig. 2. Motion of the actuator and friction direction: a) actuator in the
forward position; b)-c) as the actuator moves backward, a positive friction
force, F , is generated until time T ∗; d)-e) the actuator returns to the forward
position generating a negative friction force, F ; and f) the friction force F
during each period T — the pattern of actuator motion and friction direction
repeats with periodicity T .
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Fig. 3. Free body diagram: the only external force in the lateral direction
is the friction force F

The piezo-actuator deflection w is split into its modal com-
ponents, with separated spatial X and temporal T parts, as

w(x, t) =

∞∑
1

Xn(x)Tn(t) (4)

and the beam dynamics (Eq. 3) is rewritten as

∞∑
1

[
ρAT̈n(t)Xn(x) + EITn(t)X

(4)
n (x)

]
= f(x, t)− ρAü(t)

(5)
The homogeneous form of equation (5), obtained by setting

the right hand side to zero, can be solved using separation
of variables and the boundary conditions for a standard
cantilever beam:

w(0, t) = 0; wx(0, t) = 0; wxx(L, t) = 0; wxxx(L, t) = 0

and L is the length of the piezo-actuator. This yields separate
equations for the spatial Xn and temporal Tn portions of the
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nth mode

EI

ρA

X
(4)
n (x)

Xn(x)
= ω2

n;
T̈n(t)

Tn(t)
= − ω2

n, (6)

with the spatial solution Xn given by [22],

Xn(x) = sin(βnx)−sinh(βnx)+σn(cos(βnx)−cosh(βnx))

where

β4
n =

ω2
nρA

EI
; σn =

sin(βnL) + sinh(βnL)

cos(βnL) + cosh(βnL)
, (7)

and for the first (n = 1) vibrational mode [22]

β1L = 1.875 and σ1 = 0.7341.

Dynamics of First Vibrational Mode Using the orthogo-
nality of the mode shapes, the first mode dynamics X1(x),
is extracted by multiplying Eq. (5) by the first mode shape
and integrating with respect to the beam length.

∞∑
1

[∫ L

0

X1XnT̈ndx+
EI

ρA

∫ L

0

X1β
4
nXnTndx

]
(8)

=
1

ρA

∫ L

0

X1r(x, t)dx

to yield

T̈1 + ω2
1T1 =

1

ρA

∫ L

0
X1r(x, t)dx∫ L

0
X1X1dx

. (9)

where the forcing term r in Eq. (8) is given by

r(x, t) = M(t)
∂δ(x− L)

∂x
+ F (t)δ(x− L) + ρAü(t) (10)

where M(t) is the applied moment due the voltage V acting
on the piezo-actuator, F (t) is the friction force acting on the
piezo-actuator tip and ü(t) is the acceleration of the main
body (see Fig. 3). Integrating, Eq. (9), can be rewritten as

T̈1 + ω2
1T1 =

X1

X2
1

ü(t) +
X1(L)

ρAX2
1

F (t)

+
∂X(x)/∂x|x=L

ρAX2
1

M(t) (11)

= K1ü(t) +K2F (t) +K∗
3M(t) (12)

where

X1 =

∫ L

0

X1(x)dx and X2
1 =

∫ L

0

X1(x)X1(x)dx. (13)

A relation between the moment M generated by an applied
voltage V can be obtained as

M(t) =
2EI

L2
Y (t) from [23]

=
2EI

L2

(
3d31

L2

T 2
V (t)

)
from [24]

=
6d31EI

T 2
V (t) (14)

where Y (t) is the piezo-tip deflection for an applied voltage
V (t), T is the thickness of the piezo-actuator and d31 is a

piezoelectric coefficient. Substituting for the moment M(t)
(in Eq. 14) into the dynamics of the first mode (in Eq. 12)
and adding a damping term, the first-mode dynamics can be
rewritten as

T̈1+2ζ1ω1Ṫ1(t)+ω2
1T1 = K1ü(t)+K2F (t)+K3V (t) (15)

where
K3 =

6d31EI

T 2
K∗

3 (16)

and ζ1 is the damping ratio. With the one-vibrational-mode
model, the piezo-tip motion Y (t) can be described as

Y (t) = X1(L)T1(t) (17)

Substituting the above into Eq. 15, gives

Ÿ (t) + 2ζ1ω1Ẏ (t) + ω2
1Y (t) = (18)

K1

X1(L)
ü(t) +

K2

X1(L)
F (t) +

K3

X1(L)
V (t).

Since most of the mass is located in the body, the position of
the center of mass Xcm can be approximated as the position
of the body, u(t). This substitiution alters Eq. (1) to

Mtü(t) = F (t), (19)

where the friction force, F (t), is taken to be coulomb friction
given by

F (t) = −µkMtg Sign(Ẏ (t)). (20)

Dynamics of Piezo The focus of this article is on the
control of the piezo, and its potential effects on the nano-
stepper motion. Towards this, the friction nonlinearities were
removed by raising the system above ground (i.e., F (t) = 0),
and clamping the top body (in Fig. 1), to isolate the piezo
dynamics, which reduces to (from Eq. 18)

Ÿ (t) + 2ζ1ω1Ẏ (t) + ω2
1Y (t) =

K3

X1(L)
V (t). (21)

Using Laplace transform, the transfer function is

G(s) = Y (s)
V (s) = K3/X1(L)

s2+2ζ1ω1s+ω2
1

=
KDC ω2

1

s2+2ζ1ω1s+ω2
1
.

(22)

IV. EXPERIMENTAL PIEZO MODEL

The parameters of the piezo model (in Eq. 22) were
obtained experimentally. Towards this, the nano-stepper was
suspended above the track and a Kalman SMU-9000-15N
inductive sensor was used to measure the piezo-tip deflection,
for different sinusoidal inputs, generated using a Stanford
Research Systems Digital Signal Analyzer. Experimental
bode plots of the system, for different amplitudes AV of
the input voltage V , are shown in Fig. 4.

Although, piezos have infinite modes of vibration, the Bode
plots in Fig. 4 suggest that a second-order model would be
sufficient. The fitted model parameters are shown in Table I.
There is a small change in the experimental natural frequency
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Fig. 4. Experimental Bode plots for different input amplitudes AV .

ω1 with increasing input-voltage amplitude, however, there
is a larger influence of the input-voltage amplitude on the
damping ratio, which could be attributed to hysteretic damp-
ing effects in piezo actuators. The fitted models compare well
against the experimental results, as seen in Fig. 5 for the
1V input amplitude case — the fitted model is accurate until
≈700 Hz.

TABLE I
MODEL PARAMETERS FOR DIFFERENT INPUT V AMPLITUDES (AV )

Amplitude AV ω1 (Hz) ζ KDC(dB)
1 307 0.0119 -134.95
5 305 0.0134 -135.04

10 303 0.0179 -135.16
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Fig. 5. a) Comparison of Bode plots from Experiment and (fitted) Model
for input amplitude of Av = 1V b) Error between Bode plots of (fitted)
model and experiment

V. TRAJECTORY DESIGN

The external force applied on the nano-stepper, i.e., the
friction force with the ground, depends on the direction of
the tip velocity. Therefore, it is important to precisely control
to piezo-tip velocity to control the overall forces, and thereby,
to control the positioning precision of the nano-stepper.

Choice of Trajectory Asymmetry While, a variety a
trajectories could be chosen, a polynomial approach is used
in the following. In particular, the velocity trajectory was
chosen to be a composite of two polynomials: (i) a negative-
time polynomial Vn(t) for time t ∈ [−Tn, 0]; and (ii) a
positive-time polynomial Vp(t) over time t ∈ [0, Tp] as
shown in as shown in Fig. (6). The time intervals Tn and Tp

are related to the frequency of the input period (T in Fig. 2)
by

Tn + Tp = T (23)

Tn = αT (24)

where the ratio α determines the amount of asymmetry in
the piezo displacement Y (in Fig. 6).

Design of Trajectory The following four continuity con-
straints are placed on the velocity polynomials (and its
derivatives) to avoid rapid changes in the acceleration, which
can require large spikes in the inputs that can, in turn, excite
unwanted higher-order modes of vibration.

Vn(0) = Vp(0)
Vn(−Tn) = Vp(Tp)

d
dtVn(0) = d

dtVp(0)
d
dtVn(−Tn) = d

dtVp(Tp)

(25)

The constraints are satisfied by the following 4th order
polynomial

Vp = −(t− Tp)
2t2Sp (26)

Vn = (t− Tn)
2t2Sn (27)

where the scaling factors Sp, Sn are chosen to achieve the
desired maximum displacement Ymax, i.e.,

Ymax = −
∫ Tp

0
Vp(t)dt

Ymax =
∫ 0

−Tn
Vn(t)dt.

(28)

The above constraints on the maximum displacement Ymax

results in

Sn =
30Ymax

T 5
n

; Sp =
SnT

5
n

T 5
p

. (29)

To illustrate, the velocity trajectory for the α = 25%
asymmetry (in Eq. 24) gives the following two equations:

Vn = (3.24e7)(t4 − 2Tnt
3 + T 2

nt
2) (30)

Vp = −(1.33e5)(t4 − 2Tpt
3 + T 2

p t
2) (31)

The corresponding position Y (t), velocity Ẏ (t) and acceler-
ation Ÿ (t) trajectories are shown in Fig. 6.
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VI. TRAJECTORY TRACKING

The model in Eq. (21) was inverted to find the inverse
input Vinv as

Vinv(t) =
X1(L)

K3

[
Ÿd(t) + 2ζ1ω1Ẏd(t) + ω2

1Yd(t)
]
. (32)

This inverse input Vinv was applied to the experimental
piezo system for several different values of asymmetry α,
i.e., α ∈ (25%, 30%, 40%, 45%). The frequency of the
periodic desired trajectory Yd was chosen as 90 Hz so that
the higher harmonics would miss the resonance frequency,
where positioning errors can be expected due to hysteresis
dependent errors (as in Fig. 4). The tracking results for
position are shown in Fig. 7 and in Fig. 8 for velocities
— the tracking errors are shown in Table II, where

ey = max
t∈[0,T ]

|Y (t)− yd(t)| (33)

eẏ = max
t∈[0,T ]

| ˙Y (t)− ẏd(t)|

%ey =
ey

Ymax

%eẏ =
eẏ

maxt∈[0,T ] |ẏd|
.
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Fig. 7. Comparison of desired position Yd and experimental position Y
for: (a) α = 25% asymmetry; and b) α = 30% asymmetry.
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TABLE II
TRACKING ERRORS (EQ. 33) FOR DIFFERENT ASYMMETRY α

α ey %ey eẏ %eẏ
25 6.82E-09 2.55 1.65E-05 11.73
30 4.67E-09 2.61 1.38E-05 13.77
35 2.32E-09 1.29 8.97E-06 10.4
40 5.86E-09 3.28 2.09E-05 27.7
45 3.68E-09 2.06 8.76E-06 13.07

VII. STEADY-STATE VELOCITY ESTIMATION

Using the velocity of the piezo-tip, the steady state velocity
(Vss) of the nano-stepper can be obtained by matching the
time interval over which the friction force F is positive (i.e.,
total tip velocity Vnet(t), where

Vnet(t) = Ẏ (t) + u̇(t)

is negative) to be the same as the time interval over which
the friction force F is negative (i.e., total tip velocity Vnet(t)
is positive). This can be found by effectively shifting the
velocity of the tip in Fig. 9(a) by the steady state value

Vss = −Vp(β) (34)

and equating the time interval over which the net velocity
is positive and where the net velocity is negative, i.e., from
Fig. 9(a),

(T − T3) + (T2 − 0) = (T3 − T2) (35)

which leads to
αT + 2β = T3 − T2 (36)

with β given by

β = T

[
1

4
− α

2

]
. (37)

The steady state velocity Vss can then be found from Eq. 34
and is plotted for different asymmetry α in Fig. 10.

Nano-stepper Velocity Vss Control Note that the steady
state velocity tends to zero as the position trajectory Yd

becomes more symmetric. Similarly, the experimentally ex-
pected steady-state velocity can be estimated by using the ex-
perimental velocity data; the experimental estimation of the
steady-state velocity is compared to the model-based steady-
state velocity in Fig. 10, and the difference is tabulated in
Table. III. As seen from these results, the velocity of the
nano-stepper could be effectively adjusted by using different
asymmetry in the piezo-tip trajectory, which also provides
an approach for feedback control of the nano-stepper.
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Fig. 9. a) Steady-state velocity Vss estimation; b) Expected friction force
with magnitude F ∗ = µkgMt

Need for high-frequency operation While the net impulse
(of the friction force) over each time period T is zero at
steady-state as in Fig. 9(b), the impulse is non-zero over any
sub-interval of length less than T . The maximum variation
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TABLE III
STEADY-STATE VELOCITY Vss COMPARISON

Asymmetry Model Experimental Difference Percent
α Estimate Estimate Difference
25 11.822e-06 12.014e-06 .192e-06 1.62
30 9.651e-06 8.042e-06 1.609e-06 16.67
35 6.976e-06 8.617e-06 1.637e-06 23.46
40 3.996e-06 3.694e-06 0.302e-06 7.54
45 1.206e-06 2.940e-06 1.734e-06 143.72

η of the nanostepper velocity u(t) around the steady-state
velocity Vss is given by

η = ∆u̇ = u(T3)− u(T2) (38)

=

∫ T3

T2

ü(t)dt

=

∫ T3

T2

F (t)

Mt
dt

= µkg(T3 − T2) = µkgT/2

This shows a linear relationship between the amount of
variation η in the nano-stepper velocity and the period T
of the piezo motion trajectory. Therefore, a higher frequency
of piezo motion is desirable to reduce the amount of variation
seen in the steady-state velocity of the body, provided
precision tracking of the tip-position (rather the tip velocity)
is achieved using controls. Our ongoing efforts are aimed at
experimental verification of such control schemes for high-
precision control of the nano-stepper over relatively-large
range.

VIII. CONCLUSIONS
This article develops an inversion-based feedforward ap-

proach to improve the positioning performance of piezo-
based nano-steppers, which have both large range and high-
precision. The article showed that model-based feedforward
input can be used to achieve velocity control of piezo-based
nano-steppers by appropriately designing the asymmetry in
the positioning trajectory.
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