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Abstract— In designing control strategies to optimize fuel
consumption, driveability and other objectives for hybrid elec-
tric vehicles (HEVs), one can choose to use either power split
or torque split as one of the control variables. While both
approaches have been employed and documented, no systematic
study has been reported that illuminates what implications
this choice might have in terms of HEV performance, system
robustness, and control strategy design and implementation
complexity. This work aims to develop a case study that
explores this degree of design freedom and to quantify any
differences that this control design selection might impart on
a given HEV architecture. Using a validated HEV model,
we will derive optimal operating strategies using dynamic
programming for two cases: one uses power split and other
torque split. Performance metrics of fuel consumption as well as
the computational complexity associated with the two different
strategies will be assessed.

I. INTRODUCTION

Hybrid Electric Vehicles (HEVs), which combine an In-

ternal Combustion Engine (ICE) and one or more Electric

Motors (EMs), have drawn much attention in the past two

decades [1], [2], [3], [4]. The interest and success of HEVs

have been driven largely by concerns about oil savings and

air quality. Since the first HEV was introduced to the market,

up to 50% improvement in fuel economy and 33% reduction

in CO has been reported [1]. Increased fuel efficiency and

enhanced potential to use alternative fuels of HEV also

contribute to significant reductions in emissions of carbon

dioxide (CO2, a key greenhouse gas), thereby addressing the

concern of global warming [5].

Power management, whose functions include coordinating

multiple power sources to minimize fuel consumption while

satisfying the driver’s demand, is a key element in HEVs

development [6], [7]. Most power management strategies

for HEVs are based on heuristic techniques such as rule-

based methods, fuzzy logic, or neural networks [2], [8],

[6], [9]. Heuristic techniques require intensive tuning and

therefore their development is time consuming and vehicle

dependent. Optimization based approach, on the other hand,

is a systematic design approach which has also been devel-

oped. Using HEV models, optimization techniques help to

determine the proper power split between the two energy

sources through a systematic development process. Opti-

mization based approaches can be characterized into three
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groups: static optimization methods [10], analytical dynamic

optimization methods [11], [12] and numerical dynamic

optimization methods [13], [15]. In static optimization meth-

ods, electric power is generally expressed as an equivalent

steady-state fuel rate in order to minimize an overall energy

cost. Dynamic optimization approaches consider the dynamic

nature of the system components and formulate the energy

management problem as a nonlinear optimization problem.

An analytical solution to such a nonlinear constrained

optimization problem does not exist in general. However,

approximations of the original optimization problem based

on the minimum principle [11], [12] can result in a closed-

form solution. The computation burden is dramatically re-

duced by approximation and thus it is possible for realtime

implementation. For most cases, the nonlinear constrained

optimization problem is solved by using numerical solvers,

such as Dynamic Programming (DP) [18].

DP is commonly used for finding an optimal trajectory

of nonlinear dynamic system over a given time period [14],

[15]. When analytical closed form solution is not available,

this method can be used to minimize the performance index

in the presence of hard or soft constraints of the states and/or

inputs. DP requires gridding of the state and time variables,

and thus the optimal trajectory depends on the discretization

of the inputs and states on time and value. Even though

DP has several limitations, such as the well-known “curse

of dimensionality”, the need for knowing the entire drive

cycle and the non-causal resulting controller, DP has been

found to be an extremely useful tool to calculate a benchmark

optimal control strategy and assess achievable performance

of the HEV.

However, both the optimality and computational cost of

DP are directly related to the number of grid points. There-

fore it is worthwhile to find out the relationship between

simulation accuracy and grid density. In addition, a different

control variable may have different sensitivity over grid

density. This paper is concerned with the sensitivity of the

DP-based optimization strategy to the selection of control

variables.

For HEVs, one can choose to use either power split

or torque split as one of the control variables, where the

former focuses on the power as the direct control variable

while the latter used the torque in the optimization. While

the two strategies could be equivalent in ideal situation

(such as infinitely dense grid), they can lead to different

results due to the following reasons: First, the choice of

different control variables could lead to different constraint

formulation. Second the finite grid points in state and input
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variables define that the numerical solution can vary for

different input variables. Although both approaches have

been employed and documented [21], [20], no systematic

study has been reported that illuminates what implications

this choice might have in terms of HEV performance, system

robustness, and control strategy design and implementation

complexity. This work aims to develop a case study that

explores this degree of design freedom and to quantify any

differences that this control design selection might impart on

a given HEV architecture using DP based optimization.

The remainder of this paper is organized as follows:

Section II introduces the HEVs model and formulates the

problem. In Section III, DP implementation issues are dis-

cussed. Section IV presents simulation results and compares

the power split and torque split strategies for different drive

cycles. The conclusions are given in Section V.

II. HEV MODELING AND PROBLEM

FORMULATION

To compare the differences between power split and

torque split strategies of HEVs optimal control in terms of

fuel economy performance, two HEV models used for DP

optimization are described in this section.

A. HEV Models

In this study, we adopted the parallel HEV model of [22]

and modified it for our special purpose. The given HEV

model is a discrete-time model and constructed using a quasi-

static approach, which takes battery state of charge (SOC)

as the only state [2]. The vehicle speed and acceleration are

included as part of the model to facilitate the implementation

of DP method over a given drive cycle, and thus the model

function has exogenous time varying input. The model can

be found and downloaded at [23] and a more detailed

description can be found in [21]. This paper will not cover

the complete process of the vehicle modeling and only the

modifications made by the authors to facilitate this case study

will be discussed.

Several modifications are made to the original HEV model.

The control variable for power management is changed to

be the motor power Pm demand for power split strategy and

the motor torque demand Tm for torque split strategy. Gear

ratio K is added as an optimization variable. Consequently,

the new models used for DP optimization can be described

as following

xk+1 = fk(xk, uk,Kk) + xk, k = 0, 1, ......, N − 1 (1)

uk =

{

Pmk, for power split strategy

Tmk, for torque split strategy
(2)

where control variables Pmk, Tmk and Kk have been defined

above and state xk is the battery SOC. The subscript k in fk
indicates that the model function is time-variant as explained

before. All the assumptions made for the original HEV model

are still applicable.

In addition, instead of using an affine Willans approxima-

tion (a linear engine modeling method that is used in [21]), an

engine fuel efficiency map (scaled from a commercial engine

Fig. 1. HEV models used for the evaluation of power split and torque split
strategies fuel consumption difference

model) is incorporated into the vehicle model to make the

simulations more realistic and reliable. For this particular

HEV designed for urban use, the engine and battery are

sized such that the engine is never used for charging the

battery, and the electric energy in battery is recovered from

the regenerative braking system.

At each second, the total power demand Ptot and the

torque demand Ttot on the powertrain are calculated for

power split and torque split strategies respectively using

the vehicle dynamics model. For the power split strategy,

the DP determines the optimal motor power Pm, then the

engine power demand Pe and engine torque demand Te are

calculated as

Pe = Ptot − Pm (3)

Te = Pe/ωe (4)

where ωe is the rotational speed of engine.

On the other hand, if the DP calculates the optimal motor

torque Tm, the engine torque demand Te for torque split

strategy is directly computed in the following way

Te = Ttot − Tm (5)

Given engine torque input Te and engine speed ωe, the

fuel consumption rate can therefore be computed by using

the engine map.

A schematic of the HEV models and power management

strategy is given for both power split and torque split

strategies in Fig. 1, models are built based on the same

vehicle architecture, and the only difference is the control

variable used for power management.

B. DP Formulation

The DP optimization problem is formulated as the mini-

mization of total fuel consumption for the given HEV model

over a whole drive cycle and thus the cost function is defined

as

J =
N−1
∑

k=0

(ṁk · Ts) (6)
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where ṁk is the fuel consumption rate computed by the

engine map and Ts is the time step. In this study, Ts is set

to be one second.

A deterministic DP algorithm dpm is used to evaluate

performance of both power management strategies. The dpm
function is a generic Matlab based DP algorithm developed

by Olle Sundström and Lino Guzzella at Swiss Federal

Institute of Technology Zurich (ETH Zurich). A introductory

tutorial of dpm function can be found in [22] and more

related documents are available at [23].

Then the cost function of (6) is minimized subject to the

dynamic equation (1), (2) and the following constraints

Pm ∈

{

(0, Pmax), for Ptot ≥ 0

(−Pmax, 0), for Ptot < 0
(7)

Tm ∈

{

(0, Tmax), for Ttot ≥ 0

(−Tmax, 0), for Ttot < 0
(8)

K ∈ (Kmin, Kmax) (9)

SOC ∈ (SOCmin, SOCmax) (10)

where Pmax adn Tmax are the maximum power and torque

output of the motor respectively, Kmin, Kmax are gear ratio

limits and SOCmin, SOCmax are the constraints of the

battery SOC.

In dpm function, the grid points of inputs and states

are evenly distributed within corresponding constraints and

linear interpolation is used during forward simulation [22].

For the DP calculation, the gear ratio is assume to change

continuously (by using linear interpolation) within the con-

straints so that the gearbox can be treated to be a continuous

variable transmission (CVT). Since we only care about the

sensitivity of DP algorithm regarding power management

strategy, results will not be affected by using a CVT as

the transmission. The values of gear ratio limits are tuned

according to the vehicle size.

The values of battery SOC constraints are usually pro-

vided by manufacturers. Either empty or full charge would

affect the battery lifecycle or damage the battery so that

maintaining the SOC within the limits is crucial to extend

the service lifetime as well as assure the performance of

battery. In this study the SOC boundaries are set to be (0.4,

0.7). The upper limit 0.7 does not affect the results because

the SOC never reaches 0.7.

It should be noted that Pm and Tm are positive during the

acceleration to provide driving power and are negative during

deceleration to provide regenerative braking. A symmetric

electric motor efficiency map is used for the simulations.

The HEV models are configured so that the sign of control

variable Pm and Tm changes automatically in response to

the vehicle driving condition at every time instant.

III. SENSITIVITY AND IMPLEMENTATION

ISSUES OF DP

As discussed in Section I, DP optimization is a grid

based numerical approach and the grid points of input and

state have to be limited to contain the computational load.

TABLE I

COMPUTATIONAL TIME WITH DIFFERENT GRID DENSITY

grid points (n) 11 21 31 41 51 101 501 1001

time (s) 46 57 68 83 92 167 1274 2420

Consequently, the selection of control variables may cause

differences in the results. Understanding the sensitivity of the

grid-based DP solution to control variable choice is therefore

of interest. For the implementation of DP in HEVs optimal

control, the question of how the power split and torque split

strategies affect the fuel economy performance on different

drive cycles needs to be investigated, and the answer could

shed light on control architecture design and implementation.

The power and torque output of electric motor has the

relationship

Pm = Tm · ωm (11)

where ωm is the rotational speed of motor. Then because of

the time-variant motor speed, power split and torque split

strategies would search around different operating points of

the motor even given the same resolution of grid points.

Because of the equivalent physical properties in both HEV

models, power split and torque split strategies are expected

to have the same performance with sufficient grid density.

However the computational time is usually restricted and

thus the number of grid points is constrained. Hence it is

crucial to quantify the relationship between the fuel economy

performance, the selection of power management strategies

and the DP grid density so that proper decision can be made

to minimize the negative impact of finite grid.

Before comparing the difference between power split and

torque split strategies, the sensitivity of DP grid points is

first explored by evaluating the fuel consumptions on a US

city drive cycle with respect to the grid density n (n =
{11, 21, 31, 41, 51, 101, 501, 1001}). The fuel consumption

computed at n = 1001 appears to be the limit of fuel

consumption on a given drive cycle so that M1001 is used as

benchmark M∞ throughout the study. Therefore the relative

fuel consumption is defined as

rMfuel =
Mfuel

M∞

· 100% (12)

where the Mfuel is the absolute value of fuel consumption

of a DP solution for a give grid selection.

The representative results along with the drive cycle are

shown in Fig. 2. The corresponding computational time

(recorded on a 64-bit Intel Pentium 4 3.4GHz with 2.0 GB

RAM) are shown in Table I and Fig. 3. It is clear that the

value of relative fuel consumption rMfuel reduces when

grid density n increases from 11 to 101. From n = 101
to n = 1001, the fuel consumptions remain close and thus

the curves become flat. The results indicate that the DP

algorithm has a high sensitivity with respect to grid points

when n ≤ 101 and the computational time is approximately

proportional to the number of grid points.

Based on this result, the fuel economy performance of the

HEV models with grid density n = {11, 21, 31, 41, 51, 101}
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Fig. 2. US city drive cycle and its relative fuel consumptions
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Fig. 3. Computational time comparison on US city drive cycle with the
power split strategy

are simulated with both power split and torque split strategies

and the results are analyzed in the next section.

IV. RESULTS AND DISCUSSIONS

To understand the sensitivities of the DP results to grid

selection and their dependence to the choice of the control

variables, we considered several representative drive cycles

(shown in Fig. 4) and define the following quantity (13) to

measure the difference between the power split and torque

split,

dMfuel =
(Mps −Mts)

M∞

· 100% (13)

where dMfuel is the percentage difference of the fuel con-

sumptions, Mps is the fuel consumption of the power split

strategy and Mts is the fuel consumption of the torque split

strategy on a given drive cycle.

The Japan drive cycle and European Union drive cycle

shown in Fig. 4 give similar results compared to the US city

drive cycle in Fig. 2 in terms of fuel consumption difference.

Hence we decide to take the US city drive cycle and high

speed drive cycle (which is scaled from the city drive cycle)

shown in Fig. 4 for our case study since the results are more

comparative.
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Fig. 4. Additional drive cycles examined for the study

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

grid density n

d
M

fu
e
l (

%
)

 

 

US City Drive Cycle

0 20 40 60 80 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

grid density n

d
M

fu
e
l (

%
)

 

 

High Speed Drive Cycle

Fig. 5. The percentage difference of fuel consumption between power split
and torque strategies over given drive cycles

The results of both drive cycles are shown in Fig. 5. It is

also noteworthy to see that the torque split strategy gives a

better fuel economy performance on the US city drive cycle

while the power split strategy wins over the high speed drive

cycle.

In order to explain the difference in the fuel consumptions

of the two strategies, we choose to analyze the simulation

results at n = 11. The resulting SOC trajectories for both

strategies over two drive cycles are plotted and shown in Fig.

6. In both cases, the starting value of SOC is set to be the

lower boundary (which is 0.4 in this study) and final state

constraints are not implemented. This setting gives a more

obvious performance difference between the two strategies

and allows us to make a clearer comparison. As a result, both

the SOC trajectories converge to 0.4 at the end of the drive

cycle so that the optimal fuel economy results are achieved.

In other words, the energy recuperated from the regenerative

braking system is fully utilized over the entire drive cycle.
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Fig. 6. State of Charge comparison with the grid density n = 11

The SOC trajectories show slight deviations between the

two power management strategies over both drive cycles and

the primary physical explanation can be found in the differ-

ences in regenerative braking energy recuperation (engine is

not used for battery charging as discussed in Section II).

Therefore the following quantities are defined to capture the

energy recuperation effectiveness,

∆SOC = xk+1 − xk (14)

ER =

{

∆SOC, for ∆SOC ≥ 0

0, for ∆SOC < 0
(15)

dER =
ERps − ERts

0.4
· 100% (16)

∆ER =

N−1
∑

k=0

(dERk · Ts) (17)

where ER is the instant energy recuperation, subscripts

ps and ts represent power split strategy and torque split

strategy respectively, ∆SOC is the change of SOC within

one time step Ts, dER is the instant energy recuperation

difference between two power management strategies, 0.4 is

the starting value of SOC and ∆ER is total difference of

energy recuperation over a drive cycle.

The energy recuperation difference are shown in Fig. 7

and Fig. 8. As expected, the results are consistent with the

plots in Fig. 6 that more energy recuperation reduces engine

load and therefore leads to better fuel economy.

In order to further explain the energy recuperation dif-

ference from the perspective of DP algorithm, the control

variables and their numerical distributions are analyzed and

shown in Table II as well as in Fig. 9. As defined in equation

(12), rMfuel represents the relative fuel consumption com-

pared to the bench mark M∞. Mean values and standard

deviations of u/umax, where u is control variable and umax

is the corresponding maximum value, are tabulated.

Based on the definition of standard deviation (STD), a

larger STD means a wider spread of data. As shown in Fig. 9,
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Fig. 7. Energy recuperation comparison with the grid density n = 11
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Fig. 8. Energy recuperation comparison with the grid density n = 11

the occurance frequencies of control variables corresponding

to each grid point are normalized into the range of (0, 1). It

is clear that the values of the control variable of torque split

strategy are distributed more evenly than power split strategy

over the US city drive cycle, while for the high speed drive

cycle, the opposite result is observed. Accordingly, the results

indicate that a wider functional searching range of control

variables results in a better fuel economy as shown in Table

II. Consequently, a conclusion can be drawn that neither

power split nor torque split is guaranteed to be a better power

management strategy and the selection of control variables

should be determined in association with the characteristics

of the drive cycles.

In addition, a preliminary study has been conducted on the

sensitivity of gear ratio selection. The results show that even

though the absolute value of fuel consumption varies with the

change of the gear ratio limits, the trajectories resulting from

DP optimization has almost the same sensitivity to control
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TABLE II

NUMERICAL RESULTS COMPARISON OF POWER SPLIT (PS) AND TORQUE

SPLIT (TS) STRATEGIES WITH THE GRID DENSITY n = 11

PS(%) TS(%) PS-TS(%)

US City rMfuel 102.59 101.57 1.02
mean(u/umax) 22.89 30.18 -7.29

Drive Cycle std(u/umax) 17.98 22.08 -4.10

High Speed rMfuel 102.08 102.49 -0.41
mean(u/umax) 39.68 33.90 5.78

Drive Cycle std(u/umax) 28.35 24.90 3.45
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Fig. 9. Comparison of control variables distribution

variable selection for different gear ratios. However, if we

keep the same density of grid points (i.e. n = 11) and change

the grid distribution, a different result is expected.

V. CONCLUSIONS

A comparative study of HEVs optimal control with power

split and torque split strategies is discussed in this paper.

The difference is quantified by comparing simulation results

of a representative HEV design for different drive cycles,

where the fuel consumptions on given drive cycles are

evaluated. The results show that the maximum difference in

fuel consumptions is about 1% and the difference converges

to zero as the grid density is increased. This number may

suggest that the difference between the power split and torque

split is inconsequential. However, our analysis shows that

this difference is well associated with the distribution of

the control variables. For a fixed number of grid points,

selecting the variable that spreads out over the entire range

as the control variable leads to better results. For the case

study performed here, we concluded that the high speed

drive cycle benefits from power split strategy while the

low speed drive cycle could gain from the torque split

strategy. Further analysis to extend the results to other HEV

configurations will be performed to fully understand the two

power management strategies and their implications on other

performance indices such as drivability.
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