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Abstract— Thermodynamics is a physical branch of science
that governs the thermal behavior of dynamical systems. The
laws of thermodynamics involving conservation of energy and
nonconservation of entropy are two of the most useful and
general laws in all sciences. In particular, the second law of
thermodynamics is intimately connected to the irreversibility of
dynamical processes, that is, the status quo cannot be restored
everywhere. This gives rise to an interesting quantity known
as entropy. Entropy permeates the whole of nature, and unlike
energy, which describes the state of a dynamical system, entropy
is a measure of change in the status quo of a dynamical system.
Motivated by this observation, in this paper we use the entropy
function for deterministic systems as a benchmark to design a
semistable controller that minimizes the time-averaging of the
“heat” of the dynamical system. We present both state feedback
control and output feedback control based on the dissipative
systems. Furthermore, we convert the control design into an
optimization problem with two linear matrix inequalities.

I. INTRODUCTION

Thermodynamics [1], a classic physics topic, stirs a recent

trend to re-design and review the old results in systems

and control theory [2]–[16]. It turns out that many avail-

able results have a strong connection with thermodynam-

ics and can be interpreted from a physics point of view.

Among these results, the seminal work by Haddad et al

[2] on system thermodynamics makes a great contribution

to control/systems theory and provides a possible way to

design a thermodynamic-like controller for control systems.

Inspired by this breakthrough, the first attempt to realize

thermodynamic stabilization using hybrid controllers has

been reported in [17] where some conceptual design ideas

were formulated and verified by a mechanical RTAC system.

However, these ideas lack the rigorous foundation to justify

their effectiveness. For example, the convergence analysis in

[17] is only valid for Lyapunov stability, not sufficient for

proving asymptotic stability. Motivated by [17], the authors

in [5] developed a rigorous general framework for hybrid

controllers proposed in [17]. Furthermore, they proposed a

novel hybrid dynamic compensator which is designed in such

a way that the total energy of the closed-loop system is

consistent with the basic thermodynamic principles. In this

case, the whole system behaves like a thermodynamic system

so that thermodynamic stabilization is achieved for control

systems by decreasing the total energy monotonically.

One of the most distinct features for thermodynamic

systems is energy equipartition [2], [15] where the total
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energy is uniformly distributed among interconnected sub-

systems so that the temperatures of all subsystems achieve

the same, which is the zeroth law of thermodynamics. From

the dynamical systems point of view, this property is related

to the notion of semistability for dynamical systems having

a continuum of equilibria [18]. Specifically, for a semistable

system, every trajectory that starts in a neighborhood of

a Lyapunov stable equilibrium converges to a (possibly

different) Lyapunov stable equilibrium. If we think all the en-

ergy equipartition states are the equilibria of thermodynamic

systems, then the energy equipartition problem becomes

semistability analysis of thermodynamic systems.

There are many important applications for which semista-

bility is the most appropriate stability property of interest. A

classical example is the synchronization of multiple weakly

coupled oscillators to a common frequency. Recently, signifi-

cant results have been obtained on semistability in consensus

problems for networked agents [18]–[24]. An example of

such a problem is for a group of networked autonomous

vehicles to converge to a common heading, and for the

network to respond to a small perturbation with only a

corresponding small change to the common heading. Other

recent results in semistability theory can be found in [25]–

[27].

The contribution of this paper is to develop a first, novel

thermodynamic framework for semistabilization of linear

dynamical systems. The thermodynamic principles and con-

cepts are introduced into control systems design so that

control theory and system thermodynamics are combined to

create some new perspective for the controller design based

on our knowledge of physics. This attempt is comparable

to the effort of putting energy back in control [28] which

tries to use fundamental concepts in science and engineering

practice to design controllers by viewing dynamical systems

as energy-transformation devices. To do this, we restrict

our attention to dissipative systems [9], [10] since not

only are these systems widespread in engineering, but also

dissipative systems have a clear physical connection with

thermodynamics as pointed out by [10] and [2]. Based on

the theory developed in [2], we define the notion of entropy

for linear dynamical systems. Then we present state feedback

and output feedback design frameworks for time-averaging

minimum entropy control or time-averaging minimum “heat”

control. A nice example is used to illustrate the basic idea

of our controller design. The main result characterizes our

optimal control problem into an optimization problem with

two linear matrix inequalities.

The organization of this paper is as follows. Section II

introduces the notation and the linear system used in the
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paper. Section III elaborates the design motivation and idea

for state feedback and output feedback thermodynamic con-

trol. To this end, first we define the notion of entropy for

deterministic systems. Then the state feedback thermody-

namic control design is presented under state dissipatible

systems. Next, we generalize the state feedback case to the

output feedback thermodynamic control case by using the

dynamic compensator and output dissipatibility. Finally, we

draw some conclusions in Section IV.

II. MATHEMATICAL PRELIMINARIES

The notion we use in this paper is fairly standard. Specif-

ically, R denotes the set of real numbers, R+ denotes the set

of nonnegative numbers, R
n denotes the set of n × 1 real

column vectors, R
n×m denotes the set of n×m real matrices,

(·)T denotes transpose, (·)# denotes the group generalized

inverse, and In or I denotes the n × n identity matrix.

Furthermore, we write ‖ · ‖ for the Euclidean vector norm,

R(A) and N (A) for the range space and the null space of a

matrix A (or an operator A), tr(·) for the trace operator, and

A ≥ 0 (resp., A > 0) to denote the fact that the Hermitian

matrix A is positive definite (respectively, semidefinite).

In this paper, we consider a linear time-invariant system

G given by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, t ≥ 0, (1)

y(t) = Cx(t) + Du(t), (2)

where for each t ≥ 0, x(t) ∈ R
n denotes the state vector,

u(t) ∈ R
m denotes the control input, y(t) ∈ R

l denotes the

system output, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×n, and

D ∈ R
l×m. Throughout the paper, we make the following

standing assumption:

Assumption 2.1: G is completely reachable.

III. A FRAMEWORK FOR THERMODYNAMIC

SEMISTABILIZATION

In this section, we present two frameworks for semista-

bilization of linear systems. In particular, a state feedback

framework and an output feedback framework are proposed

based on the notion of entropy. Hence, before we state our

design methods, we need to define entropy for linear systems.

A. Entropy for Deterministic Systems

The following definition of state dissipatibility is needed

in the paper. This notion defines a class of dynamical systems

which can be dissipative by means of feedback control.

The detailed discussion of passifiability on affine nonlinear

systems can be found in [29]. Here we do not restrict our

systems to passifiable systems.

Definition 3.1: G is called state dissipatible if there exists

K such that u = Kx + v and the system Gs

ẋ = (A + BK)x + Bv, (3)

y = (C + DK)x + Dv, (4)

is passive with respect to the supply rate r(v, y), where

r(·, ·) is continuous. If r(v, y) = vTy, then G is called state

passifiable.

Remark 3.1: For the case where G can be rendered pas-

sive, one can use the conditions developed in [29] to check

state passifiability of G and to find out K . An alternative

method to find out K is to use the KYP lemma.

The following result is a direct consequence of the KYP

lemma and dissipative systems.

Lemma 3.1: For a state dissipatible system G, there exist

a continuously differentiable, nonnegative function Vs(x)
called the storage function and two continuous functions

ℓ(x) and W(x) such that V̇s(x) = r(v, y) − [ℓ(x) +
W(x)v]T[ℓ(x) + W(x)v].

Define d(x, v) , [ℓ(x) + W(x)v]T[ℓ(x) + W(x)v] and

dQ(t) , [r(v(t), y(t)) − d(x(t), v(t))]dt. This Q(t) is

similar to the notion of “heat” in thermodynamics, which

corresponds to the net energy stored in the system (useful

work supplied to the system minus the energy dissipation

from the system). Motivated by [2], we have a Clausius

equality for G being state dissipatible.

Proposition 3.1: Consider the dynamical system G. As-

sume G is state dissipatible. Then for tf ≥ t0 ≥ 0 and v ∈ V
such that Vs(x(tf)) = Vs(x(t0)),

∫ tf

t0

r(v(t), y(t)) − d(x(t), v(t))

c + Vs(x(t))
dt

=

∮

dQ(t)

c + Vs(x(t))
= 0, (5)

where c > 0.

Based on Proposition 3.1, we have the definition of

entropy for deterministic systems.

Definition 3.2: For a state dissipatible system G, a func-

tion S : R
n → R satisfying

S(x(t2)) ≥ S(x(t1)) +

∫ t2

t1

dQ(t)

c + Vs(x(t))
(6)

for any t2 ≥ t1 ≥ 0 and v ∈ V is called the entropy function

of G.

The standard entropy in thermodynamics satisfies the

following inequality

dS ≥
dQ

Te
, (7)

where Q is the heat of the system and Te is the temperature

of the system that supplies heat (for instance heat bath). The

Clausius formulation of the second law of thermodynamics

implies that the total entropy of Universe never decreases.

From this point, it is clear that heat never flows from a

cold system to a hot system spontaneously. The Kelvin-

Planck statement easily follows from there. Note that it

follows from (7) that in our definition c + Vs(x) plays the

role of “temperature” in dynamical systems, which has been

pointed out by [2]. On the other hand, the Lyapunov measure

in [30] is defined as the inverse of a Lyapunov function.

Hence, 1/(c + Vs(x)) in our definition can be understood

as a temperature measure for dynamical systems. This point

of view is important since it can be used to define almost

everywhere energy equipartition as a way to weaken the
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notion of energy equipartition and to develop the system

thermodynamic theory in the probability space.

The following result is concerned with the continuity of

entropy functions.

Lemma 3.2: Consider a state dissipatible system G. Let

S : R
n → R be an entropy function of G. Then S(·) is

continuous on R
n.

Next, we give an explicit form of a continuously differen-

tiable entropy function.

Proposition 3.2: For a state dissipatible system G, the

function S : R
n → R given by

S(x) , log [c + Vs(x)] − log c, (8)

where c > 0, is a continuously differentiable entropy func-

tion of G.

Remark 3.2: In [2], the authors proved the uniqueness of

the entropy function for power balance equations. Whether or

not there exists a unique continuously differentiable entropy

function for G remains an open problem. Similar remarks

hold for Proposition 3.3 below.

Next, we introduce the notion of output dissipatibility.

Definition 3.3: G is called output dissipatible if there

exists a dynamic compensator Gc given by

ẋc = Acxc + Bcuc, (9)

yc = Ccxc, (10)

denoted by (Ac, Bc, Cc), where xc ∈ R
nc , uc ∈ R

mc , yc ∈
R

lc , Ac ∈ R
nc×nc , Bc ∈ R

nc×mc , and Cc ∈ R
lc×nc , such

that u = −yc and the closed-loop system G̃ given by
[

ẋ
ẋc

]

=

[

A −BCc

0 Ac

] [

x
xc

]

+

[

0
Bc

]

uc,

(11)

y =
[

C −DCc

]

[

x
xc

]

, (12)

is dissipative with respect to the supply rate r(uc, y), where

r(·, ·) is continuous. If r(uc, y) = uT
c y, then G is called

output passifiable.

Let x̃ , [xT, xT
c ]T. Similar to the state dissipatibility case,

here we can define the entropy function for the closed-loop

system consisting of G and Gc.

Definition 3.4: For an output dissipatible system G, a

function S : R
n × R

nc → R satisfying

S(x̃(t2)) ≥ S(x̃(t1)) +

∫ t2

t1

dQ̃(t)

c + Vs(x̃(t))
(13)

for any t2 ≥ t1 ≥ 0 and uc ∈ Uc is called the entropy

function of G̃.

The following result is immediate from the above defini-

tion.

Proposition 3.3: For an output dissipatible system G, if

Vs(x̃) is the storage function, then the function S : R
n ×

R
nc → R given by

S(x̃) , log [c + Vs(x̃)] − log c, (14)

where c > 0, is a continuously differentiable entropy func-

tion of G̃.

B. State Feedback Thermodynamic Control

To begin our controller design, we consider the system G
given by (1) and (2) with C = In and D = 0. In this case,

the output equation becomes y = x. The cost functional is

given by

J = lim
t→∞

[

1

t

∫ t

0

S(x(σ))dσ

]

. (15)

Hence, J is interpreted as the time-average of the entropy

function for the deterministic case of G.

The control aim here is to design a state feedback con-

troller u = Kx+v and v = Ly = Lx so that the closed-loop

system is semistable [19], [31] and the cost functional J is

minimized, that is, the time-average of the entropy function

is minimized. The physical meaning of this control aim is

to minimize the amount of the heat stored in the system so

that the system is stable at some energy level and this energy

level is determined by the initial energy level and how much

of control effort we want to put in the system.

The main feature of this optimal control problem is

semistability instead of asymptotic stability in the literature.

Semistability is defined in terms of continuum of equilibria

for dynamical systems, which distinguishes thermodynamic

systems from usual dynamical systems [2]. It has been

shown in [2] that for an isolated thermodynamic system, it is

semistable rather than asymptotically stable in the sense that

every trajectory of the system which starts in a neighborhood

of a Lyapunov stable equilibrium converges to a possibly

different Lyapunov stable equilibrium. Some relevant results

on semistable control of coupled systems are reported in [32].

Here we use the thermodynamic ideas developed in [2], [5]

to propose a novel framework for semistabilization of linear

systems.

Before we discuss our thermodynamic controller design,

a fundamental question regarding the above control problem

is the following: Is this control problem a well-defined

problem? This question implies two subquestions as follows:

1) Is J finite? and 2) if J < ∞, does there exist K such

that J is minimized? The first subquestion is answered by

the following lemma.

Lemma 3.3: Consider the linear control system G. If the

closed-loop system is semistable, then −∞ < J < ∞.

To answer the second subquestion, we give an example

and consider the continuously differentiable entropy function

given by Proposition 3.2. However, before we present this

example, we need several lemmas. The first lemma gives an

estimate of the entropy function.

Lemma 3.4: For the entropy function S(·) given by (8),

we have

Vs(x)

c + Vs(x)
≤ S(x) ≤

1

c
Vs(x), x ∈ R

n. (16)

The second lemma is like a squeezing lemma about

optimality of J by looking at optimality of upper-bound and

lower-bound functions.

Lemma 3.5: Consider a state dissipatible system G. Sup-

pose we design a state feedback controller u = Kx for
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G such that V̇s(x(t)) ≤ 0 for all t ≥ 0 and the closed-

loop system is semistable. If there exists K∗ such that the

following cost functional

J = lim
t→∞

[

1

t

∫ t

0

Vs(x(σ))dσ

]

(17)

is minimized and minK∗ J ≡ 0, then J is also minimized by

K∗ and minK∗ J ≡ 0. Alternatively, if 0 6≡ minK∗ J < ∞,

then J = S(xe) where xe = limt→∞ x(t).
Lemma 3.5 implies that if we want to consider semistable

optimal control regarding the cost functional J , then we

can consider semistable optimal control using a new cost

functional J . Dealing with J may be easier in many

cases since, by dissipativity theory [10], [33], it is always

a quadratic cost functional instead of a logarithmic cost

functional.

Since state feedback thermodynamic control based on J
is not always well defined, to make it a valid optimal control

problem, we restrict our design to a class of admissible

solutions.

Lemma 3.6: Consider a state dissipatible system G. Sup-

pose we design a state feedback controller u = Kx for G
such that V̇s(x(t)) ≤ 0 for all t ≥ 0 and the closed-loop

system is semistable. Let K be the admissible set for which

minK∈K J is well defined. Then for the entropy function

S(·) given by (8), arg minK∈K J = arg minK∈K J .

Now we have the main result for designing a state feed-

back thermodynamic controller for a state dissipatible system

G.

Theorem 3.1: Consider the system G given by (1) and (2)

with C = In and D = 0. Assume G is state dissipatible.

Then solving the following optimal control problem (labeled

as Problem I)

min
K∈K

J = J(K, x(0))

subject to u = Kx, A + BK is semistable,

where K denotes the admissible set, J is given by (15), and

S(·) is given by (8), is equivalent to solving another optimal

control problem (labeled as Problem II)

min
K∈K

J = J (K, x(0))

subject to u = Kx, A + BK is semistable.
Theorem 3.1 states that Problems I and II are equivalent.

Since the quadratic cost functional for Problem II is much

easier to deal with than the nonlinear cost functional for

Problem I, the state feedback thermodynamic control design

becomes solving the equivalent Problem II. Hence, from now

on, we only focus on Problem II.

As we mentioned before, the supply rate r(u, y) for

many control systems is a quadratic function in terms of

u and y (r(u, y) = yTQy + 2yTSu + uTRu) [10]. The

most notable example is the passive system. In this case,

it follows from Theorem 5.9 of [34] that the linear system

G possesses a quadratic storage function Vs(x) = xTPx,

where P = PT ≥ 0. Hence, J has the form J =
limt→∞(1/t)

∫ t

0
xT(s)Px(s)ds.

Lemma 3.7: For a state dissipatible system G, we assume

r(u, y) is a quadratic function of [uT, yT]T. Suppose we

design the controller u = Kx such that V̇s(x(t)) ≤ 0 for

all t ≥ 0 and A , A+BK is semistable. Then for J given

by (17), there exists a symmetric P ≥ 0 such that

J = xT(0)[In −AT(AT)#]P [In −AA#]x(0) (18)

= tr[In −AT(AT)#]P [In −AA#]V, (19)

where V , x(0)xT(0).

Remark 3.3: If we define an operator LA given by

LA(P ) , ATP + PA, (20)

where P = PT. Then it follows from Proposition 4.1 of

[16] that N (LA) = R(AA) and N (AA) = R(LA). In other

words, these properties imply that 1) a quadratic function is

an integral of motion of

ẋ = Ax (21)

if and only if it is the average of some quadratic function

along the solutions of ẋ = Ax and 2) a quadratic function

has zero average along trajectories of ẋ = Ax if and only if

it is the Lie derivative of some quadratic function along the

trajectories of ẋ = Ax. See [16] for the detailed discussion.

Since we are considering a state dissipatible system G,

without loss of generality, we assume that G is dissipative

with respect to the supply rate r(u, y). Furthermore, we

assume that r(u, y) = yTQy + 2yTSu + uTRu, where Q
and R are symmetric. Then it follows from Theorem 5.9 of

[34] that there exist P = PT ≥ 0 and L ∈ R
p×n such that

ATP + PA − CTQC + LTL = 0. (22)

The following definition is needed in this paper. This

definition is due to [35].

Definition 3.5: Let A ∈ R
n×n and C ∈ R

m×n. The pair

(A, C) is semiobservable if

n
⋂

k=1

N (CAk−1) = N (A). (23)

Lemma 3.8 ([35]): Consider the linear dynamical system

given by (21). Then (21) is semistable if and only if for

every semiobservable pair (A, R) with positive semidefinite

R, there exists a symmetric n × n matrix P̂ > 0 such that

ATP̂ + P̂A + R = 0. (24)

Such a P̂ is not unique.

The next result characterizes state feedback thermody-

namic control as an optimization problem involving two

linear matrix inequalities.

Theorem 3.2: Consider the linear control system G. As-

sume that G is dissipative with respect to the supply

rate r(u, y). Furthermore, assume that r(u, y) = yTQy +
2yTSu + uTRu, where Q and R are symmetric matrices.

Then solving Problem I is equivalent to solving the following
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optimal control problem

min
K∈K

J = tr[In −AT(AT)#]P [In −AA#]V

subject to u = Kx, (A, W ) is semiobservable,

ATP + PA − CTQC + LTL = 0, P ≥ 0,

ATP̂ + P̂A + W = 0, P̂ > 0.
Remark 3.4: To guarantee (A, W ) is semiobservable, one

can take W = ATMA where M > 0 is an arbitrary symmet-

ric matrix. To see this, note that in this case N (WAk−1) =
N (ATMAk) = N (Ak) for every k = 1, . . . , n. Further-

more, note that N (A) ⊆ N (Ak) for every k = 1, . . . , n,

then it follows that
⋂n

k=1 N (WAk−1) =
⋂n

k=1 N (Ak) =
N (A), which, by Definition 3.5, implies semiobservability.

The optimal control problem given by Theorem 3.2 is

complicated in a way that the cost functional involves A#

and A is a function of K . Next, we simplify this cost

functional by noting the following fact.

Lemma 3.9: If A is semistable, then Y , In−AA# is the

unique matrix satisfying N (Y ) = R(A), R(Y ) = N (A),
and N (A) ⊆ N (Y − In).

Corollary 3.1: Consider the linear control system G. As-

sume that G is dissipative with respect to the supply

rate r(u, y). Furthermore, assume that r(u, y) = yTQy +
2yTSu + uTRu, where Q and R are symmetric matrices.

Then solving Problem I is equivalent to solving the following

optimal control problem

min
K∈K

J = trY TPY V

subject to u = Kx, (A, W ) is semiobservable,

N (Y ) = R(A), R(Y ) = N (A),

N (A) ⊆ N (Y − In),

ATP + PA − CTQC + LTL = 0, P ≥ 0,

ATP̂ + P̂A + W = 0, P̂ > 0.

C. Output Feedback Thermodynamic Control

Now we go back to the original form of G. Here C 6= In

and D 6= 0. The control aim here is to design a dynamic

compensator Gc denoted by (Ac, Bc, Cc) and uc = Ky so

that the closed-loop system is semistable [19], [31] and the

cost functional J is minimized. In this case, J is given by

J = lim
t→∞

[

1

t

∫ t

0

S(x̃(σ))dσ

]

, (25)

where S(x̃) is given by (14).

To reformulate our optimal control problem, suppose the

closed-loop system G̃ is given by

˙̃x = Ãx̃ + B̃uc, (26)

y = C̃x̃. (27)

Clearly, G is output dissipatible if and only if G̃ is dissipative.

By choosing the dynamic compensator Gc such that G̃ is

output dissipatible, one can follow the similar arguments

as the state feedback thermodynamic control case to obtain

some similar results as follows.

Proposition 3.4: Consider the closed-loop system G̃. As-

sume G̃ is dissipative. Then solving the following optimal

control problem

min
(K,Ac,Bc,Cc)∈K̃

J = J(K, Ac, Bc, Cc, x̃(0))

subject to uc = Ky, Ã + B̃K is semistable,

where K̃ denotes the admissible set, J is given by (25), and

S(·) is given by (14), is equivalent to solving another optimal

control problem (labeled as Problem III)

min
(K,Ac,Bc,Cc)∈K̃

J = J (K, Ac, Bc, Cc, x̃(0))

subject to uc = Ky, Ã + B̃K is semistable,

where J is given by

J = lim
t→∞

[

1

t

∫ t

0

Vs(x̃(σ))dσ

]

, (28)

Proposition 3.5: Consider the closed-loop system G̃. As-

sume that G̃ is dissipative with respect to the supply rate

r(uc, y). Furthermore, assume that r(uc, y) = yTQy +
2yTSuc + uT

c Ruc, where Q and R are symmetric matri-

ces. Then solving Problem III is equivalent to solving the

following optimal control problem

min
(K,Ac,Bc,Cc)∈K̃

J = tr[In+nc
− ÃT(ÃT)#]P

[In+nc
− ÃÃ#]Ṽ

subject to uc = Kx̃, (Ã, W ) is semiobservable,

ÃTP + PÃ − C̃TQC̃ + LTL = 0, P ≥ 0,

ÃTP̂ + P̂ Ã + W = 0, P̂ > 0,

where Ã , Ã + B̃K .

Corollary 3.2: Consider the closed-loop system G̃. As-

sume that G̃ is dissipative with respect to the supply rate

r(uc, y). Furthermore, assume that r(uc, y) = yTQy +
2yTSuc + uT

c Ruc, where Q and R are symmetric matri-

ces. Then solving Problem III is equivalent to solving the

following optimal control problem

min
(K,Ac,Bc,Cc)∈K̃

J = tr Ỹ TP Ỹ Ṽ

subject to uc = Kx̃, (Ã, W ) is semiobservable,

N (Ỹ ) = R(Ã), R(Ỹ ) = N (Ã),

N (Ã) ⊆ N (Ỹ − In+nc
),

ÃTP + PÃ − C̃TQC̃ + LTL = 0, P ≥ 0,

ÃTP̂ + P̂ Ã + W = 0, P̂ > 0,

where Ã , Ã + B̃K .

Hence, the output feedback thermodynamic control de-

sign becomes an optimization problem involving two linear

matrix inequalities and a dynamic compensator. The design

procedure is identical to that of the state feedback thermo-

dynamic control design.
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IV. CONCLUSIONS

Motivated by the system thermodynamic theory, in this

paper we design a semistable controller for the linear dynam-

ical systems based on the notion of entropy for deterministic

systems. Specifically, we design a state feedback controller

and a dynamic compensator so that the closed-loop system

is semistable and the time-averaging of the entropy function

is minimized. In other words, the time-averaging of the

“heat” in the system is minimized and the system energy

reaches certain stable energy level. This framework is the first

attempt to discuss the thermal role in control systems design.

Apparently, we hope this work will initiate the endeavor

towards putting thermodynamics back in control since this

thermodynamic idea is aligned with Lyapunov’s work on

stability which studies the stability of dynamical systems

using generalized energy functions.
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