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Abstract— The operation space formulation requires model
certainty to completely decouple the null space and operational
space dynamics. In this paper, we present an adaptive opera-
tional space control for redundant robots that does not require
exact knowledge of the robot inertial parameters. The use of
the inertia matrix as the weighting matrix in the generalized
inverse of the Jacobian leads to nonlinearly parameterized task
space dynamics. We show that the nonlinear parametrization
can be expressed as ratios of linearly parameterized numerator
and denominator terms. Based on this, we construct a control
Lyapunov function to eliminate some of the denominator terms
during control design, leaving behind a linearly parameterized
form that can be easily compensated for. For uncertainties that
cannot be transformed into linearly parameterized form, we
consider them as time-varying uncertainties and dominate them
based on the fact that they are bounded, without knowledge
of the bounds. Asymptotic tracking performance of the end-
effector is achieved. Simulation results are shown to illustrate
the control performance.

I. INTRODUCTION

Task space formulation of robot dynamics is appealing as

it permits intuitive specification of desired robot behavior

with respect to the external environment, and facilitates the

design of feedback control to achieve the desired behavior.

For non-redundant robot manipulators, the Jacobian matrix

is, in general, invertible, thus allowing end-effector velocities

to be mapped to joint velocities. Furthermore, the task

space dynamics are linearly parameterized, facilitating the

design of adaptive control in the task space via familiar

techniques [1], [2], [3], [4]. However, redundant robots pose

a much more difficult problem, as the Jacobian matrix is

non-invertible. To tackle this problem, one of many forms

of generalized inverse can be used to map end-effector

velocities to joint velocities.

The operational space control formulation [5] uses the

inertia matrix as the weighting matrix in the generalized

inverse of the Jacobian. This choice of weighting matrix

minimizes the instantaneous kinetic energy as well as the

acceleration energy, and leads to a unique dynamically

consistent inverse that decouples the operational space from

the null space dynamics [5], [6]. The approach essentially

overcomes the limitations of inverse kinematics based redun-

dancy resolution, including the neglect of robot dynamics

when specifying desired joint motion, and the presence of

joint space drift when the end-effector is repeatedly tracing

a closed path in task space [7].

However, operation space formulation requires model cer-

tainty to completely decouple null space and operational
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space forces. In the presence of model uncertainties, degrada-

tion of control performance has been shown and analyzed [8],

[9]. To improve control performance, multi-rate operational

control [9] has been proposed, in which joint command

is computed using the operational space formulation in an

outer loop, and the joint space robot dynamics is feedback

linearized in an inner loop. Other methods of adaptive task

space control for redundant robots, but which depart from

the operational space control formulation [5], can be found

in [10], [11], [12]. These methods employ some forms of

pseudo-inverse for kinematic resolution of the desired joint

trajectories, followed by control of robot dynamics to track

the desired joint trajectories.

In this paper, we present an adaptive operational space

control that does not require exact knowledge of the ro-

bot inertial parameters. The key challenge is that the task

space dynamics for redundant robots induced by the inertia-

weighted generalized inverse Jacobian (i.e. under the oper-

ational space control formulation) is nonlinearly parameter-

ized. As such, standard adaptive control approaches requiring

linear parametrization of robot dynamics, typically used

in non-redundant robots, cannot be applied for redundant

robots. By analyzing the structure of the inertia-weighted

generalized inverse, we show that the nonlinear parametriza-

tion can be expressed as fractions of linearly parameterized

terms. With this insight, we modify the control Lyapunov

function to eliminate some of the denominator terms during

Lyapunov synthesis, leaving behind linearly parameterized

numerator terms that can be easily compensated for. We also

employ robust domination design to dominate uncertainties

that cannot be transformed into linearly parameterized form.

In particular, we treat the terms as time-varying uncertainties,

and dominate them based on fact that they are bounded, but

without knowledge of good estimates of the bounds.

II. DYNAMICS OF REDUNDANT ROBOTS

Consider a kinematically redundant robot manipulator

described by:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (1)

where M(q) ∈ R
n×n is a symmetric positive definite matrix,

C(q, q̇)q̇ ∈ R
n the Coriolis and centrifugal forces, G(q) ∈

R
n the gravitational forces, q ∈ R

n the robot joint position,

and τ ∈ R
n the joint force. The terms M(q), C(q, q̇), and

g(q) contain uncertain dynamic parameters.

The task is to control the end-effector position, x(t) ∈
R

m, described by the forward kinematics x = F (q), to

track a desired trajectory xd(t) that is bounded and twice
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differentiable in time. The important kinematic relations

between the task and joint space are

ẋ = J(q)q̇ (2)

ẍ = J(q)q̈ + J̇ q̇ (3)

where J(q) = dF (q)/dq is the Jacobian matrix.

Based on the idealized operational space formulation [5],

the applied joint force

τid = JT (q)f + (In − JT J̄T )τn (4)

where τn ∈ R
n is any null space torque designed to achieve

subtasks such as joint limit and singularity avoidance, In the

n × n identity matrix, and

J̄ = M−1JT (JM−1JT )−1 (5)

is the dynamically consistent generalized inverse that de-

couples the operational space dynamics from the null space

dynamics, and minimizes the instantaneous kinetic energy as

well as the acceleration energy [5], [6].

From (1), (3), and (4), the idealized operational space

dynamics can be written as:

Mxẍ + J̄T (Cq q̇ + G) = f (6)

where the coefficient matrices are defined as

Mx = (JM−1JT )−1 = J̄T MJ̄ (7)

Cq = C − MJ̄J̇ (8)

f = J̄T τ (9)

and the following properties hold.

Property 1: The inertia matrix Mx is symmetric positive

definite.

Throughout this paper, we denote Mxij
as the (i, j)th

element of the matrices Mx.

In the presence of uncertainty in the inertial parameters,

the generalized inverse J̄ correspondingly becomes uncer-

tain. An intuitive countermeasure is to replace (4) with

τ = JT (q)f + (In − JT ˆ̄JT )τn (10)

where ˆ̄J is an estimate of J̄ . In this case, complete de-

coupling is no longer achieved, since J̄ is dependent on

the inertial parameters. As a result, the operational space

dynamics (1), (3), and (10) become

Mxẍ + J̄T (Cq q̇ + G) = f + J̄T (In − JT ˆ̄JT )τn

= f − ˜̄JT τn (11)

where ˜̄J = ˆ̄J − J̄ . It is apparent that the mismatch between
ˆ̄J and J̄ contributes directly to coupling of null space and

operational space dynamics.

It should also be noted that the left hand side of (11) is

nonlinearly parameterized due to the presence of M−1 in J̄ ,

as seen in (5). As such, standard adaptive control approaches

for robot manipulators based on linear parametrization can-

not be applied to solve the adaptive operational space control

problem for redundant robot manipulators.

To apply joint force τ according to (10), an estimate ˆ̄J of

the dynamically consistent generalized inverse J̄ , is required.

However, J̄ is also nonlinearly parameterized as follows:

J̄ =
1

d(q, φd)
J̄n(q, φn) (12)

with the scalar d and each element of the matrix J̄n linearly

parameterized:

d(q, φd) = ψd(q)φd (13)

J̄n(q, φn) =







ψp11
(q)φn · · · ψp1m

(q)φn

...
. . .

...

ψpn1
(q)φn · · · ψpnm

(q)φn






(14)

where ψd(q) ∈ R
ld , φd ∈ R

ld , ψpij
(q) ∈ R

ln , φn ∈ R
ln . As

such, for any ρ ∈ R
n, we have

J̄T
n (q, φn)ρ = ψn(q, ρ)φn (15)

where ψn(q, ρ) ∈ Rm×l is a regressor matrix.

Property 2: The scalar ψd(q)φd is always positive ∀q ∈
R

n.

Proof: From (5), we see that ψd(q)φd is the product of the

determinants of M and JMJT . Since M and JMJT are

both positive definite, it follows that ψd(q)φd > 0 ∀q ∈ R
n.

Property 3: There exists a compact set Ωd ∈ R
ld such

that ψd(q) ∈ Ωd ∀q ∈ R
n.

Property 4: Let det(•) be the determinant of (•). Then,

the denominator d in (13) is given by:

d = (det(M))
n−1

det(JJT ) (16)

Proof: Denote, by adj(•), the adjugate matrix of (•). From

(5), we have

J̄ = M−1JT (JM−1JT )−1

=
adj(M)JT

det(M)

(

J adj(M)JT

det(M)

)−1

=
adj(M)JT adj

(

J adj(M)JT
)

det(J adj(M)JT )
(17)

Thus, from (12), we see that

d = det(J adj(M)JT )

= det(adj(M))det(JJT )

= (det(M))
n−1

det(JJT )

and we conclude that Property 4 holds.

III. ADAPTIVE OPERATIONAL SPACE CONTROL

In the previous section, two groups of nonlinearly para-

meterized uncertainties have been described, one appearing

in the generalized inverse J̄ in the applied torque (10),

and another in the left hand side of the operational space

dynamics (11). We tackle the former by using a modified

quadratic control Lyapunov function to directly handle the

nonlinear parametrization of J̄ . On the other hand, the latter

is dealt with by first rearranging the dynamics into a linear
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time-varying parametrization form, followed by dominating

the time-varying, but bounded, parameters via an approach

similar to [13], [12].

We employ backstepping design methodology [14] to

construct an adaptive operational space control for robot

manipulator (1). In the first step, denote z = x − xd, ν =
ẋ − α, and consider the quadratic function V1 = (1/2)zT z,

which has the time derivative

V̇1 = zT (ν + α − ẋd) (18)

Design the stabilizing function as

α = ẋd − Kzz (19)

where Kz > 0, and we obtain

V̇1 = −zT Kzz + zT ν (20)

In the second step, we consider the quadratic function

V2 = V1 +
d

2
νT Mxν +

1

2γ
β̃2 +

1

2
φ̃T

d Γ−1

d φ̃d

+
1

2
φ̃T

nΓ−1

n φ̃n +
1

2
φ̃T

g Γ−1

g φ̃g (21)

where ˜(•) = ˆ(•) − (•), φg a vector of unknown parameters

of J̄T
n G, Γd = ΓT

d > 0 and Γn = ΓT
n > 0 are constant

matrices, γ > 0 a constant, and d(q, φd) > 0, defined in

(13), is introduced to eliminate nonlinear parametrization,

since J̄n = dJ̄ is linearly parameterized.

The time derivative of V2 is given by

V̇2 = νT d[f − ˜̄JT τn − J̄T (Cq q̇ + G) − Mxα̇]

+
d

2
νT Ṁxν +

ḋ

2
νT Mxν + νT z +

1

γ
β̃

˙̂
β

+φ̃T
d Γ−1

d
˙̂
φd + φ̃T

nΓ−1

n
˙̂
φn + φ̃T

g Γ−1

g
˙̂
φg − zT Kzz

Substituting ˜̄J = ˆ̄J− J̄ and using the identity Mx = J̄T MJ̄
leads to

V̇2 = νT d[f − ˆ̄JT τn + J̄T (τn − Cq q̇ − G − MJ̄α̇)

+
1

2
Ṁxν] +

ḋ

2
νT Mxν + νT z +

1

γ
β̃

˙̂
β

+φ̃T
d Γ−1

d
˙̂
φd + φ̃T

nΓ−1

n
˙̂
φn + φ̃T

g Γ−1

g
˙̂
φg − zT Kzz

Since dJ̄T = J̄T
n , we have

V̇2 = νT [d(f − ˆ̄JT τn +
1

2
Ṁxν) + J̄T

n (τn − Cq q̇

−G − MJ̄α̇) +
ḋ

2
Mxν + z] +

1

γ
β̃

˙̂
β

+φ̃T
d Γ−1

d
˙̂
φd + φ̃T

nΓ−1

n
˙̂
φn + φ̃T

g Γ−1

g
˙̂
φg − zT Kzz

Now, we design the end-effector force as

f = ˆ̄JT τn + fu (22)

where ˆ̄JT = (ψnφ̂n)/(ψdφ̂d) and fu is to be designed later.

This yields

V̇2 = νT [dfu + J̄T
n (τn − G) − Y (q, q̇, α̇, ν, φ) + z]

+
1

γ
β̃

˙̂
β + φ̃T

d Γ−1

d
˙̂
φd + φ̃T

nΓ−1

n
˙̂
φn + φ̃T

g Γ−1

g
˙̂
φg

−zT Kzz (23)

where

Y (q, q̇, α̇, ν, φ) := J̄T
n (Cq q̇ + MJ̄α̇)

−
1

2
(dṀx + ḋMx)ν (24)

and φ is a vector of uncertain parameters. From (23), the

term J̄T
n (τn −G) is linearly parameterized in φn, according

to (14) and the fact that G is also linear-in-the-parameters:

J̄T
n (τn − G) = ψn(q, τn)φn + ψg(q)φg (25)

and thus, the parameters φn and φg can be adaptively

estimated. However, the term Y is still nonlinearly parame-

terized with respect to φ.

To circumvent this difficulty, we treat the matrices J̄T
n MJ̄ ,

ḋMx, dṀx, and J̄T
n Cq as time-varying uncertainties, and

dominating them based on the bounds of the time-varying

parameters. While J̄T
n MJ̄ is always bounded for all q ∈ R

n,

ḋMx, dṀx and J̄T
n Cq depend linearly on q̇. The latter does

not pose a problem as q̇ can be factored into the regressor.

To this end, define

A := −dṀx − ḋMx

B := J̄T
n Cq (26)

and let aij ∈ R
n and bij ∈ R

n, for i, j = 1, ...,m, be defined

such that

q̇T aij = Aij

q̇T bij = Bij (27)

Thus, we write

−(ḋMx + dṀx)ν/2 = ψA(ν, q̇)θA(t)

J̄T
n Cq q̇ = ψB(q̇)θB(t)

J̄T
n MJ̄α̇ = ψC(α̇)θC(t) (28)

where the regressors are defined in (29)-(30) with ⊗ denoting

the Kronecker product. The time-varying parameters are

given by

θA(t) = [θT
A1

, ..., θT
Am

]T

θAi
(t) = [aT

i1, ..., aT
im]T , i = 1, ...,m

θB(t) = [θT
B1

, ..., θT
Bm

]T

θBi
(t) = [bT

i1, ..., bT
in]T , i = 1, ...,m

θC(t) = [θT
C1

, ..., θT
Cm

]T

θCi
(t) = d[Mxii

, ..., Mxim
]T , i = 1, ...,m (31)

which evolve in compact sets ΩθA
, ΩθB

, and ΩθC
∀t ≥ 0

θA(t) ∈ ΩθA
⊂ R

nm2

θB(t) ∈ ΩθB
⊂ R

mn2

θC(t) ∈ ΩθC
⊂ R

lM (32)

1744



ψA(ν, q̇) =







(ν ⊗ q̇)T · · · 0
...

. . .
...

0 · · · (ν ⊗ q̇)T






, ψB(q̇) =







( [q̇2], [q̇q̇] ) · · · 0
...

. . .
...

0 · · · ( [q̇2], [q̇q̇] )






(29)

ψC(α̇) =















α̇T 0 · · · · · · 0
α̇1(

me2) α̇T
2:m · · · · · · 0

...
...

. . .
...

α̇1(
mem−1) α̇2(

m−1em−2) · · · α̇T
m−1:m 0

α̇1(
mem) α̇2(

m−1em−1) · · · α̇m−1(
2e2) α̇m















, α̇ = (α̇1, ..., α̇m)T (30)

[q̇2] = (q̇2

1 , q̇2

2 , · · · , q̇2

n), [q̇q̇] = (q̇1q̇2, q̇1q̇3, · · · , q̇n−1q̇n)

kei = (p1, · · · , pj , · · · , pk), pj =

{

1 if j = i
0 otherwise

, j = 1, 2, ..., k,

where lM = m(m+1)/2 by virtue of the symmetry of Mx.

As a result, we can show that Y in (24) can be linearly

parameterized in terms of bounded time-varying parameters,

as follows:

Y = ψ(q̇, ν, α̇)θ(t) (33)

where

ψ = (ψA, ψB , ψC) , θ =
(

θT
A, θT

B , θT
C

)T
(34)

Since θi(t) ∈ [θi, θi] ∀t ≥ 0, i = A, B,C, we obtain the

bound ‖θ(t)‖ ≤ β, where

β :=

(

L
∑

i=1

max
(

θ2

i , θ
2

i

)

)1/2

(35)

and L = 2lM + mn(m + n). Note that β does not need to

be known, but it is adaptively estimated in the controller.

The parameterizations in (13), (25), (28) and (33) lead to:

V̇2 = νT [−fuψdφ̃d + fuψdφ̂d + ψnφn + ψgφg − ψθ(t)

+z] +
1

γ
β̃

˙̂
β + φ̃T

d Γ−1

d
˙̂
φd + φ̃T

nΓ−1

n
˙̂
φn

+φ̃T
g Γ−1

g
˙̂
φg − zT Kzz

= −zT KzzνT [fuψdφ̂d + ψnφn + ψgφg − ψθ(t)

+z] +
1

γ
β̃

˙̂
β + φ̃T

d (Γ−1

d
˙̂
φd − ψT

d νT fu)

+φ̃T
nΓ−1

n
˙̂
φn + φ̃T

g Γ−1

g
˙̂
φg − zT Kzz

Considering the bound on θ(t) according to (35), we have

V̇2 ≤ νT (fuψdφ̂d + ψnφn + ψgφg + z) + ‖νT ψ‖β

+
1

γ
β̃

˙̂
β + φ̃T

d (Γ−1

d
˙̂
φd − ψT

d νT fu) + φ̃T
nΓ−1

n
˙̂
φn

+φ̃T
g Γ−1

g
˙̂
φg − zT Kzz (36)

We design fu as follows:

fu =
1

ψdφ̂d

(

−Kνν − z − ψngφ̂ng −
ψψT νβ̂2

‖νT ψ‖β̂ + ε‖ν‖2

)

(37)

where ψng = [ψn, ψg], φ̂ng = [φ̂T
n , φ̂T

g ]T , Kν > 0, and ε is

a positive constant satisfying

ε < λmin(Kν) (38)

Note that the third term on the right hand side adap-

tively compensates for ψnφ, and the fourth term dominates

‖νT ψ‖β in(36). The joint torque applied to the motors is

given by (10). Substituting (37) into (36) yields

V̇2 ≤ ‖νT ψ‖β −
‖νT ψ‖2β̂2

‖νT ψ‖β̂ + ε‖ν‖2
+

1

γ
β̃

˙̂
β

+φ̃T
d (Γ−1

d
˙̂
φd − ψT

d νT fu) + φ̃T
n (Γ−1

n
˙̂
φn − ψT

n ν)

+φ̃T
g (Γ−1

g
˙̂
φg − ψT

g ν) − zT Kzz − νT Kνν

≤
‖νT ψ‖β̂ε‖ν‖2

‖νT ψ‖β̂ + ε‖ν‖2
+ β̃

(

1

γ
˙̂
β − ‖νT ψ‖

)

+φ̃T
d (Γ−1

d
˙̂
φd − ψT

d νT fu) + φ̃T
n (Γ−1

n
˙̂
φn − ψT

n ν)

+φ̃T
g (Γ−1

g
˙̂
φg − ψT

g ν) − zT Kzz − νT Kνν (39)

Since ab/(a + b) ≤ a for any a, b > 0, it can be shown that

V̇2 ≤ β̃

(

1

γ
˙̂
β − ‖νT ψ‖

)

+ φ̃T
d (Γ−1

d
˙̂
φd − ψT

d νT fu)

+φ̃T
n (Γ−1

n
˙̂
φn − ψT

n ν) + φ̃T
g (Γ−1

g
˙̂
φg − ψT

g ν)

−zT Kzz − νT (Kν − εIm)ν (40)

where Im is the m × m identity matrix.

Finally, the adaptation laws are designed as

˙̂
β = γ‖νT ψ‖ (41)

˙̂
φd =















Γdψ
T
d νT fu, if φ̂d ∈ int(Φ)

or if φ̂d ∈ ∂Φ
and ψdΓ1ψ

T
d νT fu ≥ 0

0, otherwise

(42)

˙̂
φg = Γgψ

T
g ν (43)

˙̂
φn = ΓnψT

n ν (44)
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where int(Φ) and ∂Φ are the interior and boundary of the

set Φ, defined by

Φ :=
⋂

ψd∈Ωd

{φ̂d ∈ R
l : ψdφ̂d > 0} (45)

and Ωd a compact set from Property 3. The projection

algorithm (42) guarantees that the following conditions are

satisfied:

0 ≤ ψdφ̂d

0 ≥ φ̃T
d (Γ−1

d
˙̂
φd − ψT

d νT fu) (46)

Furthermore, by choosing β̂(0) > 0, (41) ensures that β̂(t) >
0 ∀t ≥ 0.

Substituting (41)-(44) into (40), we obtain

V̇2 ≤ −zT Kzz − νT (Kν − εIm)ν (47)

which is negative semidefinite in light of (38). We are now

ready to summarize the main results.

Theorem 1: Consider a redundant robot manipulator (1)

subjected to the adaptive control law (10), (22), (37) and

(41)-(44). For τn ∈ L∞, the origin of the end-effector error

system, (z, ν) = 0, is uniformly asymptotically stable.

Proof: From the negative semidefiniteness of V̇2 in

(47), we conclude, by the LaSalle-Yoshizawa Theorem,

that the origin (z, ν) = 0 is uniformly stable, and that

limt→∞(−zT Kzz − νT (Kν − εIm)ν) = 0, which implies

that limt→∞ z(t) = limt→∞ ν(t) = 0.

IV. SIMULATION

Consider a model of the dynamics of a 3-link robot with

3 actuated revolute joints [15] moving on a horizontal plane.

This configuration allows a single degree of redundancy

for position tracking tasks involving the end-effector. All

numerical values in this section are in S.I. units.

Specifically, we are concerned with tracking a desired

trajectory in operational space, described by:

xd1
(t) = 0.1 cos(t/4)

xd2
(t) = 2 + 0.1 sin(t/4)

For ease of illustration, we consider that the center of mass

of each link coincides with its corresponding joint, and that

the lengths of the links are all equal, specifically li = 1.0,

i = 1, 2, 3. From Property 4, we obtain

ψd = [dJ(q) cos4(q2), dJ(q) cos2(q2), dJ (q)] (48)

where dJ (q) := det(J(q)JT (q)). For masses m1 = m2 =
m3 = 0.5, and moments of inertia Izz1

= 1.5, Izz2
= 1.0,

and Izz3
= 0.5, we estimate the bounds for dJ as 0 ≤

dJ(q) ≤ 8. Then, we have, from (48), the bounds for ψd as

0 ≤ ψdi
≤ 8, i = 1, 2, 3. As such, the projection algorithm

(42) is implemented with

Φ = {θ̂ ∈ R
3 : θ̂1 + θ̂2 ≥ 0, θ̂1 + θ̂3 ≥ 0, θ̂2 + θ̂3 ≥ 0,

θ̂1 + θ̂2 + θ̂3 ≥ 0, θ̂i ≥ 0, i = 1, 2, 3} (49)

For simplicity, the null torque is specified as τn1
=

0.1 sin t, τn2
= 0.1 cos(t), τn3

= 0.02 cos t. The design

parameters are selected as Kz = 2I , Kν = 4I , γ = 0.5,

Γd = 0.1I , Γn = 0.8I , ε = 1.6. The initial conditions for the

simulation are q(0) = (π/4, π/4, π/4)T , q̇(0) = 0, β̂(0) =
0.01, φ̂d(0) = (0.5, 0.5, 0.5)T , and φ̂n(0) = 0. Under these

design and initial conditions, the control law (10), (22), (37),

and the adaptation laws (41)-(44) are implemented.
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Fig. 1. The tracking errors z and ν converge to a neighborhood of 0.

Figure 1 shows that, under the proposed adaptive opera-

tional space control, the end-effector position tracking error

z = x − xd, and the velocity tracking error ν = ẋ − α,

both converge asymptotically to a small neighborhood of the

origin, despite the presence of uncertainty in the nonlinearly

parameterized model of redundant robot dynamics. The con-

troller has also successfully compensated for the perturbing

effects due to imperfect decoupling (11) of the operational

and null space dynamics arising from an imperfect model of

the dynamics.
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Fig. 2. The norms of the parameter estimates are convergent.

The adaptation laws result in bounded parameter estimates,

as shown by the boundedness of their norms in Figure

2. Starting from some initial values, the estimates vary in
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response to transient error signals and eventually converge

to steady state values. Under the projection algorithm (42),

ψdφ̂d > 0 is always ensured.

Apart from end-effector motion, self-motion of the redun-

dant robot is also stable, as shown by the boundedness of the

joint velocities q̇ in Figure 3. Finally, the joint torques τ are

bounded and smooth, as seen from Figure 4. The oscillations

in both q̇ and τ are induced by the sinusoidal null space

torque τn.
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Fig. 3. The joint velocities remain bounded.
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V. CONCLUSIONS

This paper has presented an adaptive operational space

control for redundant robots. Based on the insight that the

nonlinear parametrization can be expressed as fractions of

linearly parameterized terms, we have modified the control

Lyapunov function to eliminate some of the denominator

terms during Lyapunov synthesis, leaving behind linearly

parameterized numerator terms that have been handled by

adaptive control. For the terms that cannot be transformed

into linearly parameterized form, we have treated them as

time-varying parameters, and employed robust domination

design to dominate them based on the bounds of the time-

varying parameters. We have shown, via theory and sim-

ulations, that asymptotic tracking performance of the end-

effector is achieved, and that all closed loop signals are

bounded. Future work will involve experimental verification

of the controller and investigation on the handling of multiple

sub-task criteria.
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