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Abstract— Consider the problem of controlling a network of
surveillance sensors that are capable of selecting which areas to
observe and which modes to observe these areas. In this paper,
we study the problem of controlling the observations of these
sensors adaptively in order to classify accurately a collection
of objects using information on their observed features. Our
proposed approach is modeling objects as templates of 3-D fea-
tures, and modeling sensors as observing features of individual
objects, subject to degradation by noise, obscuration, missed
detections and background clutter. We exploit a statistical
framework based on random sets similar to those used in multi-
target tracking to model the statistical relationship between
observed features and object types to compute information-
theoretic estimates of the probability of error in classification.
We present a novel approach for computation of these distances
between distributions of random sets using k-best assignment
algorithms. These estimates are combined with real time
information to generate predictions of the information value
of individual measurements for sensor management. Using
these predictions, we develop assignment algorithms to compute
sensor management strategies to minimize this bound. The
resulting sensor management algorithms are capable of solving
problems involving a large numbers of objects in real-time. We
show simulations of the resulting algorithms for classifying 3-
dimensional objects from 2-dimensional noisy projections that
illustrate how the algorithms select complementary views to
overcome obscuration and provide accurate classification. Our
results show that our information-based sensor management
algorithms achieve comparable classification accuracy to adap-
tive simulation-based approaches that evaluate the value of
information, while requiring nearly five orders of magnitude
less computation.

I. INTRODUCTION

Intelligent sensors of multiple modalities are increasingly
available in diverse applications, ranging from building secu-
rity and defense to transportation and medicine. In turn, this
has created a need for automated processing and reduction
of sensor information, and the opportunity for controlling the
nature of information collected so that the resulting systems
can accomplish their task faster. One of the key tasks that
these systems perform is is object recognition, such as the
identification of explosives inside luggage, determining the
type of vehicle in surveillance, or identifying the persons
in a given location. These are complex tasks due to the
large number of variations in ambient illumination as well as
object appearance and pose in the sensed information. Robust
object recognition is often based on extracting features of
objects provide discrimination information, and which can be
reliably observed under the range of sensed conditions. The
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set of observable features of an object by a specific sensor
depends on factors such as environmental conditions, relative
sensor-object position and orientation, positions of other
objects and sensing modality. Thus, accurate recognition
often requires fusion of information from multiple sensors
using different views to obtain a sufficient collection of
discriminating features on each object.

In this paper, we consider the problem of adaptive man-
agement of a team of distributed sensors in order to classify
accurately a set of spatially distributed objects by observing
errored subsets of their features. These sensors can be ori-
ented dynamically to collect information on selected objects
from different points of view in order to complement best
the available information to achieve rapid classification.

Sensor management has received increased attention in
recent years, as summarized in the recent book [1]. Most
of this work focuses on finding and tracking objects, and
not on identifying them [2]–[5]. A common approach in
sensor management is to use information theory metrics
as the basis for evaluating alternative sensing actions [6]–
[11]. Alternative approaches use expected task performance
such as as tracking error or Bayesian classification costs,
leading to stochastic control formulations and corresponding
algorithms [12]–[16]. The work in [17] compares task-
driven sensor management schemes with information-driven
schemes, and determines that the performance difference
between the two classes of approaches was small.

The problem of sensor management for classification
objectives was studied in [18] using information theoretic
criteria. Alternative approaches based on stochastic control
techniques and partially observed Markov decision processes
were developed in [12], [15], [19]. In these papers, the
sensor model for classification assumes that sensors observe
a conditionally independent estimate of object type, which
is a highly unrealistic assumption. In actuality, processing
of information generated by sensors with a similar point of
view will result in highly correlated tentative classification
decisions because they will be based on the same set of
features. Instead, a more accurate model would represent
sensor measurements as providing conditionally indepen-
dent information about object features, and determine how
observation of additional features yields improved object
classification decisions.

In our previous work [20], we proposed a model for
feature-based sensor management representing objecdts as
spatially related collections of features, characterized by
object type and pose. Such models have been proposed
for object recognition by several authors [21]–[23]. In this
model, sensors obtain noisy observations of subsets of object
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features, where the observed subset of features depend on
object type, and relative sensor/object pose, and includes
missed features due to obscuration as well as missed de-
tections, and clutter features, and are modeled as random
point sets [24] derived from the object models. The results
of [20] used as the objective for collected information the
reduction in the expected probability of classification error.
Real-time evaluation of these metrics requires the use of
time-consuming simulations of future measurements. [20]
developed a novel approach that combines off-line computa-
tion of a priori value of measurements using Bhattacharyya
distances between models of random sets of point features,
and real-time estimates of object type and pose generated
from past measurements, to generate a prediction of the value
of information that a sensor could collect on an object. This
value was used in assignment algorithms to compute sensor
management strategies to maximize the expected information
collected.

In this paper, we extend the results of [20] to incorporate
more accurate estimates of the reduction in probability of
classification error. In particular, we develop estimates based
on Chernoff coefficients instead of Bhattacharyya distances,
which can lead to the use of more accurate Chernoff bounds
on the expected probability of error between two random
sets. We derive a new set of bounds on the expected reduction
in probability of error based on the Chernoff coefficients, and
integrate them into a real-time adaptive sensor management
algorithm that scales well to scenarios with large numbers of
objects. We also describe an efficient way for computation
of Chernoff coefficients that avoids a combinatorial enumer-
ation of hypotheses using k-best data association algorithms
and importance sampling techniques.

We evaluate the proposed sensor management algorithms
using data generated from synthetic 3-D models of object
classes. We also evaluate the algorithms on synthetic aperture
radar data generated under DARPA’s MSTAR program and
simulate sensors as extracting features from 2-D projections
of these models. We compare the performance of our real-
time sensor management algorithm with other information-
theory approaches that use measurement simulations. Our
real-time algorithms achieve comparable classification ac-
curacy, while requiring nearly three orders of magnitude
less computation. Our results establish the feasibility of a
practical, scalable and accurate approach for the real-time
management of a team of sensors.

An overview of the remainder of this paper is as follows:
Section II, presents an overview of the mathematical for-
mulation of feature-based sensor management using random
set observations introduced in [20]. Section III describes
two approaches for adaptive sensor management based on
information-theory criteria, including our solution for com-
bining off-line bounds with on-line estimates. Section IV
discusses simulation results that compare the two algorithms
in terms of classification performance and computation time.
Section V discusses our results and presents directions for
future work.

Fig. 1: Example of a three-dimensional model

II. PROBLEM FORMULATION

Assume that there are M known locations that contain
objects, with centers at locations zm ∈ R3. Each location m
contains an object of type cm ∈ {1, . . . , k}, that is oriented
with a pose consisting of azimuth angle θazm and elevation (or
similarly, inclination) angle θelm. We assume that the center
locations zm are known, and that objects are stationary. The
unknown state of an object at location m is

xm = (cm, θ
az
m , θ

el
m)

and the overall unknown system state is

X = (x1, . . . , xM )

Assume for the purposes of inferencing that the set of
possible azimuth and elevation orientations is finite, and that
the states are independent random variables across location,
with marginal prior distributions specified by pm(xm),m =
1, . . . ,M.

Associated with each object type k = 1, . . . ,K is a
collection of features, described by their spatial locations in a
relative coordinate frame centered at the object centroid. Ex-
tending our formulation to adding additional information to
features such as type is straightforward (e.g. [25]). Examples
of such features can include extreme points of models such as
corners, as illustrated in Fig. 1. Denote the relative locations
of features for object type k as Mk = {Mk

1 ,M
k
2 , ...,M

k
nk
},

where Mk
i ∈ R3. Given an object state xm at known location

m, the model M cm specifies unambiguously the number of
features and their 3-D positions through application of the
appropriate rotation matrices Rz(θazm ), Ry(θelm), where Rz(θ)
represent a clockwise rotation through an angle θ about the z
axis and and Ry(θ) is a clockwise rotation through an angle
θ about the y axis.
The true feature locations Fm of object m with state xm are
generated by translating and rotating model features from
class cm as:

Fmi = zmo +Rz(θ
az
m )∗Ry(θelm)∗M cm

i , i = 1, . . . , ncm (1)

In this manner, three-dimensional objects can be generated
as collections of points, spatially distributed about the known
location of the object centroid.

Sensors collect measurements on object locations to es-
timate the states X . A single sensor observes only one
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location at a time and generates a set of projected noisy
feature positions for that location, that misses obscured
features, and includes random missed feature detections as
clutter features. The statistical model for the observation is
a random finite point set [24]. The measurement model is
described constructively as follows: Denote the random set
corresponding to measurement of location m by sensor j as
Y mj .

For each feature location Mk
i for object type k, we

assume that there is a visibility map Iki (θ, δ) which is a
function of relative azimuth θ and elevation angle δ to a
sensor location, which takes value 1 whenever this feature
is visible from a relative direction corresponding to (θ, δ),
and 0 otherwise because of self-obscuration. Without loss
of generality, assume that the sensor is in the far field, so
this obscuration depends only on the relative angle and not
on the range to the sensor. Thus, given sensor location sj
and object state xm at location m, the relative azimuth and
orientation angles can be computed, and the subset of visible
features for object type cm are readily identified.

The sensor’s location sj defines a line-of-sight vector to
the location zm, and a projection plane perpendicular to this
vector. The sensor measures the projections of the features
which are visible according to the visibility map to the
measurement plane. If feature i is visible, then its projected
location is

Y mji = (Fmi − sj)−
(zm − sj)(Fmi − sj)T (zm − sj)

‖ zm − sj ‖2

These projected locations are represented as two-
dimensional locations in a sensor-centered coordinate frame.
Misdetection of visible features is modeled by a Bernoulli
detection process which is independent across features, mea-
surements and sensors, with probability of detection pD. Let
di ∈ {0, 1} denote the indicator that feature i for object
of type cm is both visible and detected when viewed from
sensor j, for i = 1, . . . , ncm .

Detected projected locations as measured imprecisely, with
Gaussian additive errors, independent across features and
measurements, yielding noisy measurements for Ỹ mji =
Y mji + vmji where vmji ∼ N(0, σ2

mj) has covariance that
depends on the sensor-object location geometry and is a
2-dimensional random error in the projection measurement
plane of sensor j. The collection of these detected noisy
features for sensor j of location m are denoted as Y mjd ,
defined as

Y mjd = {Ỹ mji |di = 1, i = 1, . . . , ncm}

Clutter features in the measurement sets are modeled by
a homogeneous spatial Poisson point process with total
intensity λ distributed uniformly over the sensor’s field of
view, independent across sensors and measurement times.
Denote this random set of points Y mjc . Then, the observation
of location m by sensor j is defined as Y mj = Y mjd ∪ Y mjc

The resulting observation Y mj is a random set of projected
locations [24], [26], [27].

The above model defines the likelihood p(Y mj |xm). Let
Im(t) denote all the random set observations of location m
collected for all times prior to and including time t, and the
sensor actions uj(m) = s that collected the observations.
The sufficient statistic or information state summarizing the
observations at location m is the conditional probability
p(xm|Im(t)). Let I(t) = ∪Nm=1Im(t). Given the indepen-
dence assumptions, it is straightforward to show that the
sufficient statistic for the overall state X at time t is given
by

p(X|I(t)) ≡ Π(t+ 1) =

M∏
m=1

p(xm|Im(t))

The evolution of the information state is governed by
Bayes’ rule, given the new observation Y mj(t) at time t,
as

p(xm|Im(t)) =
p(Y mj(t)|xm)p(xm|Im(t− 1))∑
x′
m
p(Y mj(t)|x′m)p(x′m|Im(t− 1))

This inference involves averaging over possible data associ-
ations from the random set locations to the features of object
m under state xm [26], [27].

With the above setup, adaptive sensor management prob-
lem selects sensing actions uj(t) ∈ {1, . . . ,M} for each
sensor, sensors j = 1, . . . , J identifying the location at
for each time t that each sensor will observe, based on
knowledge of the information state Π(t). Sensor actions are
constrained so that a sensor can only observe locations which
are within its field of regard. In this paper, we pursue the
approach of [20] to use surrogate performance measures
based on information theory as the basis for selection of
sensor actions, as discussed in the next section.

III. INFORMATION-BASED ADAPTIVE SENSOR
MANAGEMENT

The adaptive sensor management schemes we consider are
based on generating stage-by-stage optimal policies. At time
t, the sensor management system must select a sensing action
ui(t) for each sensor i, that are functions of the information
state Π(t). We define utility functions R(j,m) associated
with the value of measuring location m with sensor j at time
t, which depend on the current information state Π(t) and the
random set observation models described in Section II. Given
these utility functions, computed for each sensor-location
pair, the actions at time t will be selected to maximize the
total collected utility by solving an inequality-constrained
linear assignment problem of the form

max

N∑
j=1

M∑
m=1

Rj,maj,m subject to (2)

M∑
m=1

aj,m = 1, j = 1, . . . , N

N∑
j=1

aj,m ≤ 1,m = 1, . . . ,M

aj,m ∈ {0, 1}, j = 1, . . . N,m = 1, . . . ,M

4936



where aj,m = 1 if sensor i is assigned to measure location
m at time t, and 0 otherwise. The solution of this problem
translates to decision actions at time t, as uj(t) = m if
aj,m = 1. Note that this formulation restricts the actions of
sensors so that no two sensors can observe the same location
at the same time. This restriction could be relaxed, but the
resulting problem would require a combinatorial enumeration
of the predicted performance of combinations of sensors
for each location, significantly increasing the computation.
Given the presence of multiple observation times, the loss
in performance by this restriction is minimal, as sensors that
should observe a location that is also currently observed by
other sensors can simply delay their observation to another
time.

The main issue in our approach is the choice of surrogate
utility function that decomposes additively over sensor ac-
tions, as required by the optimization approach. One alterna-
tive is the discrimination gain, or equivalently, the expected
reduction in sample conditional entropy of the underlying
conditional probability distributions of the object states at
each time [4], [10], [18]. The sample conditional entropy of
the sufficient statistic Π(t) as

H[Π(t))] = −
M∑
m=1

∑
xm

p(xm|Im(t− 1)) log p(xm|Im(t− 1)

=

M∑
m=1

Hm[p(xm|Im(t))] (3)

Note that we are not averaging over I(t) as would be
required for the standard definition of conditional entropy,
since H[Π(t)] is adapted to the sufficient statistic Π(t).

As in [18], the expected discrimination gain at time t of a
collection of sensing actions U(t) is the sum of the expected
sample conditional entropy reduction for each action. For
action uj(t) = m, the discrimination gain from location m
is

Dj,m(p(xm|Im(t− 1))) = Hm[p(xm|Im(t− 1))]

− EYmj(t)

[
Hm[p(xm|Im(t− 1), uj(t) = m,Y mj(t))]

]
(4)

For sensor management, we define the stage t utility
functions R(j,m) = Dj,m(p(xm|Im(t − 1))). Note that
the overall cost (3) is additive in the individual location
discrimination gains. Direct computation of the expectation
in (4) using our random set model is difficult, so the functions
R(j,m) are typically estimated through simulation of the
random sets Y mj(t) for each location m and sensor j.

A different metric for sensor management is reduction in
the expected probability of object classification error based
on maximum a posteriori classification for each location.
For location m, given the information state Π(t) at state
t, the probability of making a classification error using the
maximum a posteriori classifier before collecting additional
measurements is

Rm(t) = 1−max
xm

p(xm|Im(t− 1))

Similarly, after sensor j collects a measurement Y mj(t), the
posterior probability of classification error is

Rm(t, Y mj(t)) = 1−max
xm

p(xm|Im(t− 1), Y mj(t))

The expected reduction in probability of error from measur-
ing location m with sensor j is

Rj,m = EYmj [max
xm

p(xm|Im(t− 1), Y mj(t))]

−max
xm

p(xm|Im(t− 1)) (5)

By summing over the set of possible sensing actions, the
utility functions Rj,m in (5) maximize the expected reduction
in the number of classification errors over the set of locations.
Again, direct computation of this objective requires averag-
ing over the random sets Y mj(t) for each sensor-location
pair using Monte Carlo techniques.

The approach proposed in [20] is to use bounds on the
probability of error to estimate the expected reduction above.
In particular, these bounds do not require on-line simulation
of random sets, and use quantities based on information-
theoretic distances that can be computed off-line. We extend
the results of [20] to use bounds on the probabilities of error
in confusing potential states xm, x′m in terms of Chernoff
coefficients [28], as described next.

Assume we have two distributions for the same random
variable Y , given by p(Y |x) and p(Y |x′). The Chernoff co-
efficient for parameter 0 < α < 1 between these distributions
is defined as

ραx,x′ =

∫
Y

p(Y |x)αp(Y |x′)1−αdY (6)

The special symmetric case for α = 1/2 is the Bhattacharyya
coefficient, which was used in [20], and is denoted without
superscript as

ρx,x′ =

∫
Y

√
p(Y |x)p(Y |x′)dY (7)

The Chernoff coefficients in (6) depend on the distribution
of the random set measurements conditioned on the discrete
states xm, x′m, and not on the real-time information Im(t).
Thus, these coefficients can be computed off-line, which we
will exploit for fast real-time sensor management.

The Chernoff coefficient provides a bound on the proba-
bility of classification error in making a decision between a
pair of hypotheses xm and x′m. If the prior probabilities on
the classes are p(xm), p(x′m), and the maximum a posteriori
(MAP) rule is used to select one of the two values xm or
x′m, the average probability of error can be bounded by

Perr(xm, x
′
m) = EY [min(

p(Y |xm)P (xm)

P (Y )
,
p(Y |x′m)P (x′m)

P (Y )
)]

=

∫
Y

min(p(xm)p(Y |xm), p(x′m)p(Y |x′m))dY

≤ p(xm)αp(x′m)1−αραxm,x′m (8)

Note that the above bound combines the available informa-
tion given by the prior probabilities, together with the off-line
computation of the Chernoff coefficient. We can compute this
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bound for multiple values of the Chernoff coefficients α, and
choose the minimum as the best bound on the probability of
error.

The above bound on the average probability of error
in selecting between two hypotheses can be extended to
compute a bound for the probability of error when there are
many discrete states xm ∈ {X1

m, . . . , X
N
m} assuming that

the estimate is selected by the MAP rule.
Theorem 1: Assume there are N possible hypothesis xm

for location m, with prior probabilities p(xm), and that we
observe a measurement Y with known conditional proba-
bilities P (Y |xm), xm = 1, . . . , N . Then, for any α ∈ (0, 1),
the expected probability of error for the maximum likelihood
decision rule, Perr is bounded by

Perr ≤
N∑
j=1

N∑
j′=j+1

p(xm = j)αp(xm = j′)1−αραj,j′

The proof appears in the appendix.
Theorem 1 gives a bound on the probability of clas-

sification error for a multi-hypothesis problem, in terms
of the Chernoff coefficients between pairs of measurement
likelihood models. For sensor management, we want to
use this bound to approximate the expected reduction in
probability of error in (5). The expected reduction R(j,m)
is

R(j,m) = Rm(t)−Rm(t, Y mj(t))

The expected probability of error after collecting a measure-
ment from sensor j to location m, denoted by Rm(t, Y mj(t))
is bounded above from Theorem 1, by

Rm(t, Y mj) ≤
N∑
k=1

N∑
k′=k+1

p(xm = k|Im(t− 1))α

p(xm = k′|Im(t− 1))1−αραk,k′

We use this bound to define the utility function

R(j,m) =Rm(t)−
N∑
k=1

N∑
k′=k+1

p(xm = k|Im(t− 1))α

p(xm = k′|Im(t− 1))1−αραk,k′ (9)

which is an estimate of the reduction in expected probability
of error in estimating the state xm given a new random set
measurement Y mj(t) by sensor j. Note in particular that this
utility is easily computed given the information states Π(t)
and the precomputed Chernoff coefficients.

A. Computation of Chernoff Coefficients

Computing Chernoff coefficients requires integration over
random sets, a time-consuming task to perform exactly.
Instead of (6), we propose to compute the Chernoff coeffi-
cient between two possible states xm, x′m using importance
sampling, as:

ραxm,x′
m

=

∫
Y

[p(Y mj |xm)

p(Y mj |x′m)

]α
p(Y mj |x′m)dY mj (10)

We use samples Ỹ mj` , ` = 1, . . . , L generated from the
distribution p(Y mj |x′m), along with the likelihood models of

Section II to evaluate ρxm,x′
m

using Monte Carlo techniques
to yield the result:

Lemma 1: The estimator

ρ̂αxm,x′
m

=

L∑
`=1

[p(Ỹ mj` |xm)

p(Ỹ mj` |x′m)

]α
is an unbiased estimator of ραxm,x′

m

The proof is straightforward from the properties of indepen-
dent samples.

The computation of Chernoff coefficients from Monte
Carlo samples Ỹ mj` involves the computation of likelihoods
p(Y mj` |xm). Note that Y mj` is a random set, therefore
computation of this likelihood requires summation over all
possible data associations of points in Y mj` with the predicted
visible features for sensor j from the models at location m
with state xm [24]. From our model in Section II, these
likelihoods become:

p(Y mj` |xm) =
∑
M

p(Y mj` |xm,M)p(M |xm) (11)

where M is a data association hypothesis that explains
uniquely the correspondence of points in Y mj` to clutter
points and visible features for sensor j for an object in state
xm at location m. The details of this computation can be
found in [23], and other similar references.

The number of terms in the summation in (11) grows
exponentially with the number of features. Furthermore, most
of the terms p(Y mj |xm,M) tend to be vanishingly small,
so the sum is dominated by few terms. A common approach
in multiobject tracking is to compute only the largest term
in the sum, using a generalized likelihood method, for
which efficient solutions are available [23]. The idea is to
approximate

Mmax = argmaxMp(Y
mj` |xm,M)p(M |xm)

p(Y mj` |xm) ≈ p(Y mj` |xm,M
max)

However, this generalized likelihood method can be very
inaccurate. Instead, we use a K-best approximation, where
we compute the probabilities of the K most-likely matchings
from the simulated measurements to the model for state xm
to approximate the sum in (11). The best K matches can
be found efficiently in time that scales polynomially with
the number of points in the random sets using variations of
assignment algorithms [29].

IV. EXPERIMENTS

The experiments in this section consist of scenarios with 7
sensors and 20 objects corresponding to two different classes
of cars, shown in Figure 2. Sensors correspond to cameras
that image objects that are within a sensing radius, but are
constrained to be capable of viewing just one object at a time.
In our simulations, we start with the a priori information that
each car type is equally likely. Each object is presented at
an unknown azimuth angle which is uniformly distributed
between 0 and 2π, with respect to the system reference
axis. We model a non-flat terrain by a distribution on object
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elevation angle, which is uniformly distributed on −π/6
to +π/6. Object templates are three-dimensional models
of cars, with features defined as the locations of corner
points. Objects are opaque, so features can be obscured based
on observation orientation. Visible features are projected
noisily onto the sensor viewing plane. Measurements of
object features are conditionally independent and Gaussian
distributed with a measurement noise variance of σm = 0.5.
On average, each sensor has 4 objects within its sensing
radius. Features are detected with a probability pD = 0.9
and false alarms are generated at a rate of λ = 1 uniformly
on the measured image.

Fig. 2: Two object models at the same pose

Figure 3 shows the performance of our real-time approach
to sensor management, in terms of average probability of
error versus number of decision times. The results compare
an on-line discrimination gain maximization algorithm with
our real-time algorithms using two different approaches
at computing off-line bounds: the Bhattacharyya indices
proposed in [20], and the minimum bound obtained by
selecting the optimal index for Chernoff coefficient α in
the bound of (6). The performance curves represent Monte
Carlo averages in classification error over 100 simulations,
where each simulation varied the location and orientation of
the objects present as well as the measurement errors. Note
that the performances of the algorithm using Bhattacharyya
indices and Chernoff indices are nearly identical, which
suggests that the choice of best sensor/object geometry is not
very sensitive to the quality of the bound used. The main
point to note is that the performance achieved by our on-
line/off-line approach is comparable to that achieved by the
discrimination gain algorithm, but reducing computation in
our MATLAB implementations by three orders of magnitude.

V. CONCLUSIONS

In this paper, we presented algorithms for computing
adaptive sensor management strategies for a group of sensors
seeking to classify a set of spatially distributed objects.
Our approach used a novel model based on random set
observations in terms of collections of extracted features
from measured imagery, which are angle-dependent.

We presented a novel approach that is scalable and suitable
for large numbers of objects based on off-line computation
of Chernoff coefficients between measurement likelihoods
under pairs of hypotheses, together with real-time estimates
of conditional probabilities of the state hypotheses given past
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Fig. 3: Comparison between Discrimination Gain and our
algorithms using Bhattacharyya and Chernoff coefficients

measurements. We also proposed a new algorithm for com-
putation of the off-line Chernoff coefficients using a k-best
assignment algorithm. Our simulations show that our off-
line/on-line algorithms achieve performance comparable to
that of algorithms that use real-time Monte Carlo predictions
of performance, while reducing computation by three orders
of magnitude.

There are many directions in which this work can be ex-
tended. The results can be readily extended to moving objects
and moving sensors where sensor-object geometry would
be changing dynamically. In addition, our simple feature
model can be extended to add categorical feature types in
addition to feature locations. Another extension would allow
model uncertainty, so that the templates could have variations
over where features are located. These directions remain as
subjects for future investigation.

APPENDIX

Proof of Theorem 1:
Given hypotheses x ∈ {1, . . . , N} with prior probabili-

ties p(x), and observations Y with conditional distributions
p(Y |x), the maximum aposteriori estimate

x̂ = max
x∈{1,...,N}

{
p(Y |x)p(x)

p(Y )

}
and the probability of error in making this decision is:

Perr =

N∑
j=1

p(j)p(x̂ 6= j|j)

Define Aj′ to denote the event that the classification decision
x̂m = j′. This corresponds to a collection of observations Y
for which p(x = j′|Y ) ≥ p(x = j|Y ) for all j 6= j′. Then,

Perr =

N∑
j=1

p(j)p(
⋃
j′ 6=j

Aj′ |x = j)

We can assume the events Aj′ are disjoint by using a tie-
breaking rule for the maximum a posteriori estimate. Thus,

p(
⋃
j′ 6=j

Aj′ |x = j) =

N∑
j′=1,j′ 6=j

p(Aj′ |x = j)
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so we can write

Perr =

K∑
j=1

p(j)

N∑
j′=1,j′ 6=j

p(Aj′ |x = j)

=

N∑
j=1

p(j)

N∑
j′=1,j′ 6=j

p(x̂ = j′|x = j)

from the definition of Aj′ . We can rearrange symmetric
terms in the summation to obtain:

Perr =

N∑
j=1

N∑
j′=j+1

[p(x̂ = j′|x = j)p(x = j)+

p(x̂ = j|x = j′)p(x = j′)]

We define Y j to denote those values of observation Y for
which event Aj is true, that is, the classification decision is
as x̂ = j. Then,

P err =

N∑
j=1

N∑
j′=j+1

∫
Y j′

p(j)p(Y |x = j)dY+∫
Y j

p(xj′)p(Y |x = j′)dY

=

N∑
j=1

N∑
j′=j+1

∫
Y j∪Y j′

min
{
p(j)p(Y |j), p(j′)p(Y |j′)

}
dY

≤
N∑
j=1

N∑
j′=j+1

∫
Y

min
{
p(j)p(Y |j), p(j′)p(Y |j′)

}
dY

≤
N∑
j=1

N∑
j′=j+1

∫
Y

p(j)αp(Y |j)αp(j′)1−αp(Y |j′)1−αdY

where the first equality follows because p(j)p(Y |j) ≤
p(j′)p(Y |j′) under Y ∈ Y j

′
and the last inequality holds

for 0 < α < 1. This gives us the result:

Perr ≤
N∑
j=1

N∑
j′=j+1

p(j)αp(j′)1−α
∫
Y

p(Y |j)αp(Y |j′)1−αdY

=

N∑
j=1

N∑
j′=j+1

p(j)αp(j′)1−αραj,j′
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