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Abstract— This paper focuses on the problem of Kalman
filtering for Itô stochastic continuous-time systems with multiple
delayed measurements, for which very little work exist to date.
For an Itô-stochastic system, its stochastic differential and
integral have a significant place and are different from other
stochastic systems owing to the Wiener or the Brownian process.
In this paper, an Itô stochastic continuous-time system with
multiple delayed measurements is first reduced to a system with
delay free measurements by applying the stochastic analysis
and calculus of stochastic variables. Next, the Itô differentials
for the optimal filter and its error variance are derived.

Finally, through an illustrative example, the performance of
the designed optimal filter is verified.

I. INTRODUCTION

The problem of optimal filter design for both determin-

istic and stochastic systems has been the subject of many

systematic research studies for the last few decades. As a

dual problem of optimal control, the optimal filter design

problem with no delay in the measurements, has been well

studied, see references [1]-[5]. Standard Kalman or Kalman-

Bucy filter for systems with perfect model were studies in

the aforementioned references. The most famous result is

related to the case of linear state and observation equations,

which indicate the current moments of the estimate itself

and its variance. However, great many practical engineering

systems exhibit variety of random phenomenon as well as

delays. Yet, a significantly smaller number of authors have

studied the problem of optimal filter design for systems with

time delays and stochastic noise. Some of the publications

related to the robust filter problem for time delay systems are

[6]-[9]. Additionally, comprehensive reviews of theory and

algorithms for stochastic or time delay systems are given in

[5] and [10]-[13].

In recent years there have been two approaches for solving

the optimal filtering problem in stochastic systems with time

delays. One is to use reorganization innovation analysis ap-

proach along with the orthogonal projection lemma. Optimal

estimations over observations with multiple delays are treated

for discrete or continuous time system in [14] and [15] by

using this same idea. The Kalman filter is derived according

to the solution of standard Riccati equations. As a result,
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the method has also been applied successfully to H∞ fixed-

lag smoothing for time delay linear systems in [16] and

[17]. The other idea is to use the general expression for

the stochastic Ito differential of the optimal estimate and

the error variance. The general expression for the stochastic

Ito differential of the optimal estimate and the error variance

is first given for the optimal filtering problem in [5]. With

the application of that result, optimal linear filtering over

an observation with multiple delays is investigated and the

optimal filtering equations similar to the traditional Kalman-

Bucy ones [18], are obtained in [19] and [20]. Finally, the

optimal filtering problem for polynomial system states with

polynomial multiplicative noise over linear observations with

an arbitrary observation matrix is treated in [21]-[22].

This paper presents an optimal filter for linear continuous

time varying Itô stochastic system with current and multiple

delayed measurements in multiple channels, thus generaliz-

ing and developing the results in [15],[19] and [20] based on

the standard Kalman filter problem in [1]-[2] and [18]. It is

believed that this result has important applications to many

fields. The paper applies stochastic analysis and stochastic

calculus to solve the problem instead of reorganization in-

novation analysis approach. The optimal filtering problem is

treated proceeding from the general expression for stochastic

Itô differential of the optimal estimate and the error variance

[5]. At first, multiple delayed measurements are changed

into delay free measurements by solving stochastic linear

equations, a transformation of the observation equations

makes the original problem reduce to a new solvable one.

Then the optimal filter and the error variance equations are

derived by the formulas for Itô differential of the conditional

expectation of system state and the error variance based

on the given observations. It is concluded that time delays

in observations just cause a new stochastic item for the

system. Compared to the conventional Kalman-Bucy filter

of the standard system with free delay, there is no intrinsic

difference between the optimal filter except the adjustments

for delays in the estimate and variance equations. The effect

of delays on noise is considered in the adjustments rather

than in [19] and [20]. The performance of the designed

optimal filter is illustrated and verified by an example with

a time delay in the observation equation.

The rest of the paper is organized as follows. In Section

2, the optimal filter problem is formulated for a continuous-

time system with multiple channels and measurement delays.

A transformation of the observation equation is introduced

and a new delay free observation equation is obtained.

Then the Ito differentials for the optimal filter and the error
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variance equations are established by stochastic analysis and

stochastic calculus in section 3. The performance of the

presented optimal filter is illustrated and verified through an

example in Section 4. Finally, some conclusions are drawn

in Section 5.

II. PROBLEM FORMULATION

Let (Ω,F , P ) be a complete probability space with an

increasing right continuous family of σ−algebra Ft, t ≥
t0 and let (β(t),Ft, t ≥ t0) and (ηi(t),Ft, t ≥ t0) be

independent Wiener processes. The Ft−measurable random

processes (x(t), yi(t), i = 0, 1, · · · , l) are determined by a

linear continuous-time Itô stochastic differential equation for

the system state

dx(t) = F (t)x(t)dt +G(t)dβ(t), x(t0) = x0 (1)

and linear stochastic differential equations with time delays

for the observation processes

dyi(t) = Hi(t)x(t − di)dt+ dηi(t), di ≥ 0, i = 0, · · · , l (2)

where random processes, x(t) ∈ Rn represents the state,

y0(t) ∈ Rm0 and yi(t) ∈ Rmi are the current and the de-

layed measurements respectively. F (t), G(t), and Hi(t) are

bounded time-varying matrices with appropriate dimensions.

β(t) and ηi(t)(i = 0, 1, · · · , l) are independent. Assume that

the delays are in an increasing order: t0 = 0 = d0 < d1 <

· · · < dl, the initial condition x0 ∈ Rn is a Gaussian vector

such that x0, β(t), and ηi(t), i = 0, 1, · · · , l are independent,

E[x0] = 0, E[x0x
T
0 ] = Π0, where T is the transpose of a

vector or a matrix. Further, let

E[dβ(t)] = 0, E[dβ(t)dβ(t)T ] = W (t)dt,

E[dηi(t)] = 0, E[dηi(t)dηi(t)
T ] = Vi(t)dt.

Thus the vector random process [x(t)T , y0(t)
T , · · · , yl(t)

T ]T

is determined by the stochastic differential equations as

above.

Let y(t) be the observation of systems (2) at time t, then

y(t) is given by

y(t) =

{

yi = col{y0(t), · · · , yi(t)}, di ≤ t < di+1;
yl = col{y0(t), · · · , yl(t)}, t ≥ dl.

(3)

The optimal filtering problem is to find the optimal esti-

mate x̂(t|t) of the system state x(t), based on the observation

process Y (t) = {y(τ)|t0 ≤ τ ≤ t}, that minimizes

J = E[(x(t) − x̂(t|t))T (x(t) − x̂(t|t)) | FY
t ]

at every time moment t. Here FY
t means a σ−algebra

generated by the observation process Y (t) in the interval

[0, t] and J means the conditional expectation of a stochastic

process (x(t) − x̂(t))T (x(t) − x̂(t)) with respect to the

σ−algebra FY
t generated by the observation process Y (t)

in the interval [t0, t].

III. OPTIMAL FILTERING WITH DELAYED

OBSERVATIONS

For systems with delayed observations, to deal with the

time delay, a natural idea is to change the observation with

time delay into a new delay free observation. At moment t,

the relation between yi(t) and x(t−di) is known through (2).

Using the state equation (1), we aim to find a relationship

between yi(t) and x(t). Then the optimal estimate is easily

obtained by the conditional expectation x̂(t|t) = E[x(t)|FY
t ]

of the system state x(t) with respect to the σ−algebra FY
t

generated by the observation process Y (t) in the interval

[t0, t].

A. Problem Reduction

From [13], for all t0 ≥ 0 and ξ measurable with respect to

Ft and E|ξ|2 < ∞ there exists a unique continuous solution

x(t), t > t0, of the system (1), verifying x(t0) = ξ. For

ξ = x0, the solution of (1) with x(t0) = x0 is

x(t) = Φ(t, t0)x0 +Φ(t, t0)

∫ t

t0

Φ−1(s, t0)G(s)dβ(s) (4)

where Φ(t, t0), t ≥ t0 is the fundamental matrix of solution

of the system (1), that is the solution of the matrix equation

dΦ(t, t0)

dt
= F (t)Φ(t, t0)

and Φ(t0, t0) is an unit matrix.

Then there is a unique continuous solution x(t−di) of the

system (1), verifying t− di > 0 and x(t0) = x0 as follows:

x(t− di) = Φ(t− di, t0)x0

+Φ(t− di, t0)

∫ t−di

t0

Φ−1(s, t0)G(s)dβ(s).

Then we can obtain the following equation:

x(t) = Φ(t, t− di)x(t− di)

+Φ(t, t− di)

∫ t

t−di

Φ−1(s, t− di)G(s)dβ(s),(5)

the fundamental matrix Φ(t, t − di)(t ≥ t − di ≥ 0) of

solution of the system (1) is invertible, Φ(t, t − di) =

exp
(

∫ t

t−di
F (s)ds

)

, then we can obtain

x(t− di) = Φ−1(t, t− di)x(t)−

∫ t

t−di

Φ−1(s, t− di)G(s)dβ(s)

and the observation processes (2) can also be rewritten as

dyi(t) = Hi(t)Φ
−1(t, t− di)x(t)dt + dηi(t)

−Hi(t)

∫ t

t−di

Φ−1(s, t− di)G(s)dβ(s)dt,

i = 0, · · · , l. (6)
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Then introducing the following notations:

b1(t) =



































































b1i =







H0(t)Φ
−1(t, t− d0)

H1(t)Φ
−1(t, t− d1)
· · ·

Hi(t)Φ
−1(t, t− di)






,

di ≤ t < di+1;

b1l =







H0(t)Φ
−1(t, t− d0)

H1(t)Φ
−1(t, t− d1)
· · ·

Hl(t)Φ
−1(t, t− dl)






,

t ≥ dl,

(7)

b0(t) =






































































b0i =









−H0(t)
∫ t

t−d0

Φ−1(s, t− d0)G(s)dβ(s)

−H1(t)
∫ t

t−d1

Φ−1(s, t− d1)G(s)dβ(s)
· · ·

−Hi(t)
∫ t

t−di
Φ−1(s, t− di)G(s)dβ(s)









,

di ≤ t < di+1;

b0l =









−H0(t)
∫ t

t−d0

Φ−1(s, t− d0)G(s)dβ(s)

−H1(t)
∫ t

t−d1

Φ−1(s, t− d1)G(s)dβ(s)
· · ·

−Hl(t)
∫ t

t−dl
Φ−1(s, t− dl)G(s)dβ(s)









,

t ≥ dl,

(8)

dV (t) =

























































dη0
dη1
· · ·
dηi






, di ≤ t < di+1;







dη0
dη1
· · ·
dηl






, t ≥ dl

(9)

and using the notation in (3), then the equations (2) are

changed into

dy(t) = (b1(t)x(t) + b0(t)) dt+ dV (t) (10)

where

E[dV (t)dV (t)T ] = Rdt

=

{

Ridt = diag{V0dt, · · · , Vidt}, di ≤ t < di+1;
Rldt = diag{V0dt, · · · , Vldt}, t ≥ dl.

(11)

Now we consider the optimal filtering problem for the

state equation (1) and the observation system (10) over

the observation process Y (t) in the interval [t0, t] in the

following subsection.

B. Calculation of optimal filtering

As known [5], the best approximation of a random variable

using the results of measurements is given by the conditional

expectation relative to the results of measurements. The opti-

mal estimate x̂(t|t) in section 2 is obtained by the conditional

expectation E[x(t)|FY
t ] of the system state x(t) with respect

to the σ−algebra FY
t generated by the observation process

Y (t) in the interval [t0, t], that is, x̂(t|t) = E[x(t)|FY
t ].

And it is based on the formulas for the Itô differential of the

conditional expectation and estimation error variance.

Let us begin by denoting the estimation error variance

P (t) = E[(x(t) − x̂(t|t))(x(t) − x̂(t|t))T |FY
t ]

for the problem. Using the formula for the Itô differential of

the conditional expectation x̂(t|t) = E(x(t)|FY
t ) in [5] the

optimal filtering equations can be obtained

dx̂(t|t) = E[dx(t)|FY
t ] + E [x(t) (b1(t)x(t)

+ b0(t)− E[b1(t)x(t)|F
Y
t ])T |FY

t

]

×R−1(dy(t) − (E[b1(t)x(t) + b0(t)|F
Y
t ])dt),

x̂(t0|t0) = E[x(t0)|F
Y
t0
] = 0. (12)

And the formula for the Itô differential of the variance

P (t) in [5] can be used:

dP (t) = E[(x(t) − x̂(t|t))(F (t)x(t))T |FY
t ]dt

+ E[F (t)x(t)(x(t) − x̂(t|t))T |FY
t ]dt

+G(t)W (t)G(t)T dt− E[x(t)

× (b1(t)x(t) + b0(t)− E[b1(t)x(t)|F
Y
t ])T |FY

t ]

× R−1E[b1(t)x(t) + b0(t)

−E[b1(t)x(t)|F
Y
t ]x(t)T |FY

t ]dt,

P (t0) = Π0. (13)

Taking into account that

E
[

x(t)(xT (t)− x̂(t|t)T )|FY
t )

]

= E
[

(x(t) − x̂(t|t))x(t)T |FY
t )

]

= E
[

(x(t) − x̂(t|t))(x(t) − x̂(t|t))T |FY
t )

]

= P (t),

E
[

x(t) − x̂(t|t)|FY
t )

]

= 0, E[b0(t)|F
Y
t ] = 0,

we transform formulae (12), (13) into the forms

dx̂(t|t) = F (t)x̂(t|t)dt

+(P (t)b1(t)
T + E[x(t)b0(t)

T |FY
t ])

×R−1(dy(t) − b1(t)x̂(t|t)dt),

x̂(t0|t0) = E[x(t0)|F
Y
t0
] = 0, (14)

Ṗ (t) = P (t)F (t)T + F (t)P (t) +G(t)W (t)G(t)T

−(P (t)b1(t)
T + E

[

x(t)b0(t)
T |FY

t

]

)

×R−1(P (t)b1(t)
T + E

[

x(t)b0(t)
T |FY

t

]

)
T
,

P (t0) = Π0. (15)

Then we obtain the optimal filtering x̂(t|t) for the state

vector x(t) governed by the equation (1) based on the

observation process Y (t) = {y(τ)|t0 ≤ τ ≤ t}, satisfying

the equation (2): when di ≤ t < di+1,

dx̂(t|t) = F (t)x̂(t|t)dt+ (P (t)bT1i + E[x(t)b0i(t)
T |FY

t ])

×R−1

i (dyi − b1ix̂(t|t)dt),

x̂(t0|t0) = 0;
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Ṗ (t) = P (t)F (t)T + F (t)P (t) +G(t)W (t)G(t)T

−(P (t)bT1i + E
[

x(t)b0i(t)
T |FY

t

]

)

×R−1

i (P (t)bT1i + E
[

x(t)b0i(t)
T |FY

t

]

)
T
,

P (t0) = Π0,

when t ≥ dl,

dx̂(t|t) = F (t)x̂(t|t)dt+ (P (t)bT1l + E
[

x(t)b0l(t)
T |FY

t

]

)

×R−1

l (dyl − b1lx̂(t|t)dt),

x̂(t0|t0) = 0;

Ṗ (t) = [P (t)F (t)T + F (t)P (t) +G(t)W (t)G(t)T

−(P (t)bT1l + E
[

x(t)b0l(t)
T |FY

t

]

)

×R−1

l (P (t)bT1l + E
[

x(t)b0l(t)
T |FY

t

]

)
T
,

P (t0) = Π0

where b1i and b1l, Ri and Rl are satisfied (7) and (11).

Let

A(j)

= P (t)Φ−1(t, t− dj)
T

−

∫ t

t−dj

Φ−1(s, t)G(s)W (s)G(s)
T
Φ−1(s, t− dj)

T
ds.

That is, when di ≤ t < di+1,

dx̂(t|t) = F (t)x̂(t|t)dt+

i
∑

j=0

A(j)Hj(t)
TVj(t)

−1

×
(

dyj(t)−Hj(t)Φ
−1(t, t− dj)

T
x̂(t|t)dt

)

,

x̂(t0|t0) = 0; (16)

Ṗ (t) = P (t)F (t)T + F (t)P (t) +G(t)W (t)G(t)T

−
i

∑

j=0

A(j)Hj(t)
TVj(t)

−1Hj(t)A(j)
T ,

P (t0) = Π0, (17)

when t ≥ dl,

dx̂(t|t) = F (t)x̂(t|t)dt+
l

∑

j=0

A(j)Hj(t)
TVj(t)

−1

×
(

dyj(t)−Hj(t)Φ
−1(t, t− dj)

T
x̂(t|t)dt

)

,

x̂(t0|t0) = 0; (18)

Ṗ (t) = P (t)F (t)T + F (t)P (t) +G(t)W (t)G(t)T

−

l
∑

j=0

A(j)Hj(t)
TVj(t)

−1Hj(t)A(j)
T ,

P (t0) = Π0. (19)

We can summarize the results obtained so far in the following

theorem.

Theorem: The optimal filter for the state with (1), over

the linear observations (2), is given by (14) for the optimal

estimate x̂(t|t) = E[x(t)|FY
t ] and (15) for the estimation er-

ror variance P (t) = E[(x(t)− x̂(t|t))(x(t) − x̂(t|t))
T
|FY

t ].

Specially, when di ≤ t < di+1 and t ≥ dl, x̂(t|t) and P (t)
are given by (16)-(17) and (18)-(19).

Proof: The proof directly follows from the above.

Remark: In equations (16)-(19), the adjustments for de-

lays include a item that relates to state noise dβ(s). The

effect of delays on state noise is considered in the paper,

however it did not appear in the aforementioned references.

IV. NUMERICAL EXAMPLE

This section presents an example of designing the optimal

filter for a linear state over linear observations with time

delays. It illustrates the results obtained in previous section.

Consider the system

dx(t) = Fx(t)dt +Gdw(t) (20)

dyi(t) = Hix(t− di)dt+ dηi(t), i = 0, 1 (21)

with

x(t) =

[

x1(t)
x2(t)

]

, F =

[

−6 1
0 −5

]

, G =

[

1
0

]

,

H0 = [0 − 1], H1 = [1 0]

where w(t) and ηi(t), i = 0, 1 are white Gaussian noises,

which are the weak mean square derivatives of standard

Wiener processes independent of each other. E[dw(t)] = 0,

E[dw(t)dw(t)
T
] = dt; E[dηi(t)] = 0, E[dηi(t)dηi(t)

T
] =

dt, t0 = 0, x0 is a Gaussian random variable, d0 = 0, d1 =
d, d > 0.

The initial values are assigned: x1(0) = 1, x2(0) =
0.5, x̂1(0|0) = 0, x̂2(0|0) = 0, p11(0) = 1, p12(0) =
0, p22(0) = 0.25.

The filter problem is to find the optimal estimate for the

state (20) and observation (21).

When 0 ≤ t < d, the optimal filter x̂(t|t) of the system

dx(t) = Fx(t)dt+Gdw(t)

dy(t) = H0x(t)dt + dv(t)

is the standard Kalman-Bucy filter

dx̂(t|t) = F x̂(t|t)dt

+P (t)H0
TV0

−1(t)[dy0(t)−H0x̂(t|t)dt],

x̂(0|0) = 0;

Ṗ (t) = P (t)FT + FP (t) +GWGT

−P (t)HT
0 V0

−1(t)H0P (t),

P (0) =

[

1 0
0 0.25

]

.

That is

dx̂1(t|t) = [−6x̂1(t|t) + (1 − p12(t))x̂2(t|t)] dt

−p12(t)dy0(t),

dx̂2(t|t) = −(5 + p22(t))x̂2(t|t)dt− p22(t)dy0(t),

x̂1(0|0) = 0, x̂2(0|0) = 0;

ṗ11(t) = −p12(t)
2 − 12p11(t) + 2p12 + 1,

ṗ12(t) = −p12(t)p22(t)− 11p12(t) + p22(t),

ṗ22(t) = −p22(t)
2 − 10p22(t),

p11(0) = 1, p12(0) = 0, p22(0) = 0.25.
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When t ≥ d, we can obtain the system as follows:

dx(t) = Fx(t)dt +Gdw(t)

dy(t) = (b1x(t) + b0)dt+ dv(t)

where

y(t) =

[

y0(t)
y1(t)

]

, b1 =

[

1 −1
e6d −e6d + e5d

]

,

b0 =

[

0
−H1

∫ t

t−d1

Φ−1(s, t− d)Gdw(s)

]

,

Φ(t) =

[

e−6t e−5t

0 e−5t

]

,Φ−1(t) =

[

e6t −e6t

0 e5t

]

,

the optimal filter x̂(t|t) of the system (20)-(21) is

dx̂1(t|t) = [−6x̂1(t|t) + (1− p12(t))x̂2(t|t)] dt

−p12(t)dy0(t)

+[p11e
6d − p12(e

6d − e5d)−
1

12
(e6d − e−6d)]

×
(

dy1(t)− e6dx̂1(t|t)dt
)

,

dx̂2(t|t) = −(5 + p22(t))x̂2(t|t)dt− p22(t)dy0(t)

+[p12e
6d − p22(e

6d − e5d)]

×
(

dy1(t)− e6dx̂1(t|t)dt
)

,

x̂1(0|0) = 0, x̂2(0|0) = 0;

where

ṗ11(t) = −p12(t)
2 − 12p11(t) + 2p12 + 1

−[p11e
6d − p12(e

6d − e5d)−
1

12
(e6d − e−6d)]2,

ṗ12(t) = −p12(t)p22(t)− 11p12(t) + p22(t)

−[p11e
6d − p12(e

6d − e5d)−
1

12
(e6d − e−6d)]

×[p12e
6d − p22(e

6d − e5d)],

ṗ22(t) = −[p12e
6d − p22(e

6d − e5d)]2 − p22(t)
2

−10p22(t),

p11(0) = 1, p12(0) = 0, p22(0) = 0.25.

The example displays the process of solving the filter prob-

lem of the stochastic system. It can be observed that the gain

of the optimal estimate x̂(t|t) has two parts: one is the same

as that of the standard Kalman-Bucy filter, the others is a

new one generated by the delays. The optimal filtering can

be expressed by differential equation. The error variance is

a solution of an ordinary differential equation. So the filter

of the stochastic system is figured out easily.

V. CONCLUSIONS AND FUTURE WORK

The paper presents the optimal filtering for the Itô stochas-

tic continuous-time system with multiple delayed measure-

ments. The optimal filtering is designed by the conditional

expectation of the system state over the observation pro-

cesses. The optimal filter and the error variance equations are

derived by the formulas for Itô differential of the conditional

expectation of system state and the error variance based on

the given observations. This result is theoretically proved

based on the stochastic analysis and Calculate and numeri-

cally verified. Compared to the conventional Kalman-Bacy

filter of the standard system with free delay in [18], the opti-

mal filter of the system with multiple delayed measurements

just adds one item involving a stochastic noise caused by time

delays in structure, but there is no intrinsic difference except

the adjustments of the delays in the estimate and variance

equations. An example is well explained to solve the optimal

estimate. Moreover the obtained results could be applied to

the controller problem of systems with time delays.
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