
  

  

Abstract—Type II diabetes mellitus is characterized by 

several abnormalities in different body organs such as the 

pancreas, the liver, muscles and adipose tissues. We have 

developed a technique to detect the dysfunction of different 

organs in a group of type II diabetic patients. The detection 

of these abnormalities is performed through euglycemic 

insulin clamp and hyperglycemia clamp applied to a type II 

diabetes model developed in our previous work [1]. Since the 

peripheral insulin and glucose concentrations are the only 

common clinical measurements, we have used a particle 

filtering algorithm to estimate the insulin and glucose 

concentrations in different parts of the body. These 

concentrations reflect the pancreatic insulin secretion rate as 

well as the glucose metabolic rates in the liver, muscles and 

adipose tissues which represent the functional behavior of 

the corresponding organs. Our results show that the 

proposed technique is capable of detecting deficiencies in the 

pancreatic insulin production, the peripheral glucose uptake, 

endogenous glucose production and hepatic glucose uptake 

rates. The information provided by the algorithm can, 

therefore, be used to choose a suitable dietary program 

and/or prescribe an efficient medication for type II diabetic 

patients. 

I. INTRODUCTION 

IABETES mellitus is characterized by high blood glucose 

levels due to insulin production deficiencies in the islet 

beta cells of the pancreas and by the resistance of body cells 

against the insulin. Diabetes is one of the deadliest diseases 

and is the seventh leading cause of death in the United States 

[2]. Type II diabetes or non-insulin dependent diabetes 

mellitus (NIDDM) is the most common type of diabetes 

which has affected 90% of the diabetes population 

worldwide [3]. 

Multiple abnormalities in different organs lead to the 

deterioration of glucose homeostasis in type II diabetic 

patients [4]. Resistance of muscles and adipose tissues 

against the secreted insulin results in lower peripheral 

absorption of the blood glucose which in turn leads to 

accumulation of glucose in blood [5]-[12]. Augmented or 

delayed endogenous glucose production in diabetic patients 

due to impaired insulin-induced suppression of hepatic 

glucose production is well documented [10]-[18]. Impaired 

regulatory effect of the liver on the glucose concentration 

causes abnormal hepatic glucose uptake in type II diabetic 

patients [17]-[20]. Deficiency in pancreatic insulin 

production in response to a glucose stimulus leads to 

 
O. Vahidi, R.B. Gopaluni and K.E. Kwok are with the department of 

chemical and biological engineering at University of British Columbia, 

Vancouver, BC, Canada V6T1Z3 (Corresponding author: 604-827-3247; e-

mail: ovahidi@chbe.ubc.ca).  

 

insufficient level of plasma insulin concentrations [21]-[26]. 

Unlike type I diabetic patients who need insulin injection 

to maintain glucose concentration at normal levels, elevated 

glucose concentrations in type II diabetes may be controlled 

at normal levels by regular exercise and suitable dietary 

program; however as the disease progresses, medication is 

required. Administration of a suitable and efficient 

medication for any individual patient needs accurate 

information from the patient. In our previous work [1], we 

developed a model for a group of type II diabetic patients. In 

the present work, we have applied different tests to the 

developed model to diagnose and evaluate the abnormal 

behavior of different organs in the same group. The 

information obtained from the tests may be helpful in 

choosing a suitable dietary program and in administering 

suitable medication for the respective patients. 

Different detection tests are common in diabetes research. 

We have employed euglycemic insulin clamp technique in 

silico to evaluate the insulin mediated effect on glucose 

uptake in the liver and peripheral tissues as well as its 

suppression effect on hepatic glucose production. Also, 

hyperglycemia clamp is applied in silico to investigate the 

glucose suppression effect on hepatic glucose production. 

Early phase and overall insulin secretion rate in response to 

a glucose stimulus are also evaluated through hyperglycemia 

clamp. 

The glucose metabolic rates in the liver, muscles and 

adipose tissues as well as the pancreatic insulin secretion 

rate represent the behavior of those organs. In order to 

measure these rates, measurements of glucose and insulin 

concentrations in different parts of the body are needed. 

However, these measurements require complex clinical 

facilities and in some cases may risk the life of the patient. 

Therefore, clinical measurements of all required 

concentrations are not possible. The commonly available 

clinical data include peripheral insulin and glucose 

concentrations only. Therefore, we propose using a 

Sequential Monte Carlo (SMC) filtering method called 

particle filters on a nonlinear model of a group of diabetic 

patients to estimate the glucose and insulin concentrations in 

different parts of the body. These estimates can then be used 

to measure the glucose metabolic rates in different organs 

and insulin secretion rate in the pancreas. 

This paper is organized as follows. In Section II, a brief 

description of the mathematical model that we have used 

here is provided. In the following section, fundamentals of 

particle filtering algorithm are discussed. The proposed 

technique for detecting the organ dysfunction of a group of 

type II diabetic patients is explained in section IV. 
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II. MATHEMATICAL MODEL 

In the present work, we have used a detailed 

compartmental model representing the hormonal effects of 

insulin and glucagon on the plasma glucose concentration in 

a group of type II diabetic patients. This model was 

developed in our previous work [1]. Our model was based 

on an earlier model proposed by Guyton et al. [27] for a 

healthy human and modified by Sorensen [28]. The model 

contains three sub-models which represent blood glucose, 

insulin and glucagon concentrations in the body. Each sub-

model is divided into individual compartments representing 

a specific part or organ in the human body. The number of 

compartments in each sub-model is different. The insulin 

sub-model is schematically depicted in Fig. 1. The glucose 

sub-model has the same compartments as those of the insulin 

sub-model except the pancreas compartment which is not 

included in the glucose sub-model. The glucagon sub-model 

treats the whole body as one compartment. Muscles and 

adipose tissues are lumped into the periphery compartment 

and gastrointestinal tract (including the stomach and the 

intestine) is represented by the gut compartment. Sub-

compartments, such as those in the periphery compartment, 

are considered where significant transport resistance 

between the capillaries and interstitial fluid space exists [28]. 

Model equations comprise mass balance equations over 

individual sub-compartments in each sub-model except for 

the pancreas compartment, which has a separate 

mathematical model. Detailed model equations for a healthy 

human body are provided in [28]. Previously, we used a set 

of clinical data obtained from a group of type II diabetic 

patients to develop a model based on the Sorenson model. 

Based on our knowledge of type II diabetic patients, we 

chose relevant parameters of the Sorenson model and 

estimated them using the clinical data set from the patients. 

Complete details on the estimation of parameters in this 

model are provided in [1]. 

To investigate the behavior of different organs in type II 

diabetic patients and detect any abnormalities, we need to 

compare the behavior of each organ with the same organ in a 

normal subject. The insulin secretion rate from the pancreas 

and metabolic rates of glucose in different organs reflect the 

behavior of those organs in response to any glucose 

stimulus. Comparison of these rates in type II diabetic 

patients with those of a normal subject will allow us to 

detect any abnormal behavior of those organs. Since the 

peripheral glucose and insulin concentrations are commonly 

measured, we have used a particle filtering algorithm to 

estimate the glucose and insulin concentrations in different 

part of the body. The advantage of this method is that its 

accuracy can be improved by increasing the number of 

“particles used” and moreover, is independent of the degree 

of nonlinearity of the model – unlike extended Kalman filter. 

A brief description of this method is provided in the next 

session. In order to apply the particle filtering algorithm, the 

nonlinear model in [1] is rewritten in a discrete time 

stochastic nonlinear state space format as follows: 

k1k1kk uxfx νθ +=
−−

),,(  (1) 

kkkk uxgy ωθ += ),,(  (2) 

where f and g are the state and measurement dynamic 

functions, respectively; k denotes a time step; xk is the vector 

of states, uk is the vector of inputs and yk is the vector of 

measurements; θ denotes a vector of model parameters 

which are constant values; νk and ωk are state and 

measurement noise sequences with known probability 

density functions (PDF) with zero mean. We assume that the 

state and measurement noises affect the model in a linear 

manner. The states of the model correspond to the insulin 

and glucose concentrations in different organs of the body. 

Our mathematical model contains 22 states and two 

measurements. Therefore, sizes of xk and yk are respectively 

22 and 2. The model inputs are the glucose and insulin 

infusion rates to the body and therefore, the size of uk is 2. 

III. PARTICLE FILTERS – A SEQUENTIAL MONTE CARLO 

METHOD 

The Sequential Monte Carlo (SMC) approach is a 

recursive Bayesian estimation method for nonlinear and non-

Gaussian filtering problems. The basic framework of the 

SMC approach is presented below. 

A. Recursive Bayesian Estimation 

The SMC approach in filtering problems is based on 

calculation of the probability density function of the model 

states at the current time step k (i.e. xk), given a sequence of 

the measurements up to time k (i.e. y1:k={y1, y2, ..., yk}). The 

Fig. 1.Schematic diagram of insulin compartmental sub-model. 
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Bayesian solution to this filtering problem is to calculate the 

probability density function (PDF) of xk given y1:k, p(xk|y1:k), 

for each iteration. The density p(xk|y1:k) is calculated 

recursively into two steps - prediction and update. In the 

prediction step, the PDF of xk is calculated given the 

sequence of the measurements up to time k-1 through the 

following equation: 

∫ −−−−−
= 1k1:k11k1kk1:k1k xdyxpxxpyxp )()()(  (3) 

In the update step, the density p(xk|y1:k) is calculated via 

the following equation: 

)(

)()(
)(

1:k1k

1:k1kkk

:k1k
yyp

yxpxyp
yxp

−

−
=  (4) 

It is assumed that the PDF of the initial time step, p(x0|y0), 

is known. Equations (3) and (4) do not have analytical 

solutions except for linear processes with Gaussian noise. In 

most cases the integrals in equation (3) are complex and 

intractable. For general non-linear, non-Gaussian systems 

described by equations (1) and (2), there is no simple way to 

proceed. The sequential Monte Carlo algorithms make these 

complex integrals tractable through the use of efficient 

sampling strategies [29], [30]. 

B. Sequential Monte Carlo 

Salmond et al. [31] introduced Sequential Monte Carlo 

methods for the first time in 1993 and later on the SMC 

algorithm has been further developed and adapted to many 

different applications [30]. It has appeared in the literature in 

different names such as bootstrap filtering [31], particle 

filtering [32] and interacting particle approximations [33]. 

The basic idea of SMC follows the framework of Bayesian 

recursive estimation described above. In this approach the 

recursive computation of relevant probability distributions is 

accomplished using the concepts of importance sampling 

and approximation of probability distributions by a set of 

random samples with associated weights. 

Considering the model equations represented by equations 

(1) and (2), the Bayesian recursive estimation is applied via 

a SMC algorithm instead of analytically solving the 

equations (3) and (4). At each time step k, two pieces of 

information are required for estimating the PDF: the samples 

x
i
k and their associated weights w

i
k. Samples x

i
k are assumed 

to be generated from a known PDF called importance 

density function, q(xk|y1:k). Then, the corresponding weights 

of the samples are calculated from the following equation: 
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and the weights after normalization are: 

∑
=

=
N
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where N is the number of particles used. If the importance 

density function is chosen to be factorized such that: 

)(),()( : 1:k11kk11kk:k1k yxqyxxqyxq
−−−

=  (7) 

then the samples at time step k, x
i
k ~ q(xk|y1:k), are computed 

by multiplying the existing samples, xi
k-1 ~ q(xk-1|y1:k-1), and 

the new state, x
i
k ~ q(xk|xk-1,y1:k). The corresponding weights 

are updated using the following equation: 
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In common cases when only a filtered estimate of 

p(xk|y1:k) is required, it is useful to assume that q(xk|xk-1,y1:k) 

= q(xk|xk-1,yk) and then, the importance density only depends 

on xk-1 and yk. Under this assumption, equation (8) can be 

rewritten as: 
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and the filtered density p(xk|y1:k) can be approximated by the 

following equation: 

∑
=

−≈

N

i

i

kk

i

k:kk xxwyxp
1

1 )()( δ  (10) 

where δ is the Dirac delta function, x
i
k is the ith sample that 

approximates the distribution, and the coefficient wi
k is the 

corresponding weight. As ∞→N , the above density 

approximation approaches the true filtered density p(xk|y1:k). 

IV. DETECTION OF ORGAN DYSFUNCTION 

There are some techniques that are commonly used in 

diabetes research to evaluate how well an individual 

metabolizes glucose, how well an individual’s body 

responds to glucose, and how resistant an individual is 

against insulin. Glucose clamp is a commonly used 

technique proposed by Defronzo et al. [34] in 1979. They 

proposed two types of clamps called hyperglycemia clamp 

and euglycemic insulin clamp which have been widely used 

in diabetes research. We have applied these two tests in 

silico to detect and evaluate the deficiencies (if they exist) in 

different organs of a group of type II diabetic patients using 

the model of type II diabetes developed for these patients. 

The same tests have also been applied to the Sorensen model 

to obtain similar information on a healthy subject. 

Comparing the glucose and insulin concentrations in 

different organs of diabetic patients with those obtained 

from healthy individuals will provide insight into any organ 

deficiencies in the patients. The filtering algorithm was 

implemented with 25 particles in all tests. 

A. Euglycemic insulin clamp 

This technique was developed by Defronzo et al. [34] in 

1979. In this technique, the plasma insulin concentration is 

raised and clamped at around 100 mU/l by a continuous 

infusion of insulin. At the same time, the plasma glucose 

concentration is held constant at basal levels by glucose 

injection via a negative feedback principle. At steady state 

conditions, since the endogenous glucose production is 

decreased to a negligible level, the rate of glucose infusion is 

approximately equal to rate of glucose uptake by all body 

tissues and is therefore a measure of tissue insulin 

sensitivity. The information obtained from particle filtering 
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helps in measuring the uptake rate of glucose in different 

organs which in turn will allow us to determine the 

sensitivity of that organ to insulin. 

In our previous work, we used the data provided by 

Nagasaka et al. [35] to develop our model. The same basal 

conditions for both control subjects and diabetic patients are 

used here. The peripheral insulin and glucose concentrations 

at the basal condition for the diabetic group were reported to 

be 4.05.4 ±  mU/l and 7117 ±  mg/dl, respectively. The 

corresponding values reported for control subjects were 

3.01.5 ±  mU/l and 891 ±  mg/dl for the peripheral insulin 

and glucose concentrations, respectively. To perform 

euglycemic insulin clamp, the rate of insulin infusion is set 

to 76.88 mU/min and 72.72 mU/min, and the glucose 

infusion rate is set to 270.8 mg/min and 489.1 mg/min for 

the diabetic patients and control subjects, respectively. These 

values are obtained by trial and error to maintain the insulin 

concentrations at 100 mU/l and the glucose concentrations at 

its basal value. Considering the decreased rate of 

endogenous glucose production due to hyperinsulinemia, the 

overall glucose infusion rate shows that the overall 

sensitivity of the body to insulin is decreased by 

approximately 63% in diabetic patients. It reflects sever 

insulin resistance in their body tissues.  

To evaluate the insulin sensitivity in different parts of the 

body, the glucose metabolic rates in peripheral tissues and 

the liver are provided in Fig. 2. According to Fig. 2 (a), the 

peripheral glucose uptake rate is decreased by approximately 

63% due to low insulin sensitivity in peripheral tissues. The 

same approximate amount of decrease in glucose uptake rate 

is observed in the liver (see Fig. 2 (b)). It shows that the 

insulin sensitivity of peripheral tissues and the liver is 

impaired at the same level in the group of diabetic patients. 

Fig. 2 (c) indicates that the insulin-induced suppression of 

hepatic glucose production at hyperinsulinemia condition is 

not impaired in the group of diabetic patients. Our results are 

in agreement with the discussion by Defronzo [4] which 

indicates normal suppression of hepatic glucose production 

due to hyperinsulinemia over physiological range (~100 

mU/l). Nevertheless, Defronzo [4] has argued that the dose-

response curve showing the relationship between hepatic 

glucose production and the plasma insulin concentration is 

shifted to the right which indicates relative resistance to the 

suppression effect of the insulin on hepatic glucose 

production at physiological concentrations 

B. Hyperglycemic clamp 

This technique was also proposed by Defronzo et al. [34] 

in 1979. In this technique, the plasma glucose concentration 

is raised and maintained at 125 mg/dl above basal levels by a 

 

 

 
Fig. 2.  Variations of different glucose metabolic rates during the 

euglycemic insulin clamp, NIDDM ( ─ ) and normal subjects ( -- ) 
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Fig. 3.  Variations of different glucose metabolic rates during the 

hyperglycemic clamp, NIDDM ( ─ ) and normal subjects ( -- ) 

0 100 200 300 400 500 600
0

200

400

600

800

1000

Time (min)

P
e
ri

p
h
e
ra

l 
G

lu
c
o

s
e
 U

p
ta

k
e
 R

a
te

 (
m

g
/m

in
)

(a)

0 100 200 300 400 500 600
0

100

200

300

400

500

Time (min)

H
e
p
a
ti

c
 G

lu
c
o

s
e
 U

p
ta

k
e
 R

a
te

 (
m

g
/m

in
)

(b)

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

Time (min)

H
e
p

a
ti

c
 G

lu
c
o

s
e
 P

ro
d

u
c
ti

o
n

 R
a
te

 (
m

g
/m

in
)

(c)

4772



  

continuous infusion of glucose. Since the plasma glucose 

concentration is clamped at hyperglycemia level, the glucose 

infusion rate is an index of insulin secretion capacity and 

also shows how the glucose is metabolized. More detailed 

information about the pancreatic insulin secretion rate and 

its acuteness in response to a glucose stimulus can be 

obtained from the filtering results. 

Here, the peripheral insulin and concentrations at basal 

condition are the same as previous section. Hyperglycemia 

clamp is performed for both groups of diabetic patients and 

control subjects at a glucose infusion rate of 330.8 mg/min 

for diabetic patients and 1229 mg/min for control subjects. 

The values for glucose infusion rates are obtained by trial 

and error to maintain the peripheral glucose concentrations 

at 125 mg/dl above the basal level for both groups. 

The glucose infusion rate of the diabetic group shows that 

the whole body absorption of glucose is significantly low 

with respect to normal subjects. Euglycemic insulin clamp 

technique indicated that this group of patients had high 

resistance against insulin. In the current experiment, low 

insulin sensitivity of the patients is supplemented by the low 

plasma insulin concentration due to the deficiencies in the 

pancreatic insulin secretion. These two factors together have 

resulted in significantly lower overall body glucose uptake 

in the diabetic group. As Fig. 3 (a) and (b) show, the 

peripheral glucose uptake rate and the hepatic glucose 

uptake rate of the diabetic group are approximately 80% 

lower than the corresponding values for the normal group. 

Again, it suggests the same insulin resistance in peripheral 

tissues and the liver of the diabetic group.  

According to Fig. 3 (c), the hepatic glucose production in 

both groups of diabetic patients and normal subjects is 

suppressed significantly due to the increase in plasma 

glucose concentrations. It suggests normal glucose-induced 

suppression of hepatic glucose production in the diabetic 

group which agrees with the investigations by Del Prato et 

al. [36] and Nielsen et al. [37]. Since the plasma glucose 

concentration has risen faster in the normal group than that 

of diabetic patients (Fig. 4 (b)), suppression of hepatic 

glucose production is faster in the normal group. As Fig. 3 

(c) shows, the final amount of suppression is higher in the 

normal group than that of the diabetic group due to lower 

plasma insulin concentrations (Fig 4 (a)) and due to the 

insulin resistance at low insulin concentrations. It is 

consistent with the results discussed in the previous section. 

The hyperglycemia clamp results also indicate defected 

pancreatic insulin secretion in the diabetic group. As Fig. 5 

shows, the pancreatic insulin secretion rate is reduced by 

approximately 60% in this diabetic group which in turn 

resulted in low plasma insulin concentrations (see Fig 4 (a)). 

Since the magnitude of exogenous glucose stimulus 

during the hyperglycemia clamp is not the same for both 

diabetic and normal groups, the profile of pancreatic insulin 

secretion rate (Fig 5) will not reflect the actual deficiency in 

the early phase of insulin secretion. Therefore, another 

glycemic clamp is performed to compare the early phase 

insulin secretion rate for both groups. Fig. 6 shows the first 

100 min of the pancreatic insulin secretion rate due to 500 

mg/min glucose infusion for both diabetic and normal 

subjects. As expected, the early phase pancreatic insulin 

secretion rate is reduced by about 65% in the diabetic group 

with respect to the normal group.  

V. CONCLUSION 

In this study, we used a model of a group of type II 

diabetic patients developed in our previous work to diagnose 

the deficiencies in their bodies. We employed particle 

 
Fig. 6.  Early phase of pancreatic insulin secretion rate due to glucose 

infusion for 500 mg/min, NIDDM ( ─ ) and healthy body ( -- ) 
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Fig. 5.  Pancreatic insulin secretion rate during hyperglycemic clamp, 

NIDDM ( ─ ) and healthy body ( -- ) 
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Fig. 4  Peripheral insulin and glucose concentrations during 

hyperglycemia clamp, NIDDM ( ─ ) and healthy body ( -- ) 
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filtering method to estimate the model states as well as the 

glucose metabolic rates in different organs and pancreatic 

insulin secretion rate. Abnormal behavior of different organs 

is detected via euglycemic insulin clamp and hyperglycemia 

clamp in silico. Implementation of these techniques together 

with a mathematical model and a nonlinear filtering method 

is efficient in detecting the abnormalities in the liver, the 

pancreas and peripheral tissues of type II diabetic patients. 
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