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Abstract— We address the problem of a single human opera-
tor in charge of monitoring multiple UAVs in a reconnaissance
mission. The human operator must classify targets as they
appear on video feeds from the various aircraft as friends
or foes. We introduce the idea of the human monitoring a
single screen and a decision aid that automatically selects the
video feed to be displayed on that screen. In this setting and
given that the location of the targets is unknown and decision
must be made in real time, the challenge here addressed is
the development of a scheduling strategy which queues the
video feeds in such a way that no target is missed and all
targets are looked at for a specified amount of time. We present
a Linear Programming (LP) formulation to this problem for
the simple case of two UAVs and two equidistant targets. We
develop an online algorithm that uses this LP as a building
block to be applied to the more general case of multiple non-
equidistant targets. We further show that in order to guarantee
the feasibility of the scheduling strategy and ensure that no
targets are missed it is sufficient to enforce a lower bound on
the distance between targets.

I. INTRODUCTION

The need to reduce the amount of personnel required to

operate and supervise drone vehicles and in particular Un-

inhabited Aerial Vehicles (UAVs) has spurred the growth of

research in two main areas. The first area is the study of how

to reliably increase the level of autonomy of not only a single

UAV but of the Multiple UAV (MUAV) system [1], [2]. The

second discipline seeks to characterize human performance

in the various tasks that a mission could involve and attempts

to develop appropriate metrics for this performance [3]. Even

if considerable reliable autonomy could be added to a MUAV

system, the need for a human operator would remain present

for tasks that require high levels of expertise, reasoning and

cognition. In reconnaissance missions, for example, critical

tasks such as target classification can often only be performed

by a human expert.

We seek to develop MUAV systems that can autonomously

provide support to the human operator and enable reliable

performance at tasks that are exclusive to humans while

delegating everything else to the system. Efforts in this

direction have appeared in the literature under various guises.

The study of interface design has attracted considerable

research effort. Presented in [4] are ideas that provide the

operator with suitable visual and tactile cues that are geared

toward increasing the situational awareness of the mission.

However this type of user support still burdens the user with

a considerable amount of the decision making which may
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still affect its overall performance. In [2], [5], [6] different

methodologies are evaluated in order to assist a single human

pilot in performing missions that involve multiple UAVs. In

Ding et. al [5] an approach is presented which uses a leader

follower configuration for the UAV team. In these particular

missions the UAVs have different capabilities and depending

on these capabilities the system advises the operator on the

UAV that should be selected as the leader. In such missions

the human operator has a higher level of control over the

UAVs (i.e. the human is the actual pilot of one UAV).

Regardless, the overall system is being aided by autonomous

suggestions for decision making. In contrast, other types of

missions require that humans have less control over the actual

vehicles and instead play the role of supervisors that execute

tasks such as mission planning or reconnaissance. In [7]–

[9] human operator models and decision making rules are

developed towards aiding the coordination and interaction

of mixed teams of humans and UAVs. Similarly in [10],

[11], coordination policies between humans and vehicles are

developed which schedule UAVs to visit regions of interest

and deliver data to an available human operator for on-line

or off-line decision making.

In these missions, the human can be modeled as a process-

ing unit that requires specified amounts of time to complete

certain tasks and can only execute one task at a time. The

UAVs on the other hand, can play the role of input resources

that gather information and request processor time for data

processing. From this perspective the problem of a single

human analyzing information from various UAVs resembles

the task scheduling problem studied in computer science.

The problem of single processor task scheduling has been

extensively studied for decades [12]–[14]. However, one of

the main challenges in this area is dealing with asynchronous

tasks. These are tasks that do not occur periodically and

therefore are difficult to predict and allot time for in a sched-

ule. Most scheduling algorithms use probabilistic arrival rates

to model these tasks and implement different techniques to

attempt to convert aperiodic tasks into periodic ones in order

to fit the schedule. Nevertheless, in order to do so, it is often

assumed that the tasks have low priority and can be processed

in different intervals of processor availability. Tasks such

as real-time target classification in unknown environments

are aperiodic in nature (e.g. the operator can not anticipate

when a target will appear) and usually are of high priority.

Furthermore, it is not desirable to perform these tasks in

different intervals of operator availability since partition-

ing the attention of the operator can lead to performance

degradation. This presents a very difficult challenge for the

scheduling of such tasks. Research efforts that model the
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where X i
0 = hi −

C
2

if hi ≥
C
2

and 0 otherwise.

In (1), we have introduced the new function variables ui

(i=1,2) defined as ui(xi) =
1

vi(xi)
, so as to express the time

it takes UAV i to fly from position y1 to y2 as
∫ y2

y1
ui(xi)dxi.

Note that this expression is valid even if the flown path is not

a straight line, if we think of xi as the curvilinear abscissa

along that path.

Constraint (1c) specifies that a target should be in UAV′
is

field of view for at least ∆ti. Constraint (1b) ensures that

there is at least an interval of ∆t2 +∆t1 between the time at

which UAV1’s target enters its field of view and the time

at which UAV2’s target leaves its field of view. This is

a necessary and sufficient condition for the existence of a

schedule where each target can be looked at exclusively for

∆t time. Finally, constraint (1d) guarantees that the velocity

schedule lies within the flyable range of the UAVs.

SILP (1) has a finite number of linear constraints, but its

variables, the functions xi 7→ ui(xi) for i = 1,2, are infinite

dimensional. The following claim shows that an optimal

feasible point can nevertheless be found by solving a bona

fide linear program.

Proposition 3.1: SILP (1) is feasible if and only if the

following linear program is feasible:

min N2 (2a)

subject to N2 −M1 ≥ ∆t2 +∆t1 (2b)

Ni −Mi ≥ ∆ti, for all i (2c)

X i
0

vmin

≥ Mi ≥
X i

0

vmax

, for all i (2d)

hi +
C
2
−X i

0

vmin

≥ Ni −Mi ≥
hi +

C
2
−X i

0

vmax

, for all i

(2e)

Additionally, if (N⋆
1 ,N

⋆
2 ,M

⋆
1 ,M

⋆
2) is an optimal point for

linear program (2), then any schedule (u1,u2) satisfying

M⋆
i =

X i
0
∫

0

ui(xi)dxi

N⋆
i =

(hi+
C
2 )

∫

0

ui(xi)dxi for all i = 1,2

(3)

is optimal for (1).

The variables in LP (2) can be given the following

interpretation: Ni denotes the amount of time needed for

UAVi to fly from a distance hi before reaching the target to a

distance C
2

past the target (i.e time of inspection). Similarly

Mi refers to the time needed for UAVi to fly from a distance

hi before reaching the target to a distance C
2

before reaching

the target (i.e time before target enters field of view).

Now, before moving on to the online multi-target case, we

state three additional properties of linear program (2), which

will prove instrumental in the development of our scheduling

strategy in Section IV.

Claim 3.2: Let vmin, vmax, C, and ∆t be given con-

stants such that C ≥ vmin∆t. The set H defined as H =

{

h̄ > 0 | hi ≥ h̄, i = 1,2 ⇒ linear program (2) is feasible
}

is

non-empty. In addition,

H⋆ := max

(

2∆tvmaxvmin −
C
2
(vmax + vmin)

vmax − vmin

,
C

2

)

∈ H .

In words, Claim 3.2 states that for any range of flyable

velocities [vmin,vmax], field of view dimension, and minimal

inspection time, there exists a feasible schedule, provided

that both UAVs start far enough from their target, and the

field of view is large enough to allow the operator to spend

∆t on a target when the UAV is flying at the minimum speed.

Claim 3.3: Let h1 = h2 ≥
C
2

and let vmin∆t ≤C ≤ vmax∆t,

and assume that program (1) is feasible. Let 0 ≤ s1 ≤ 1+ C
2h2

and h̃1 = (1− s1)h2. Then, exactly one of the following two

statements holds:

(i) h̃1 ≥ C
2

and the following semi-infinite linear program

is feasible

h2+
C
2

∫

0

u2(x2)dx2 −

h̃1−
C
2

∫

0

u1(x1)dx1 ≥ ∆t2 +∆t1 (4)

h2+
C
2

∫

h2−
C
2

u2(x2)dx1 ≥ ∆t2 (5)

h̃1+
C
2

∫

h̃1−
C
2

u1(x1)dx1 ≥ ∆t1 (6)

1

vmax

≤ ui(xi)≤
1

vmin

for all xi ∈

[

0,hi +
C

2

]

and i = 1,2

(7)

(ii) C
2
> h̃1 > −C

2
and the following semi-infinite linear

program is feasible

h2+
C
2

∫

0

u2(x2)dx2 ≥ 2∆t − s2∆t (8)

h2+
C
2

∫

h2−
C
2

u2(x2)dx2 ≥ ∆t2 (9)

h̃1+
C
2

∫

0

u1(x1)dx1 ≥ (1− s2)∆t (10)

1

vmax

≤ ui(xi)≤
1

vmin

for all xi ∈

[

0,hi +
C

2

]

and i = 1,2

(11)

where s2 =
C
2 −h̃1

C
.

In words, Claim 3.3 establishes the result that if a schedule

for the equidistant target case is feasible then it is also

feasible for all cases where the targets are not equidistant

and the values of s1, s2 and h1 are as specified by the claim.

Claim 3.4: N⋆
2 is an increasing function of h2 −h1.
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Claim 3.4 shows that the value of the optimal time at

which the second UAV is done surveiling its target is an

increasing function of the inter-UAV distance.

IV. THE MULTIPLE TARGET PROBLEM

We turn our attention to the multiple target scenario in

which each UAV must surveil n ≥ 2 targets. We work under

the assumption that there can be only one target at a time in

a given UAV’s field of view. (i.e the inter-target distance is

larger than C) so that this problem can be formulated as a

sequence of two-target problems.

We present an algorithm (see 1) that schedules velocities

for the UAVs using LP (2) in order to adjust the latency

of each target inside the UAV’s field of view such that the

human operator can look at all targets for at least ∆t amount

of time. Furthermore the algorithm is designed to deal with

the online version of the multiple target problem where the

UAVs have no knowledge of the position of their targets at

the beginning of the mission but can only detect a target

when it is at a distance H. H can be thought of as the range

of some target detection sensor on board the UAV.

Algorithm 1 On-line Multi-target Strategy
vi = vtrim

executing = 0

while Not all targets have been surveiled do

if executing = 0 then

if current target of UAVi is in FOV then

vi =C/∆ti
end if

if for all i UAVi has acquired current target then

vsch
i = schedule(h1,h2,∆t1,∆t2)

executing = 1

end if

else

if UAVi is inside the FOV then

vi = vsch
i (2)

else

vi = vsch
i (1)

end if

end if

if UAVi is done with current target OR current target

leaves FOV then

vi = vtrim

move to next target

if executing = 1 AND UAVi is last in the schedule

then

executing = 0

end if

end if

update position of UAVs

end while

In algorithm 1, the variable executing is a boolean variable

which indicates whether or not the two UAVs are flying a

velocity schedule produced by the LP for a pair of targets.

We refer to the execution of a velocity schedule as a

maneuver. If the UAVs are performing a maneuver the value

of executing is equal to one. The function schedule takes

as inputs the distance to the target for each UAV and the

necessary remaining time to complete the total required time

of inspection of the target (i.e ∆ti). This function returns the

vectors vsch
i with the two velocities vsch

i (1) and vsch
i (2) for

each UAV. The velocity vsch
i (1) is scheduled to be flown

before the target of UAV i enters its field of view while the

velocity vsch
i (2) is scheduled to be flow after the target of

UAV i enters the field of view.

In words the algorithm performs as follows: The mission

begins with both UAVs flying at the trim speed vtrim. If one

of the UAVs acquires a target (i.e the target is within H

distance from the UAV) and the other UAV has not yet done

so, then the video feed of the UAV that acquires the target

is displayed to the operator. This UAV also continues to fly

at vtrim until the target enters the field of view and at this

point switches to v̄ = C
∆ti

. The other UAV continues to fly at

vtrim. If at any point in time both UAVs have an acquired

target then a maneuver is triggered by calling the function

schedule. This function computes a velocity schedule by

solving LP (2) with parameters h1, h2, ∆t1 and ∆t2. The

schedule is executed by having both UAVs fly at the found

velocities vsch
i (1) and vsch

i (2). The video feed of the UAV

closest to its target is displayed to the human operator at

the beginning of the maneuver. Once the target of this UAV

has been inspected for ∆t time, the video feed of the second

UAV is displayed to the human operator until the end of the

maneuver (i.e the target has been looked at for ∆t time or it

has left the field of view).

It should be noted that if the target of the first UAV to

acquire is already in the field of view then only vsch
1 (2)

applies to that UAV during the maneuver. The velocity sched-

ule terminates for each UAV once it is done inspecting the

target for ∆t time, at which point the particular UAV resumes

flying at vtrim. However, the maneuver is still considered in

execution as long as at least one of the UAVs is not done

inspecting its target. While the maneuver is in execution

the video feed to be displayed to the human operator can

not be chosen arbitrarily. Further, no new maneuver will be

triggered before the end of a maneuver even if the UAV that

finished its part of the maneuver first acquires a new target.

The following theorem ensures the correctness of the

algorithm (i.e, that a velocity schedule can be generated every

time one is needed), and further guarantees that no target

will be missed (i.e. that every target can be inspected by the

human operator for a time longer than ∆t) if the inter-target

distance between any two consecutive targets of each UAV

remains above the proposed lower bound.

Theorem 4.1: Let vmin∆t ≤ C ≤
(

2vmax + vmin −
v2

max
vmin

)

∆t

and vmin ≤ vtrim ≤ vmax, if the inter-target distance ek→k+1
i

between target k and k+ 1 of UAVi satisfies the following

inequality for all k:

ek→k+1
i ≥

vtrim

vmax

(

H⋆−
C

2

)

+∆t(vtrim + vmin) (12)

then the following statements hold true.
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1) LP(2) is feasible every time it is called in the execution

of algorithm 1.

2) No new target is acquired by the second UAV in a

maneuver until the end of that maneuver. (i.e. no target

is missed and every target can be looked at for at least

∆t amount of time).

The proof of this theorem (see [17]) is based on the idea

that two targets can not be inspected concurrently. The only

scenario where this can occur is when one of the UAVs

flies over a target while the other UAV is still performing

a maneuver. The amount of time that one UAV can fly for

while the other is in a maneuver can be upper bounded by

the maximum time it can take for a UAV to complete a

maneuver. Taking advantage of this upper bound we can

construct a lower bound on the inter-target distance such

that a target does not enter the field of view of the non-

maneuvering UAV until after the other UAV is finished with

its maneuver.

V. SIMULATIONS AND DISCUSSION

The solution to the two equidistant targets problem (i.e

the velocity schedules that allow the operator to inspect

each target for at least ∆t time) given by LP (2) consists

of enforcing a switch in velocities for the UAVs before and

after the target of UAVi has entered the field of view. Using

this notion we can construct strategies that are simpler to

compute than the solution of the linear program (2). For

example, we could assign the first UAV to fly at vmax prior

to its target entering the field of view and switch to vmin after,

while constraining the second UAV to fly at vmin for the entire

maneuver. It should be clear that this particular strategy is

feasible for LP (2) and therefore allows the operator to spend

at least ∆t time on each target.

In fact Figure 2 shows that whenever LP (2) is feasible

it admits the simple strategy as a feasible point. Figure 2

shows the regions in ∆t vs. C parameter space (for vmin =
20, vmax = 30, h = 250) where both LP (2) and the simple

strategy are feasible. It should be noted that the boundary

line is the same for both plots.

0 1 2 3 4
0

50

100

150

∆ t

C

(a) Simple startegy

0 1 2 3 4
0

50

100

150

∆ t

C

(b) LP (2) strategy

Fig. 2. Light circles denote feasible solutions for which N2 = 2∆t +M1.
The dark squares denote feasible solutions for which N2 > 2∆t +M1. The
white region denotes the values of C and ∆t for which a feasible solution
does not exist. The black line denotes the boundary of the feasibility points.

In the context of human operator performing a target

identification task, it is typically desired that the video feed

being presented to the human is of the highest possible

quality. It is also desired that the human be able to inspect

this video for the largest amount of time permissible, in

order to increase the confidence on his/her decisions. In

order to maximize the video quality, the UAV must fly closer

to the ground which results in a smaller area coverage of

the camera’s field of view. Taking this into consideration, it

should be clear that for the type of missions of interest to

this work, it is desired to operate along the boundary of the

feasible points of LP (2) (red line in Figure 2), in order to

maximize both the time of inspection and the quality of the

video feed.

If all we care about is feasibility in the two equidistant

targets case, then there is no visible advantage to using LP

(2). There is however, a strong benefit to using the solution

of LP (2), (instead of just any other feasible strategy) as

the basis for our online multi-target algorithm. In order

to illustrate this point we present the following simulation

results. The simulations were implemented in Matlab using

the CVX toolbox to solve the linear programs. Algorithm (1)

was fully implemented using LP (2) to solve for a velocity

schedule at each instance where one is needed.

Table I. shows the results of 2 sets of 50 simulation trials.

The parameters used are: vmin = 20 m/s, vmax = 35 m/s,

vtrim = 25 m/s, C = 45 m, ∆t = 2 s, H = H⋆ = 104.2 m

and emin = 148.3 m. For the first set (Sim 1 on Table I)

the value of the maximum intertarget distance was set to be

emax = 2× emin m. For the second set (Sim 2 on Table I)

emax = 3× emin m.

The location of the targets was generated at random in

the interval [emin, emax]. A total of 10 targets per UAV per

mission were generated. The purpose of this simulation is to

evaluate the performance of the LP-based strategy against the

simple strategy in the multiple non-equidistant target case.

In order to do this we execute an entire mission for each set

of randomly generated targets using both strategies and keep

track of whether at any point in the mission the generation

of a velocity schedule fails or a target is not looked at for at

least ∆t amount of time.

The first column of Table I shows the strategy type. The

second column is the mission success for both simulations. A

mission is said to be successful if all targets are looked at for

a time greater or equal to ∆t and every schedule computation

is feasible. This percentage illustrates how many missions out

of the 50 missions were successful. Finally the third column

shows the average final time of mission completion (only

successful missions are counted toward this average).
TABLE I

SIMULATION RESULTS

Strategy Success Rate [%] Average Time [s]

Sim 1 Sim 2 Sim 1 Sim 2

Simple Switch 72 76 99.3 132.7

LP 100 100 92.6 126.4

As expected, results show that the LP strategy has 100%

success rate as guaranteed by Theorem 4.1. In contrast,

the simple strategy has lower success rates which are also

affected by the value of emax. An intuitive explanation for this

difference is as follows: The nature of the LP is to minimize

the time at which the second UAV is done surveiling its

target. In this sense it is always trying to increase the velocity
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of the second UAV as much as possible such that the targets

can be looked at for at least ∆t amount of time. Consequently

the LP imposes an inherent bound on the inter-UAV distance

and thereby makes it possible to construct a lower bound on

the inter-target distance that guarantees feasibility. Moreover,

any strategy that does not bound the inter-UAV distance will

create situations in multi-target missions where either a target

is missed or a velocity schedule does not allow the operator

to look at all targets for at least ∆t time.

We refer the reader to Figure 3 to further understand the

difference between the execution of a mission that uses LP

(2) and one that uses the simple switch strategy. Figure 3(a)

shows a zoomed-in view of the simulation screen during a

10 non-equidistant target simulation using the simple switch

solution. The targets shown are numbers 1, 2 and 3. Figure

3(b) shows a view of the simulation screen for the same

set of targets using the LP solution. Both simulations were

paused at the same instant in time which corresponds to the

time at which target 2 of UAV1 (UAV on the left) leaves the

field of view after being inspected for ∆t time. At this time,

in both cases UAV2 has already acquired target 3. However,

through the simple switch strategy it can be observed that

the remaining time in field of view for target 3 is very small

compared to the LP strategy where target 3 has not yet

entered the field of view. In this particular scenario target 3

of UAV2 is only looked at for 0.65 seconds, while the value

of ∆t is 2 seconds. Note that the positions of the UAVs with

respect to one another are different for the two strategies.

This fact is what makes a difference in the feasibility of

target 3. Another important point is that the average final

time is lower for the LP-based strategy.

(a) Simple switch strategy (b) LP strategy

Fig. 3. The simulation in 3(a) fails since target 3 of UAV2 can not be
looked at for ∆t while the simulation in 3(b) is feasible.

VI. CONCLUSIONS

In this paper we have addressed the problem of a single

human operator in charge of monitoring video feeds from

two UAVs and classifying unknown targets in a reconnais-

sance mission. We investigate the case where the operator

is looking at a single screen (i.e only one video feed can

be displayed at a time). For this scenario, we present an

algorithm that ensures that the video feeds can be queued

to be shown on the screen in a way that the operator can

look at all targets for a specified amount of time. We begin

with a Linear Programming formulation for the case of two

equidistant targets. Further, we propose an on-line algorithm

that uses the LP formulation as a building block in order to

develop a scheduling strategy for the multiple target problem.

This algorithm is designed to schedule velocities for the

UAVs such that the latency of the targets in the video feeds

allows for the human operator to look at all targets for

a specified amount of time. We prove correctness of the

algorithm under the assumption that a minimum inter-target

distance is enforced. A feasibility analysis and simulation

results are provided as justification for the use of the LP in

the on-line algorithm as opposed to more trivial formulations.
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