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Abstract— Technologies for storage of electric energy are
central to a range of applications—from transportation systems,
including electric and hybrid vehicles, to portable electronics.
Lithium-ion batteries have emerged as the most promising
technology for such applications, thanks to their high energy
density, lack of hysteresis, and low self-discharge currents.
One of the most important problems in battery technology
is achieving safe and reliable operation at low cost. Large
packs of batteries, required in high-power applications such
as submarines, satellites, and electric automobiles, are prone to
thermal runaways which can result in damage on a large scale.
Safety is typically ensured by over-design, which amounts to
packaging and passive cooling techniques designed for worst-
case scenarios.

Both the weight and the cost of the batteries can be con-
siderably lowered by developing models of thermal dynamics
in battery packs and model-based estimators and control laws.
At present, only detailed numerically-oriented models (often
referred to as CFD or FEM models) exist, which are used for
computationally intensive off-line tests of operating scenarios,
but are unsuitable for real-time implementation.

In this paper, we develop a model of the thermal dynamics
in large battery packs in the form of two-dimensional partial
differential equations (2D PDEs). The model is a considerable
simplification of the full CFD/FEM model and therefore offers
the advantage of being tractable for model-based state estima-
tion, parameter estimation, and control design.

The simulations show that our model matches the CFD model
reasonably well while taking much less time to compute, which
shows the viability of our approach.

I. INTRODUCTION

Technologies for storage of electric energy are central

to a range of applications—from transportation systems,

including electric and hybrid vehicles, to portable electronics.

Lithium-ion batteries have emerged as the most promis-

ing technology for such applications, thanks to their high

energy density, lack of hysteresis, and low self-discharge

currents [1], [2].

Electric automobiles and submarines demand large

amounts of energy and power, and therefore need packs of

thousands of Li-ion cells (for example, the battery pack in the

Tesla Roadster car has 6,800 cells [5]). One of the challenges

in dealing with battery packs is that after a period of usage,

the state of health of individual cells is highly non-uniform

due to electrical and thermal interactions of the individual

cells. Charging all the cells to their full capacity becomes
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unachievable because it would lead to some of the cells

exceeding the maximum voltage, above which they become

thermally unstable. Even when a battery pack is not in use,

namely, neither being charged nor discharged, a reasonable

probability exists that, in an aging, or inexpensively produced

battery pack, one of the many cells in a pack undergoes short

circuit. This results in the cell overheating and igniting. The

high temperature produced by such a cell leads to electrical

and thermal transients in the neighboring cells which results

in a chain reaction where an entire pack explodes. This

phenomenon is called thermal runaway (Fig. 1).

While thermal runaways in battery cells in portable com-

puters have been widely publicized [6], the danger from them

is limited. Thermal runaway in large battery packs can result

in damage on a large scale. An illustrative example is a

recent accident [7] described in [8], with the US Navy’s new

65-foot mini-submarine named Advanced SEAL Delivery

System (ASDS). The ASDS is designed to carry a team of

about ten special operations forces and, for stealth reasons,

is propelled by an electric motor, which is powered by a Li-

ion battery pack. In November 2008, the battery pack in an

ASDS stationed in Pearl City, Hawaii, underwent a thermal

runaway while recharging in its home port. While no one

was hurt, the fire took several hours to put out and the repair

cost is estimated at $237 million.

Safety is typically ensured by over-design, which amounts

to packaging and passive cooling techniques designed for

worst-case scenarios. For example, in some battery designs,

such as for the Tesla Roadster car [5], liquid cooling lines

are incorporated, with a 50/50 mixture of water and glycol.

The safety-driven over-design adds not only to the weight but

also to the cost of the batteries. For example, the replacement

price of the battery pack in the Tesla Roadster car is $36,000

and not anticipated to fall below $10,000 before 2017. Better

understanding of the thermal dynamics in battery packs, state

estimation to spatially locate the “hot spots” in the pack using

temperature sensor at only a limited number of locations in

the pack, and more intelligent control systems that employ

parameter estimators of the uncertain thermal conductivity

within and in-between cells, are crucial for developing

cheaper batteries that will enable commercialization of the

environmentally-friendly electric and plug-in hybrid vehicles.

At present, only detailed numerically-oriented models

(often referred to as CFD or FEM models) exist [4], [3],

which are used for computationally intensive off-line tests of

operating scenarios, but are unsuitable for real-time imple-

mentation. Since the computational burden of these models

is prohibitive, other, sufficiently detailed but computationally
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Fig. 1. An illustration of thermal runaway in a battery pack. It starts in snapshot 1 with the cell in the lower left corner drawing high current and
overheating, progressing through snapshots 2 and 3 to 4, where the entire pack is ignited.

tractable models and estimators are needed. In this paper we

make the first step in developing such models. Our models

emphasize the inhomogeneity of the battery pack medium,

where, the cells and the materials they are enclosed in have

very different thermal conductivity properties, where the

thermal dynamics are coupled with the electrical dynamics

which act as heat sources, and where cooling systems—

passive or controlled—may be introduced to manage the

temperature distribution in a battery pack. These models

are in the form of partial differential equations and capture

the spatially distributed character of the thermal dynamics

in a pack. Being a considerable simplification of the full

CFD/FEM model, they offer the advantage of being tractable

for model-based state estimation, parameter estimation, and

control design [10], [11].

II. A REDUCED CFD MODEL OF THERMAL DYNAMICS

IN A BATTERY PACK

Since the CFD data is available only for small packs

of dozen batteries, as a first step, we develop a “reduced”

CFD model, which consists of finite-dimensional models

of individual cells and cooling pipes and a CFD model

of the pack material. The reduced model will allow us

to indirectly compare the PDE model (developed in the

subsequent sections) with the CFD model on large battery

packs.

Battery cells are typically cylindrical in shape and in

battery packs they are arranged in arrays, such as shown

in Figure 2. The thermal dynamics in a cell, as well as in a

battery pack, are three-dimensional. However, relatively little

transient occurs in the direction parallel to the axes of the

cells as compared to the plane perpendicular to the axes.

Hence, we put emphasis on the 2D dynamics in the radial

direction of the battery cells in a pack (shown in Figure 1).

Consider the 2D battery pack shown in Figure 3. Our

goal is to develop a simplified model of thermal dynamics

that works for packs of any size and matches CFD data

Fig. 2. A battery pack with coolant lines.

reasonably well.

We are going to separately model the thermal dynamics

in the cells, in the cooling pipes, and in the pack material.

For the thermal model of the pack material we use the basic

heat equation

ρpcp

∂Θ

∂t
= kp∇Θ, (x, y) ∈ Ω , (1)

where ρp, cp, and kp are, respectively, the density, the

specific heat, and the thermal conductivity of the pack

material, Θ(x, y, t) is the temperature of the pack material,

and Ω is the domain occupied by the pack material.

Let us denote the temperatures of the cells by Ti(t), i =
1, . . . , Nc (Nc is the number of cells) and the temperatures

of the cooling pipes by Tw,j(t), j = 1, . . . , Np (Np is the

number of pipes).

At the outside boundary of the pack we have the following

boundary condition:

kp(n · ∇Θ) = hpa(Tair − Θ), (x, y) ∈ Γ, (2)
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Fig. 3. 2D battery pack.

where Tair is the temperature of the air and hpa is the heat

transfer coefficient between the pack and outside air.
The boundary conditions at the cell boundaries are

kp(n · ∇Θ) = hpc(Ti − Θ), (x, y) ∈ Γi (3)

for i = 1, . . . , Nc, and the boundary conditions at the pipe

boundaries are

kp(n · ∇Θ) = hpw(Tw,j − Θ), (x, y) ∈ Γw,j (4)

for j = 1, . . . , Np, where hpc is the heat transfer coefficient

between the pack material and cells and hpw is the heat

transfer coefficient between the pack material and cooling

pipes.
Using basic laws of heat transfer, we get the following

ODE models for the cells:

Ṫi =
hpc

ρcccπr2

∫

Γi

(Θ − Ti) dΓi +
1

ρccc

Πi (5)

for i = 1, . . . , Nc. Here, Πi(t) is the current-driven heating

of the cell i, ρc is the density of the cell and cc is the specific

heat of the cell material. The term Πi(t) has a complicated

structure (it couples electric and thermal dynamics of the

cells), but for the purpose of developing a useful thermal

model we assume that it can be measured/estimated.
The models for the cooling pipes are

Ṫw,j =
hpw

ρwcwπr2
p

∫

Γw,j

(Θ − Tw,j) dΓw,j −
ṁw(Tout,j − Tin)

ρwπr2
pL

for j = 1, . . . , Np, where ρw, cw are the density and the

specific heat of the coolant, rp is the radius of the pipe,

ṁw is the coolant flow rate, L is the length of the pipe in

the direction of the axes of the cells, and Tin and Tout,j

are the temperatures at the inlet and the outlet of the pipe,

respectively.
The reduced model simplifies the full CFD model in

several ways. First, it is a 2D model as opposed to 3D CFD

model. Second, it uses scalar rather than distributed states

to describe temperature evolution of the cells. Also, electric-

thermal coupling is neglected.

The results of numerical comparison of the reduced model

and the full CFD model are presented in Figures 4–6. The

initial temperature of the pack is 295K, and the cells are

heated at the rate Πi(t) = 107W/m3 for 20 seconds at which

point the heat generation is turned off. The PDE part of the

model was computed using the finite element method. We

can see that the reduced model is in a good agreement with

the CFD model.

III. PDE MODEL OF A LARGE BATTERY PACK

Although the model obtained in the previous section is

considerably simpler than the CFD model, it is still not suit-

able for large battery packs. Our objective now is to further

simplify the reduced model to obtain a model that is tractable

for control design and state and parameter estimation when

the pack is of a very large size.

To derive this model, we start by partitioning the pack into

the triangular and hexagonal elements, as shown in Figure 7.

Note that we rearranged the cooling pipes so that they are

more evenly distributed in a large pack.

The round cells are approximated by hexagons that have

an area equal to the area of the cells and the pack material

between the cells is divided into (truncated) triangular ele-

ments. Given the length of the edge of a hexagon cell (l)
and the horizontal distance between the cells (∆x), we can

compute the following parameters:

l = r

√
2π

√

3
√

3
, a =

2

3
∆x , S =

∆x2

√
3

− 3
√

3

4
l2 , (6)

where r is the radius of a cell, a is the distance between the

centers of any two adjacent elements, and S is the area of

the triangular elements.

There are two types of pack elements: with and without

cooling pipes. The laws of heat transfer lead to the following

equations (see the index notation in Fig. 7):

Θ̇i+ 1
3 ,j+1 = α1

(

Ti,j + Ti,j+2 + Ti+1,j+1 − 3Θi+ 1
3 ,j+1

)

+ β1

(

Θi+ 2
3 ,j+2 + Θi+ 2

3 ,j + Θi− 1
3 ,j+1 − 3Θi+ 1

3 ,j+1

)

(7)

for the pack elements without the cooling pipes and

Θ̇i+ 2
3 ,j = α2

(

Ti,j + Ti+1,j+1 + Ti+1,j−1 − 3Θi+ 2
3 ,j

)

+ β2

(

Θi+ 1
3 ,j+1 + Θi+ 1

3 ,j−1 + Θi+ 4
3 ,j − 3Θi+ 2

3 ,j

)

+ γ1

(

Tw,i+ 2
3 ,j − Θi+ 2

3 ,j

)

(8)

for the pack elements with the pipes. Here,

α1 =
h1l

ρpcpS
, α2 =

h2l

ρpcp(S − πr2
po)

, β2 =
β1S

S − πr2
po

(9)

β1 =
h3(

√
3∆x − 3l)

ρpcpS
, γ1 =

2h4πrpo

ρpcp(S − πr2
po)

, (10)

where h2, h1 are the heat transfer coefficients between

the cells and the triangular elements with/without pipes,

respectively; h3 is the heat transfer coefficient between the

two types of triangular elements; h4 is the heat transfer
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Fig. 4. Left: Evolution of the temperature of the lower left cell (CFD—solid, reduced—dashed). Right: Evolution of the temperature of the lower left
pipe (CFD—solid, reduced—dashed).

Fig. 5. Temperature distribution in 3x4 battery pack at t = 20 seconds. Left: Full CFD model. Right: Reduced model.

Fig. 6. Temperature distribution in 3x4 battery pack at t = 40 seconds. Left: Full CFD model. Right: Reduced model.
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Fig. 7. Partition of the battery pack for the PDE model derivation.

coefficient between the pack material and the coolant, and

rpo is the outer radius of the cooling pipe.

The heat transfer equations for the cells take the form

Ṫi,j = α3

(

Θi− 2
3 ,j + Θi+ 1

3 ,j+1 + Θi+ 1
3 ,j−1 − 3Ti,j

)

(11)

+ α4

(

Θi− 1
3 ,j+1 + Θi− 1

3 ,j−1 + Θi+ 2
3 ,j − 3Ti,j

)

+
Πi,j

ρccc

.

Here the constants α3, α4 are defined as follows:

α3 = α1

ρpcpS

ρcccπr2
, α4 = α2

ρpcp(S − πr2
po)

ρcccπr2
. (12)

Finally, the ODE model for the coolant is

Ṫw,i+ 2
3 ,j = γ2

(

Θi+ 2
3 ,j − Tw,i+ 2

3 ,j

)

− 1

ρwcw

Q, (13)

where

Q =
ṁwcw(Tout(t) − Tin(t))

πr2
pL

, γ2 = γ1

ρpcp(S − πr2
po)

ρwcwπr2
p

.

To put the equations into the form in which we can pass to

the limit of a large number of cells, we use the following

approximation for the triangular grid of the size a:

∇2Θi,j =
2

3a2

(

Θi+ 1
3 ,j+1 + Θi− 1

3 ,j+1 + Θi+ 2
3 ,j + Θi− 2

3 ,j

+Θi+ 1
3 ,j−1 + Θi− 1

3 ,j−1 − 6Θi,j

)

+ O(a2). (14)

Composing the sum on the right hand side of (14) using

the equations (7) and (8), after tedious but straightforward

algebra, we obtain the following set of equations:

Θ̇i,j =
3(β1 + β2)a

2

8
∇2Θi,j +

3

2
(α1 + α2) (Ti,j − Θi,j)

+
γ1

2
(Tw,i,j − Θi,j) , (15)

Ṫi,j = 3(α3 + α4)(Θi,j − Ti,j) +
1

ρccc

Πi,j . (16)

Taking the limit a → 0 (which corresponds to a large

number of cells in the pack), we obtain the PDE model

∂Θ

∂t
= kR∇2Θ +

3

2
(α1 + α2) (T − Θ) +

γ1

2
(Tw − Θ) ,

(17)

∂T

∂t
= 3(α3 + α4)(Θ − T ) +

1

ρccc

Π(x, y, t) , (18)

∂Tw

∂t
= γ2 (Θ − Tw) − 1

ρwcw

Q(x, y, t) , (19)

where k is the effective heat transfer coefficient,

R =
2∆x(

√
3∆x − 3l)

√
3∆x2 − 9

√

3
4

l2
, (20)

and Θ, T , and Tw are functions of (x, y, t). These equations

are supplied with the convective boundary conditions:

kp

∂

∂x
Θ(±Lx, y, t) = λ(Θ(±Lx, y, t) − Tair), (21)

kp

∂

∂y
Θ(x,±Ly, t) = λ(Θ(x,±Ly, t) − Tair). (22)

Here Lx and Ly are linear dimensions of the pack and λ is

the heat transfer coefficient between the pack and the air.

Even though the equations (17)–(22) are PDEs, they are

considerable simplifications of the full CFD model, offering

the advantage that they are tractable for observer, identifier,

and control design.

IV. SIMULATION OF THE PDE MODEL

In Figures 8 and 9 we present the result of numerical

simulation of the PDE model capturing the thermal runaway

effect in a large pack of 215 cells. We use the following

model for the Π-term:

Πi(t) =







Πbase, Ti < Ta

Πburn, Ta < Ti < Tb and Πi(τ) > 0 for τ < t
0, otherwise

for i = 1, . . . , N , where N is the number of cells, Ta is

the temperature that triggers heat generation in a cell, Tb is

the temperature at which the cell “dies,” Πbase is the normal

heat generation in the cells (per unit volume), and Πburn is

the heat generation per unit volume after the cell is shorted.

In this simulation Ta = 300K , Tb = 450K , Πbase = 0,

and Πburn = 15000000 W/m3. Initially, temperature of all

the cells is 295K and Πi(t) = Πbase in all the cells except

for one cell, where it is equal to Πburn. We use the Crank-

Nicolson scheme for finite-difference discretization and a

modified Thomas algorithm for solving algebraic equations.

In Figure 10 one can see the comparison between the PDE

model and the reduced model for one of the cells in the

battery pack. The temperature evolution is reasonably well

matched and computational savings are huge: the PDE model

is about 150 times faster than the reduced model (which is in

turn much faster than the CFD model). In order to better fit

the reduced model, one would have to tune the independent

parameters α1, α2, k, and γ1 using the extremum seeking

approach [12].
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Fig. 8. Temperature distribution in the pack Θ(x, y, t) at t = 60 (left) and t = 130 (right).
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Fig. 9. Temperature distribution in the pack Θ(x, y, t) at t = 180.
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