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Abstract—A model–free learning controller for a general
class of nonlinear discrete–time state–space systems is intro-
duced. The learning component of the proposed controller can
use an arbitrary function approximator such as a Polynomial,
Radial Basis, or Neural Network to directly learn the inverse
of the input-state mapping of the plant while forcing its state
to track a prescribed desired trajectory. Unlike most of the
existing direct adaptive or learning schemes, the nonlinear
plant is not assumed to be feedback linearizable. The developed
controller is subsequently applied to control the configuration of
a nonholonomic differential drive robot. The simulation results
of this application demonstrate a significant improvement in
the tracking performance of the robot once the control input
is fully learned.

I. INTRODUCTION

Many practical control applications particularly those in
the areas of motion control and robotics demand precise
tracking of a specified desired trajectory without requiring
a precise knowledge of the system’s model. The learning
control techniques evolved during the last two decades [1],
[2], [3], [4], [5], [6] offer an effective solution for many
applications ranging from robotics [7], [8] to fluid power
applications [9], [10], [11] to disk drive actuation [6] and
magnetic levitation [5].
The majority of the existing works on tracking control

of nonlinear systems, particularly in the continuous–time
domain, are based on feedback linearization; see for example
[12], [13], [14], [5]. Although very powerful when applica-
ble, they generally suffer from several drawbacks including
stringent integrability conditions, in the case of input–state
linearization, or the minimum phase requirement in the case
of output feedback linearization. In spite of attempts to
relax the minimum phase requirement in the continuous–
time domain [15], [3], the resulting controllers are still either
model based [15] or have a limited scope.
In this paper we formulate a learning control system

composed of a nonlinear state feedback controller together
with a learning mechanism for a fairly general class of
nonlinear discrete–time systems. The learning component of
the proposed control system is general enough to incorpo-
rate many commonly used function approximators including
Polynomial, Radial Basis Functions [16], and Nodal Link
Perceptron Networks (NLPN) [2], [17]. It enables the control
system to learn the inverse of the input-state mapping of the
plant while forcing its state to follow a prescribed desired
trajectory. The main requirement that we impose here is for
the plant to be controllable within the set of admissible states

to be specified. Moreover, we provide a rigorous proof of
stability for the resulting closed–loop control system. The
learning controller of this paper has a similar structure to
those in [1] and [2] but relaxes the key requirement of
knowing the plant gradient information to implement the
control law.
Another key approach exploited in formulating the state

feedback part of our integrated controller is that of ‘lifting’ or
‘block’ modeling technique [18], [19], [20]. This approach,
which is mainly applicable to discrete–time or sampled data
systems, has proven highly effective for many problems
arising from control, estimation, and even realization of
linear and nonlinear [21], [22], [20] dynamical systems. In
the block input–state realization considered here, the system
is represented with a state-space realization that has at least
as many inputs as the order of the system, even if the original
system has fewer inputs. As a result, the inverse map of the
system relating the input to the state variables [1], [2], [20],
[14] can be determined by inverting an algebraic function.
Following our theoretical developments, we apply the

proposed controller to a nonholonomic differential drive
robot [23] for tracking control of its configuration. The
novelty of the proposed control scheme lies in that it controls
three degrees of freedom using only two inputs. The learning
component of the control system takes the desired state of
the robot as input and, once trained, generates the required
actuation inputs.

A. Notations
The following notations are freely used in the paper: For

functions f and g, f ◦ g denotes the function composition,
i.e., f ◦ g(x) = f(g(x)) for all x in the domain of g;
Df(x) = ∂f(x)

∂x ;D1f(x, y) = ∂f(x,y)
∂x ;D2f(x, y) = ∂f(x,y)

∂y .
The notation hy(x) or hx(y) means h(x, y) for a fixed y or
x, respectively. Also, hy ◦ f(x) = h(f(x), y) for a fixed
y. For x = (x1, . . . , xn) ∈ Rn, kxk denotes the norm
of x; for y ∈ Rm (x, y) = (x1, . . . , xn, y1, . . . , ym); Bnε
= {x ∈ Rn : kxk < ε}. For matrices M1,M2, define

[M1,M2] :=
£
M1 M2

¤
and (M1,M2) :=

·
M1

M2

¸
. The

notation xk for a scalar x denotes the value of vector or
scalar x at discrete–time k. The i–th component of a vector
xk is denoted by xi,k. The expression y = O(x) means that
y → 0 as x→ 0 while the expression x = o(y) means that
x/y → 0 as y → 0 or equivalently x = O(y)y. In some
cases, the short hand notation x = O(y1, . . . , yn) is used to
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denote kxk→ 0 as kyk→ 0.

II. PROBLEM STATEMENT
Consider an n–th order discrete–time system given by the

state-space representation

xk+1 = F (xk, uk) (1)

where xk ∈ Rn is the state vector, uk ∈ Rn is the input, and
F : Rn × Rn → Rn is the state transition map assumed
to be at least continuously differentiable. Throughout the
paper we shall assume that the Jacobian of F with respect
to x, D1F (x, u), is nonsingular everywhere. Note that this
is not too restrictive an assumption as it is automatically
satisfied for discrete–time systems resulting from discretizing
continuous–time systems that are both forward and backward
integrable.
Remark 1: When the plant is not in the form of (1),

the Block Input-State approach [24], [25] can be used to
lift the dimension of the input vector to that of the state
resulting in a square system. For instance, a single–input
system xk+1 = f(xk, uk) can be lifted to the required form
by defining the state and input vectors to be xk = xnk
and uk = (unk, . . . , unk+n−1), respectively. In this case,
the resulting square system is given by xk+1 = F (xk,uk)
where F (x,u) := fui ◦fui−1 ◦ · · ·◦fu2 ◦fu1(x) . As can be
seen in Section (V), even multi–input underactuated systems
can be discretized to this form.
To state the control objective precisely, we need to specify

the set of all admissible desired states and outputs. We
let the set of admissible desired states, denoted by X , be
a bounded and convex open subset of Rn (e.g., X ⊂
{x ∈ Rn : kxk < r} for some finite r > 0).
The control objective is to formulate a controller that

forces the state of the plant xk to asymptotically converge
to xdk, a prescribed desired state trajectory. This is to be
accomplished without requiring exact information about the
state–space map F of the plant. In fact, it is desired to learn
the inverse input-state map of the plant at the same time that
the state tracking control is enforced.
The partial derivatives of F , which play a key role

in our subsequent development, are denoted by D1F and
D2F . In particular, D2F , which shall be referred to as the
controllability matrix, is the generalizations of its counterpart
for linear systems.
To ensure controllability of the system (1), we make the

following assumptions:
A1 System (1) is strongly controllable (with respect to

X ) [19], [14]: ∀x, z ∈ X , there exists a unique
input vector u ∈ Rn such that F (x, u) = z. We
shall denote the corresponding set of admissible
inputs by

U = {u ∈ Rn : z = F (x, u), for some x, z ∈ X}
which is nonempty by the assumption.

A2 The controllability matrix,D2F (x, u), has full rank
for all u ∈ U and x ∈ X .

Remark 2: The assumptions made here about the system
are rather standard controllability assumptions for nonlinear
systems also adopted by others [26], [21], [14], [27] in the
literature. They are automatically satisfied if the linearized
system is controllable about an equilibrium point with X
confined to an open neighborhood of the equilibrium state
(see for example [14], [27]). Assumptions A1 and A2 guar-
antee that any initial state can be transferred to any final
state by means of a control sequence of length n. In the
case of a linear system, this definition coincides with the
usual controllability definition.
The following proposition shows that fulfillment of As-

sumptions A1 and A2 imply existence of a continuously
differentiable control function for the system.
Proposition 1: Consider the discrete–time system (1) sat-

isfying Assumptions A1 and A2. There exists Ψ ∈ C1(X ×
X ,U) such that:
i) The admissible input set, U , is bounded and open.
ii) For all x, z ∈ X and u ∈ U we have u = Ψ(z, x) ⇐⇒
z = F (x, u).
Moreover, the Jacobians of Ψ(z, x) are given by D1Ψ =
(D2F )

−1and D2Ψ = −(D2F )−1D1F .
Proof: Assumption A1 guarantees the existence of Ψ :

X × X → U , which uniquely determines u in terms of x
and z: u = Ψ(x, z). Consider the map

F̄ (x, u) = (x, F (x, u))

By the hypothesis, the Jacobian of this map,

DF̄ (x,u) =

·
In×n D1F
0 D2F

¸
is invertible at any x ∈ X and u ∈ Rn. The inverse
function theorem [28] implies that F̄ (x, u) has a unique local
(not necessarily covering the entire X ) inverse F̄−1(x, z)
such that F̄ (F̄−1(x, z)) = (x, z). Moreover, DF̄−1(x, z) =£
DF̄ (x, u)

¤−1. Noting that F̄−1(x, z) = (x,Ψ(x, z)) for
all (x, z) in the domain of F̄−1, it follows that Ψ(x, z) ∈
C1(X ×X ,U) with the Jacobians specified in the statement
of the proposition. The set U = Ψ(X ,X ), which is open by
the continuity of F̄ (x, u) (i.e., (X ,U) = F̄−1(X ,X )), and
bounded since its closure U = Ψ(X ,X ) is compact.

III. LEARNING CONTROL FORMULATION
In this section we formulate a nonlinear learning control

law that forces the state of the system xk to follow a
sequence of desired states, xdk ∈ X without the exact
knowledge of the system model. Given that xk ∈ X and
xdk+1 ∈ X , by proposition 1, setting the control input to

uk = Ψ(x
d
k+1, xk) (2)

gives xk+1 = F (xk, uk) = xdk+1. Of course, as can be seen,
this control law requires the knowledge of the nonlinear
control function Ψ(., .), which may be thought of as the
algebraic inverse of (1) relative to the input vector. The main
goal of the remainder of this paper is to formulate a learning
controller that can generate the required input sequence with-
out requiring the system model. To make this formulation
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possible we shall make 2 additional assumptions regarding
the control function Ψ and the desired state trajectory:
A3 There exists a sequence of known functions φi ∈

C1(X × X , R), i = 1, 2, . . ., called the basis
functions, such that span{φi}∞i=1 ⊃ C1(X ×
X ,R). Equivalently, given Ψ ∈ C1(X × X ,Rn)
and ε > 0, there exist a positive integer N
and wi ∈ Rn, i = 1, . . . , N , such that
supx,z

°°°PN
i=1wiφi(z, x)−Ψ(z, x)

°°° < ε. In the
sequel, we shall use the compact notations Φ =
(φ1, · · · ,φN ), W = [w1, . . . ,wn], and Ws =
(w1, . . . ,wn) where the superscript s stands for
the stack operator.

A4 The desired state sequence xdk ∈ X is Persistently
Exciting (PE) relative to Φ: There exist λ > 0 and
integer s > 0 (depending on N ) such that

k+s−1X
j=k

Φ(xdj+1, x
d
j )Φ(x

d
j+1, x

d
j )
T ≥ λIN×N

holds, ∀ k ≥ 0.
Remark 3: The type of basis functions specified in As-

sumption A3 for approximating the control function Ψ is
quiet general. For instance, it is well known that polynomials
may be used to approximate continuous functions over a
compact set to within a prescribed accuracy. Other examples
of basis functions are Radial Basis Functions [16] and Nodal
Link Perceptron Network (NLPN) [2]. The PE assumption
(A4) is similar to those made in [2], [17] and guarantees the
convergence of the parameter estimation error to zero in the
absence of any functional approximation error (i.e., ε = 0).
In view of Assumption A3, the control function Ψ(., .) =

WTΦ(., .) in (2) may be estimated via

uk = Ψ̂
¡
xdk+1, xk

¢
:= ŴT

kΦ
¡
xdk+1, xk

¢
(3)

where Ŵk is the k–th estimate ofW to be specified shortly.
Even if Ŵk =W, the control law (3) is a deadbeat control
action often leading to input saturation and other undesirable
behavior. An alternative approach may be considered using
the affine Taylor series approximation

Ψ̂
¡
xdk+1, xk

¢
= Ψ̂

¡
xdk+1, x

d
k

¢
+
h
D2Ψ̂

¡
xdk+1, x

d
k

¢i
ek+o (|ek|)

where ek = xk − xdk is the state tracking error. This result
motivates the use of the following non-deadbeat feedforward
control law

uk = Ŵ
T
k Φ

¡
xdk+1, x

d
k

¢
+ K̂kek (4)

where K̂k = αkŴ
T
kD2Φ

¡
xdk+1,x

d
k

¢
for some 0 < αk ≤ 1.

Denoting the control function approximation error by

dk = Ψ
¡
xdk+1, x

d
k

¢−WTΦ
¡
xdk+1,x

d
k

¢
and applying the control law (4) to system (1) results in the
closed-loop error dynamics ek+1 = Gk(ek,W̃s

k, dk) where

Gk(ek,W̃
s
k, dk) = F (xdk + ek, u

d
k + W̃

T
k Φk +Kkek

+αkW̃
T
kΦ

0
kek + dk)− xdk+1

Φk = Φ
¡
xdk+1, x

d
k

¢
, Φ0k = D2Φ

¡
xdk+1, x

d
k

¢
, udk =WTΦk,

W̃k = Ŵk −W, and Kk = αkW
TΦ0k. Using Proposition

1.ii, it can be seen that the linearized error dynamics ek+1 =
Gk(ek,W̃k, 0) about (0, 0, 0) is given by

ek+1 = (D1Ψ)
−1
h
(αk − 1)(D2Ψ)ek + W̃T

kΦk

i
(5)

Based on this error equation, we propose the following
Steepest Decent (SD) estimation law to minimize kek+1k2
with respect to Ŵk:

Ŵk+1 = Ŵk − ckΦkēTk+1 (6)

where supk≥1 ck kΦkk2 < 2, 0 < c ≤ ck ≤ c̄ <∞ for some
constant scalars c and c̄, and

ēk = (D1Ψ̂)ek + (1− αk−1)(D2Ψ̂)ek−1 (7)

Unfortunately, this update law may be unrealizable as it
requires knowledge of the future value of the measured
error. However, this problem can be easily fixed by using
an augmented error, similar to those in [2], [29]. Define the
augmented error to be

eak = ēk + (Ŵ
T
k − ŴT

k−1)Φk−1 ≈ W̃T
kΦk−1 (8)

The SD update law corresponding to (8) becomes

Ŵk+1 = Ŵk − ckΦk−1eaTk (9)

in matrix form, or equivalently ŵi,k+1 = ŵi,k−ckφi,k−1eak,
both of which are realizable. In view of (9) the augmented
error in (8) can be updated recursively via

eak = ēk − ck−1ΦTk−2Φk−1eak−1 (10)

which computationally may be more desirable as it requires
no matrix multiplications.

Fig. 1. Learning Control Block Diagram

Remark 4: The combined feedback control (4) and para-
meter estimation (9) laws, referred to as the learning control
law (see Figure 1), is model–free and only requires the plant
to be controllable.

IV. STABILITY ANALYSIS
The stability analysis of the overall closed loop system is

carried out in several steps. We first show that the linearized
closed–loop error system given by (5) and (9) is exponen-
tially stable. Subsequently, we will show that the original
nonlinear error dynamics coupled with the estimation law (9)
is locally asymptotically stable in the absence of any control
function approximation error and bounded–input bounded–
output (BIBO) stable otherwise.
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The following Lemma (see Appendix A for a proof)
shows that the difference equations given by (10) and (9)
for the disturbance free linearized error system is uniformly
exponentially stable if the PE Assumption (A4) is satisfied.
To state the lemma, we first need to express the evolution
of the parameter error matrix (W̃k) for the linearized error
system. This can achieved by subtractingW from both sides
of (9) and replacing the augmented error by eak = W̃T

kΦk−1:

W̃k+1 = AkW̃k, Ak = I − ckΦk−1ΦTk−1 (11)

Lemma 1: The linear time–varying system (11), W̃k+1 =
AkW̃k is uniformly exponential stable if the desired state
sequence xdk ∈ X is PE (Assumption A4). More precisely,
there exists 0 ≤ σ < 1 such that

°°°W̃k+s

°°° ≤ σ
°°°W̃k

°°°,
∀k ≥ 0, or equivalently

°°Γ(k+s,k)°° ≤ σ, ∀k ≥ 0, where
Γ(k+s,k) := Ak+s−1 · · ·Ak is the system state–transition
matrix and s is as specified in Assumption A4.
The next Theorem (see Appendix B for a proof), which is

important in its own right, shows that uniform exponential
stability of the linearized error system implies its local
asymptotic and BIBO stability of the original system.
Theorem 1: Consider the nonlinear time varying system

ξk+1 = Fk(ξk,μk), Fk ∈ C1(Bm
ξ̄
× Rp,Rm), for some

ξ̄ > 0 and integers m, p ≥ 1. Let Ak := D1Fk(0, 0),
Bk := D2Fk(0, 0) and suppose that Fk(0, 0) = 0, ∀k ≥ 0,
a := supk≥1 kAkk < ∞, b := supk≥1 kBkk < ∞, and
that the linearized system, ξ̃k+1 = Ak ξ̃k, is uniformly
exponentially stable, i.e., there exist s ≥ 1 and 0 < σ < 1

such that
°°°ξ̃k+s°°° ≤ σ

°°°ξ̃k°°°, ∀k ≥ 0. There exist μ̄ and ξ̄0
such that if kξ0k < ξ̄0 and supk≥1 kμkk < μ̄, then kξkk <
ξ̄, ∀k ≥ 0. Moreover the upper limit limk→∞ kξkk =
O(limk→∞ kμkk).

We are finally in position to state and prove our main
stability Theorem:
Theorem 2: Consider the discrete-time system (1) sub-

jected to the learning control law given by (4) and (9)
satisfying Assumptions A1–A4 and further assume that xdk+
Bnē ⊂ X , ∀k ≥ 0, for some ē > 0. There exist positive
scalars ᾱ, ē0, w̄0, and ε̄ such that if supk≥0 |1− αk| < ᾱ,
|e0| < ē0,

°°°W̃°°° < w̄0, and ε ≤ ε̄, then ek and uk are
bounded for all k. Moreover, limk→∞ |ek| = O (ε).

Proof: Defining the overall error state vector by ξk =
(ek, ek−1, eak,W̃

s
k) then the closed-loop error system is given

by ξk+1 = Ḡk(ξk, dk) where Ḡk is the state map specified
by

ek+1 = Gk(ek,W̃
s
k, dk)

W̃k+1 = W̃k − ckΦk−1eaTk
together with (7), (10), and Ψ̂ = (W+ W̃k)

TΦk. Lin-
earizing ξk+1 = Ḡk(ξk, 0) about ξk = 0 yields ēk =

W̃k−1Φk−1, eak = W̃kΦk−1,

ek+1 = (1− αk)(D1F )ek + (D1Ψ)
−1W̃T

kΦk

W̃k+1 = AkW̃k, Ak = I − ckΦk−1ΦTk−1

where we used that D1F = −(D1Ψ)−1(D2Ψ). By Lemma
(1), the 2nd subsystem W̃k+1 = AkW̃k is uniformly
exponentially stable. The first subsystem, hence the overall
system, is also exponentially stable provided that

ᾱ sup
z,x∈X

kD1F (z,x)k < 1

where ᾱ = supk≥1 |1−ak|. Thus the hypothesis of Theorem
(1) is satisfied with ξ̄ = ē and the conclusions follow.

V. APPLICATION TO A DIFFERENTIAL DRIVE ROBOT
In this section we apply the learning controller developed

in the preceding section to a nonholonomic nonlinear system
arising from a differential wheel mobile robot [23] (Figure
2). The equation of motion for this system is given by
ẋ = g1(x)vR + g2(x)vL where x = (x, y, θ) specifies
the robot configuration (position and orientation), vR and
vL are the linear speeds of the right and left wheels,
respectively, g1(x) = 1

2 (cos θ, sin θ, 1/L), and g2(x) =
1
2(cos θ, sin θ,−1/L).

Fig. 2. Differential Drive Robot

To discretize this system and transform it into the state–
space model (1) the inputs u1(t) and u2(t) are chosen to
be piecewise constant and are collectively identified with
the discrete–time input vector uk = [u1k u2k u3k]

T ∈
R3. Letting T denote the sampling period, the relationship
between the inputs vR(t) and vL(t) on [kT, (k + 1)T ] and
uk is chosen to be

vR(t) = u1k + u2kσ
1
k + u3kσ

2
k

vL(t) = u1k − u2kσ1k − u3kσ2k
where δ = T/2 and σjk(t) = 1 if kT + (j − 1)δ ≤ t <
kT + jδ and 0 otherwise. Note that the first component of
uk is the robot linear speed and the last two components are
proportional to robot angular speed over the k–th sampling
period. Integrating ẋ = g1(x)vR + g2(x)vL from t = kT to
t = (k + 1)T gives x(kT + T ) as a function of x(kT ) and
uk:

xk+1 = xk + Tu1kf1(θk, u2k, u3k)

yk+1 = yk + Tu1kf2(θk, u2k, u3k)

θk+1 = θk + T (u2k + u3k)/2

where f1 and f2 are smooth functions. It can be shown that
the Jacobian (D1F ) and the Controllability (D2F ) matrices
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associated with this system are nonsingular everywhere thus
satisfying Assumptions A1 and A2. The control function Ψ is
modeled as a cubic polynomial function of (δx0, δy0) where
δx0 and δy0 are the changes in the x and y coordinates of
the robot position relative to (x0, y0) frame attached to the
robot (see Figure 2). A randomly selected desired trajectory
consisting of 5000 points were used during the learning
process (T = 0.1 sec). The feedback and learning control
gain values of αk = 0.9 and ck = 0.2, ∀k ≥ 0, were used in
the simulations. No other information regarding the system
model was assumed or used. The simulation results show
that the norm of the tracking error is reduced by 2 orders
of magnitude within 5000 trials (Figure 3). Even though not
shown, the learned linear (u1k) and angular velocity (u2k and
u3k) inputs are well–behaved and stay within their intended
lower and upper bounds.
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Fig. 3. Tracking Error Time History and Desired State Trajectory

VI. CONCLUSIONS
A tracking learning controller for nonlinear discrete–time

systems employing a generalized function approximator such
as an NLPN was introduced. The developed controller was
shown to require minimal modeling information and can
be used to learn the inverse of the input-state mapping of
the plant while in operation. The stability of the overall
system under ideal and realistic conditions was rigorously
analyzed. Finally, the application of the learning controller
to a nonholonomic underactuated mobile robot was investi-
gated. The simulation results of this application confirmed
the theoretical assertions of the paper.
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APPENDIX

A. Proof of Lemma 1

We first show that
°°Γ(k+j,k)°° ≤ 1, ∀k, j ≥ 0. Each

Ak is symmetric, has N − 1 repeated eigenvalues at 1,
and a single eigenvalue λ corresponding to the eigenvector
v = Φk/ kΦkk: λ = vTAkv = 1 − ck kΦkk2. Clearly
|λ| < 1 if ck kΦkk2 < 2, which shows that kAkk ≤ 1. Thus°°Γ(k1,k0)°° ≤ kAk+j−1k · · · kAkk ≤ 1. To prove the main
assertion of the Lemma, suppose on the contrary that ∀ε > 0,
∃k ≥ 1 such that

°°Γ(k+s,k)°°2 > 1 − ε2. Consequently,
∃vk ∈ RN , kvkk = 1, such that

°°Γ(k+s,k)vk°°2 > 1 − ε2.
The inequality°°Γ(k+s,k)vk°° ≤ kAk+s−1k · · · kAk+jk

°°Γ(k+j,k)vk°°
combined with kAkk ≤ 1, ∀k ≥ 0, implies that°°Γ(k+j,k)vk°°2 > 1 − ε2, 1 ≤ j ≤ s. Expanding°°Γ(k+1,k)vk°°2 = °°vk − ckΦkΦTk vk°°2 > 1− ε2 implies that

(2− ck |Φk|2)ck
¯̄
ΦTk vk

¯̄2
< ε

or
°°ΦTk vk°° < γε, where γ2 = supk≥1(2−ck kΦkk)−1c−1k <

∞. Furthermore, °°Γ(k+1,k)vk − vk°° < γc̄Φ̄ε where Φ̄ :=
supx,z∈X kΦ(z,x)k. Letting w0 = vk and wj = Γ(k+j,k)vk
we shall use an induction argument to show that

°°°ΦTk+jvk°°° <
(1 + jc̄Φ̄)γε and kw̃j+1k ≤ (j + 1)γc̄Φ̄ε, j = 0, . . . , s− 1,
where w̃j := wj − vk. We have already established this for
j = 0. To prove it in general, suppose that the induction
hypothesis is satisfied for j = 0, . . . , q−1, q < s. Expanding°°Γ(k+q+1,k)vk°°2 = kAk+qwqk2, we have

kwqk2 − γ−2
°°ΦTk+qwq°°2 > 1− ε2

This inequality combined with kwqk ≤ 1 and
°°°ΦTk+qwq°°° ≥°°°ΦTk+qvk°°° − Φ̄ kw̃qk imply that °°°ΦTk+qwq°°° < γε and that°°°ΦTk+qvk°°° < (1 + qc̄Φ̄2)γε. Furthermore,

kw̃q+1k = kAk+qwq − vkk =
°°w̃q − ck+qΦk+qΦTk+qwq°°

< kw̃qk+ γc̄Φ̄ε = (q + 1)γc̄Φ̄ε

which completes the induction proof. Thus

vTk

Ã
k+s−1X
ν=k

ΦνΦ
T
ν

!
vk =

k+s−1X
ν=k

|ΦTν vk|2

<
s−1X
j=0

(1 + jc̄Φ̄2)γε

< s(1 + (s− 1)c̄Φ̄2/2)γε

Since ε > 0 can be made arbitrarily small, this proves that no
λ > 0 exits such that

Pk+s−1
ν=k ΦνΦ

T
ν ≥ λIN×N , ∀k ≥ 0,

thus contradicting Assumption A4 and completing the proof.

B. Proof of Theorem 1
First by the continuity of Fk and ξk = Fk−1,μk−1 ◦ · · · ◦

F0,μ0(ξ0) it follows that there exists ε0 > 0 and ε1 > 0 such
that if kξ0k < ε0 and supk≥0 kμkk < ε1 then kξkk < ξ̄,
0 ≤ k < s. By the Taylor series expansion

ξk+1 = Akξk + dk (12)
dk = Bkμk + d̃k (13)

where
°°°d̃k°°° = ηk kμkk + γk kξkk and ηk, γk =

O(kξkk , kμkk). Evaluating ξ1, . . . , ξs recursively yields

ξs = Γ(s,0)ξ0 + ds−1 +
s−2X
k=0

Γ(s,k+1)dk

where Γ(k1,k0) is as defined in Lemma 1. Using the hypoth-
esis that

°°Γ(s,0)°° ≤ σ it follows that

kξsk ≤ σ kξ0k+ as sup
0≤k<s

kdkk (14)

where as = (as−1)/(a−1). To establish an upper bound on
sup0≤k<s kdkk, we may also recursively evaluate kξ1k , . . . ,
andkξsk based on°°ξk+1°° ≤ (a+ γ) kξkk+ (b+ η) kμkk
implied by (12) with γ = sup0≤k<s kγkk and η =
sup0≤k<s kηkk to get

kξkk ≤ (a+ γ)s kξ0k+ bs sup
0≤k<s

°°μj°° (15)

where bs = ((a+γ)s−1)(b+η)
a+γ−1 . Taking the norm of both sides

of (13) using (15) establishes

sup
0≤k<s

kdkk ≤ γ(a+ γ)s kξ0k+ b̄ sup
0≤k<s

kμkk

where b̄ = γbs + b+ η. The preceding inequality combined
with (14) yields

kξsk ≤ (σ + asγ(a+ γ)s) kξ0k+ asb̄ sup
0≤k<s

kμkk

Once more, by the continuity of Fk there exists ξ̄0 ≤ ε0
and μ̄ ≤ ε1 such that if kξ0k < ξ̄0 and supk≥1 kμkk < μ̄
then σ̄ := σ + asγ(a + γ)s−1 < 1 and asb̄μ̄ < (1 − σ̄)ξ̄0
implying that kξsk < ξ̄0. A simple induction argument also
establishes that°°ξk+js°° ≤ (a+ γ)s

°°ξjs°°+ bs sup
js≤k<js+s

kμkk°°°ξ(j+1)s°°° < σ̄
°°ξjs°°+ asb̄ sup

js≤k<js+s
kμkk < ξ̄0

for j = 1, 2, . . . and kξkk < ξ̄, ∀k ≥ 0. Finally, taking the
upper limits of the preceding equations yields

lim
k→∞

kξkk ≤
·
asb̄(a+ γ)s

(1− σ̄)
+ bs

¸
lim
k→∞

kμkk

proving that limk→∞ kξkk = O(limk→∞ kμkk).
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