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Abstract— This paper studies a coverage control problem for
multi-vehicle systems where individual agents operate with out-
dated information about each others’ locations. Our objective
is to understand to what extent this outdated information
is still useful and at which point it becomes essential to
obtain new, up-to-date information. We propose a self-triggered
coordination algorithm based on spatial partitioning techniques
with uncertain information and verify its correctness using
tools from computational geometry, stability theory, set-valued
analysis, and event-based systems.

I. INTRODUCTION

This paper studies a robotic sensor network performing an

optimal static deployment task when individual agents do not

have up-to-date information about each others’ locations. Our

objective is to design a self-triggered coordination algorithm

that allows agents to decide autonomously when new, up-to-

date location information is needed to complete the task. Our

motivation comes from the need for strategies that naturally

account for uncertainty in the state of other agents caused

by, for instance, sparse communication and sensor errors.

Literature review: In the context of robotic sensor networks,

this work builds on [1], where distributed algorithms based

on centroidal Voronoi partitions are presented, see also [2].

Voronoi partitions are also employed in [3], [4], [5]. Other

works on deployment coverage problems include [4], [6].

A feature of the algorithms mentioned above is the common

assumption of constant communication among agents and

fresh, up-to-date information about each others’ locations.

The other areas of relevance to this work are discrete-event

systems [7], self-triggered control [8], [9], [10], [11] and

event-triggered control [12], [13], [14], [15] of sensor and

actuator networks. These works trade computation at the

agent level for less communication, sensing or actuator effort

while still guaranteeing a desired level of performance.

Statement of contributions: The main contribution of the

paper is the design of the self-triggered centroid

algorithm to achieve optimal static deployment in a given

convex environment. We first design an update policy that

helps an agent determine under what conditions the location

information it possesses about other agents is sufficiently

up-to-date. This policy is based on spatial partitioning tech-

niques with uncertain information, and in particular, on the

notions of guaranteed Voronoi and a new notion we call the

dual guaranteed Voronoi diagram. We then design a motion

control law that, given the (possibly outdated) information

an agent has, determines a motion plan that is guaran-

teed to contribute positively to achieving the deployment
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task. We establish the monotonic evolution of the aggregate

objective function encoding the notion of deployment and

characterize the convergence properties of the algorithm.

Due to the discontinuous nature of the data structure that

agents maintain in our self-triggered coordination law, the

technical approach resorts to a combination of notions and

tools from computational geometry, set-valued analysis, and

stability theory. Various simulations illustrate the perfor-

mance and implementation cost of the self-triggered

centroid algorithm. For reasons of space, all proofs

are omitted. The interested reader is referred to [16].

II. PRELIMINARIES

We let R≥0 and Z≥0 be the sets of nonnegative real and

integer numbers, respectively, and ‖ · ‖ be the Euclidean

distance.

A. Basic geometric notions

We denote by [p, q] ⊂ R
d the closed segment with extreme

points p and q ∈ R
d. Let φ : R

d → R≥0 be a bounded

measurable function that we term density. For S ⊂ R
d, the

mass and center of mass of S with respect to φ are

MS =

∫

S

φ(q)dq, CS =
1

MS

∫

S

qφ(q)dq.

Given v ∈ R
d \ {0}, let unit(v) be the unit vector in the

direction of v. Given a convex set S ⊂ R
d and p ∈ R

d, let

prS(p) denote the orthogonal projection of p onto S, i.e.,

prS(p) is the point in S closest to p. The to-ball-boundary

map tbb : (Rd × R≥0)
2 → R

d takes (p, δ, q, r) to
{

p + δ unit(q − p) if ‖p − prB(q,r)(p)‖ ≥ δ,

prB(q,r) if ‖p − prB(q,r)(p)‖ ≤ δ.

Figure 1 illustrates the action of tbb.

tbb(p, δ, q, r)
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Fig. 1. Graphical representation of the action of tbb when (a) ‖p −
pr

B(q,r)(p)‖ > δ and (b) ‖p − pr
B(q,r)(p)‖ ≤ δ.

The circumcenter of S ⊂ R
d, denoted cc(S), is the center

of the closed ball of minimum radius that contains S. The
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circumradius of S, denoted cr(S), is the radius of this ball.

We denote by B(p, r) the closed ball centered at p ∈ S with

radius r and by Hpo = {q ∈ R
d | ‖q − p‖ ≤ ‖q − o‖} the

closed halfspace determined by p, o ∈ R
d that contains p.

B. Voronoi partitions

We refer to [17] for a comprehensive treatment on Voronoi

partitions and briefly present some relevant concepts here.

Let S be a convex polygon in R
2 and P = (p1, . . . , pn) be

the location of n sensors. A partition of S is a collection of n

polygons W = {W1, . . . ,Wn} with disjoint interiors whose

union is S. The Voronoi partition V(P ) = {V1, . . . , Vn} of

S generated by the points P = (p1, . . . , pn) is

Vi = {q ∈ S | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}.

When the Voronoi regions Vi and Vj are adjacent (i.e., they

share an edge), pi is called a (Voronoi) neighbor of pj (and

vice versa). We denote the neighbors of agent i by Ni.

P = (p1, . . . , pn) is a centroidal Voronoi configuration if

it satisfies that pi = CVi
, for all i ∈ {1, . . . , n}.

C. Facility location and aggregate distortion

We briefly introduce a locational optimization function called

aggregate distortion, see [18], [2], that is key in the design

and analysis of our algorithm. Consider a set of sensors with

positions P in an environment S. The sensing performance

at point q taken from the ith sensor at pi degrades with

the squared distance ‖q − pi‖2. Assume also that a density

function φ : S → R is available, so that φ(q) reflects the

possibility of an event happening at position q. Consider the

task of minimizing the locational optimization function

H(P ) = Eφ

[

min
i∈{1,...,n}

‖q − pi‖
2

]

. (1)

It is interesting to note that this function can be rewritten in

terms of the Voronoi partition as

H(P ) =

n
∑

i=1

∫

Vi

‖q − pi‖
2φ(q)dq,

This suggests defining a generalization of H, which with a

slight abuse of notation we denote by the same letter, as

H(P,W) =

n
∑

i=1

∫

Wi

‖q − pi‖
2φ(q)dq, (2)

where W is a partition of S, and the ith sensor is respon-

sible of the “dominance region” Wi. Note that H(P ) =
H(P,V(P )). The function H is to be minimized with respect

to both the sensors’ locations P and the assignment of

the dominance regions W . The following result [18], [2]

characterizes its critical points.

Lemma II.1 Given P ∈ Sn and a partition W of S,

H(P,V(P )) ≤ H(P,W), (3)

i.e., the optimal partition is the Voronoi partition. Moreover,

for P ′ ∈ Sn with ‖p′i−CWi
‖ ≤ ‖pi−CWi

‖, i ∈ {1, . . . , n},

H(P ′,W) ≤ H(P,W),

i.e., the optimal sensor positions are the centroids.

III. PROBLEM STATEMENT

Consider a group of agents moving in a convex polygon S ⊂
R

2 with positions p1, . . . , pn. For simplicity, we consider

first-order continuous-time dynamics, although our treatment

could be extended to arbitrary controllable dynamics with

minimal modifications. Specifically,

(i) all agents’ clocks are synchronous, i.e., given a com-

mon starting time t0, subsequent timesteps occur for

all agents at tℓ = t0 + ℓ∆t, for ℓ ∈ Z≥0, and

(ii) each agent can move a maximum amount of vmax in

one second, i.e., ‖pi(tℓ+1) − pi(tℓ)‖ ≤ vmax∆t.

For simplicity of presentation, we consider the case of a

common maximum velocity bound vmax for all agents. The

results of the paper are extensible to the case when each

agent has its own maximum velocity bound.

Our objective is to achieve optimal deployment, measured

according to the expected-value measure H introduced in (1),

even when agents have uncertain information about each

others’ positions. Because the cost to communicate increases

with distance, agents might need to balance the need for up-

to-date location information with the need to spend as little

energy as possible. Our goal is to understand the trade-offs

between deployment performance and communication cost.

The data structure that each agent i maintains about other

agents j is the last known location pi
j and the time elapsed

τ i
j ∈ R≥0 since this information was received, for each j ∈
{1, . . . , n} \ {i}. For itself, agent i has access to up-to-date

location information, i.e., pi
i = pi and τ i

i = 0 at all times.

With this data, agent i knows that, at the current time, agent

j will not have traveled more than a distance ri
j = vmaxτ

i
j

from pi
j , and hence agent i can construct a ball B(pi

j , r
i
j)

that is guaranteed to contain the actual location of agent j.

This data is stored in the vector

Di = ((pi
1, r

i
1), . . . , (p

i
n, ri

n)) ∈ (S × R≥0)
n.

Additionally, agent i maintains a variable Ai ⊂ {1, . . . , n}
with i ∈ Ai that, at any time t, corresponds to the

agents whose position information should be used. For

instance, Ai = {1, . . . , n} would mean that agent i uses

all the information contained in Di. As we will explain

in Section V-B, this is not always necessary. We refer to

D = (D1, . . . ,Dn) ∈ (S × R≥0)
n2

as the entire memory

of the network. We find it convenient to define the map

loc : (S×R≥0)
n2

→ Sn to extract the exact agents’ location

information from D by loc(D) = (p1
1, . . . , p

n
n).

To optimize H, the knowledge of its own Voronoi cell is

critical to each agent, cf. Section II-C. However, with the

data structure described above, agents cannot compute the

Voronoi partition exactly. Instead, they implement the space

partitioning techniques described in the following section.

IV. SPACE PARTITIONING WITH UNCERTAINTY

Because we are interested in applications in which the

available information is not perfect, we introduce here spatial
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partitioning techniques with uncertain information. Here, we

review the concept of a guaranteed Voronoi diagram as

in [19] and present a new tool we call the dual guaranteed

Voronoi diagram. Let S ⊂ R
2 be a domain and consider

a set of regions D1, . . . ,Dn ⊂ S, each containing a site

pi ∈ Di. The guaranteed Voronoi diagram of S generated

by D1, . . . ,Dn is the collection of sets gV(D1, . . . ,Dn) =
{gV1, . . . , gVn} defined by

gVi = {q ∈ S | max
x∈Di

‖q − x‖ ≤ min
y∈Dj

‖q − y‖ for all j 6= i}.

With a slight abuse of notation, we denote by gVi(D) the

ith component of gV(D1, . . . ,Dn). The interpretation of

gV(D1, . . . ,Dn) is the following: gVi contains the points

of S that are guaranteed to be closer to pi than to any other

of the nodes pj , j 6= i. Because the information about the

location of these nodes is uncertain, there is a neutral region

in S which is not assigned to anybody: those points for which

no guarantee can be established. Unlike the standard Voronoi

partition, the guaranteed Voronoi diagram is not a partition

of S, see Figure 2(a). Each point in the boundary of gVi

(a) (b)

Fig. 2. Guaranteed Voronoi (a) and dual guaranteed Voronoi (b) diagrams.

belongs to a set of the form

∆g
ij = {q ∈ S | max

x∈Di

‖q − x‖ = min
y∈Dj

‖q − y‖}, (4)

for some j 6= i. Note that in general ∆g
ij 6= ∆g

ji.

On the other hand, the dual guaranteed Voronoi diagram

of S generated by D1, . . . ,Dn is the collection of sets

dgV(D1, . . . ,Dn) = {dgV1, . . . , dgVn} defined by

dgVi = {q ∈ S | min
x∈Di

‖q − x‖ ≤ max
y∈Dj

‖q − y‖ for all j 6= i}.

We denote by dgVi(D) the ith component of

dgV(D1, . . . ,Dn. The interpretation of dgV(D1, . . . ,Dn) is

the following: the points of S outside dgVi are guaranteed

to be closer to some other node pj , j 6= i than to pi.

Because the information about the location of these nodes

is uncertain, there are regions of the space that belong to

more than one cell. The dual guaranteed Voronoi diagram

is a covering of the set S, see Figure 2(b). Each point in

the boundary of dgVi belongs to a set of the form

∆dg
ij = {q ∈ S | min

x∈Di

‖q − x‖ = max
y∈Dj

‖q − y‖}, (5)

for some j 6= i. Note that in general ∆dg
ij 6= ∆dg

ji .

If every region Di is a point, Di = {pi}, then gVi and dgVi

coincide with the standard Voronoi cell Vi of pi, and the

guaranteed and dual guaranteed Voronoi diagrams are the

Voronoi partition of S generated by p1, . . . , pn. In general,

for any collection of points pi ∈ Di, i ∈ {1, . . . , n}, it

holds that gVi ⊂ Vi ⊂ dgVi, i ∈ {1, . . . , n}. Agent pj is a

guaranteed Voronoi neighbor of pi if ∆g
ij ∩ ∂gVi 6= ∅. The

set of guaranteed Voronoi neighbors of agent i is denoted by

gNi(D), where we use the notation D = (D1, . . . ,Dn).

Throughout the paper, we consider uncertain regions given

by balls, Di = B(pi, ri), i ∈ {1, . . . , n}. In this case, the

edges composing the boundary of gVi in (4) are of the form,

∆g
ij = {q ∈ S | ‖q − pi‖ + ri = ‖q − pj‖ − rj}, (6)

and therefore, lie on the arm of the hyperbola closest to pi

with foci pi and pj , and semimajor axis 1
2 (ri+rj). The edges

composing the boundary of dgVi in (5) are of the form,

∆dg
ij = {q ∈ S | ‖q − pi‖ − ri = ‖q − pj‖ + rj}, (7)

and therefore, lie on the arm of the hyperbola farthest from

pi with foci pi and pj , and semimajor axis 1
2 (ri + rj). The

following results state useful properties of the guaranteed

and dual guaranteed Voronoi diagrams.

Lemma IV.1 Given p1, . . . , pn ∈ S and r1, . . . , rn, a ∈
R≥0, let Di = B(pi, ri) and D′

i = B(pi, ri + a), for i ∈
{1, . . . , n}. Then, gNi(D

′
1, . . . ,D

′
n) ⊂ gNi(D1, . . . ,Dn),

for all i ∈ {1, . . . , n}.

Lemma IV.2 Given sets D1, . . . ,Dn+m ⊂ S, it holds that

dgVi(D1, . . . ,Dn,Dn+1, . . . ,Dn+m) ⊆ dgVi(D1, . . . ,Dn)
for all i ∈ {1, . . . , n}.

V. SELF-TRIGGERED COVERAGE OPTIMIZATION

Here we design a coordination strategy to solve the problem

described in Section III. From the point of view of an agent,

the algorithm is composed of two parts: a motion control

component that determines the best way to move given the

available information and an update decision component that

determines when new information should be obtained.

A. Motion control

If an agent had perfect knowledge of other agents’ positions,

then to optimize H, it could compute its own Voronoi cell

and move towards its centroid, as in [1]. Since this is not the

case, we instead propose an alternative motion control law.

Let us describe it first informally:

[Informal description]: At each round, each agent

uses its stored information about other agents’

locations to calculate its own guaranteed and dual

guaranteed Voronoi cells. Then, the agent moves

towards the centroid of its guaranteed Voronoi cell.

In general, there is no guarantee that following the motion

control law will lead the agent to get closer to the

centroid of its Voronoi cell. A condition under which this

statement holds is characterized by the following result.
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Lemma V.1 Given p 6= q, q∗ ∈ R
2, let p′ ∈ [p, q] such that

‖p′ − q‖ ≥ ‖q∗ − q‖. Then, ‖p′ − q∗‖ ≤ ‖p − q∗‖.

Therefore, with the notation of Lemma V.1, if agent i is at

p = pi, computes the target q = CgVi
and moves towards it

to p′, then the distance to q∗ = CVi
decreases as long as

‖p′ − CgVi
‖ ≥ ‖CVi

− CgVi
‖ (8)

holds. The right-hand side cannot be computed exactly by i

because of lack of information about CVi
. However, the

distance between the centroids of the guaranteed Voronoi

and Voronoi cells can be upper bounded, as we show next.

Proposition V.2 Let L ⊂ V ⊂ U . Then, for any density

function φ, the following holds

‖CV − CL‖ ≤ 2 cr(U)
(

1 −
ML

MU

)

.

With the notation of Proposition V.2, agent i can use L = gVi

and U = dgVi to upper bound the distance ‖CVi
−CgVi

‖ by

bndi ≡ bnd(gVi, dgVi) = 2 cr(dgVi)
(

1 −
MgVi

MdgVi

)

. (9)

This bound is computable with the information stored in its

own memory Di. Agent i can use this bound to guarantee

that the condition (8) holds by making sure that

‖p′ − CgVi
‖ ≥ bndi (10)

holds. The point p′ to which agent i moves to is determined

as follows: move towards CgVi
as much as possible in one

time step until it is within distance bndi of it. Formally, the

motion control law is described in Algorithm 1.

Algorithm 1 : motion control law

Agent i ∈ {1, . . . , n} performs:

1: set D = Di

2: compute L = gVi(D) and U = dgVi(D)
3: compute q = CL and r = bnd(L, U)
4: move to tbb(pi, vmax∆t, q, r)
5: set Di

j = (pi
j , ri

j + vmax∆t)

6: set Di
i = (tbb(pi, vmax, q, r), 0)

Clearly, if time elapses without new location information,

then the bound (9) grows larger and (10) becomes harder to

satisfy until it becomes unfeasible. Therefore, agents need an

decision mechanism that establishes when new information

is required for the execution of the motion control law to

achieve its objective. This is addressed in Section V-B.

B. Update decision policy

The second component of the self-triggered strategy takes

care of updating the memory of the agents, and in partic-

ular, of deciding when new information is needed. This is

essentially achieved by making sure that (10) is feasible.

Two reasons can make (10) invalid for a given agent i. On

the one hand, the bound bndi might be large due to outdated

location information about other agents’ location in Di. This

should trigger the need for up-to-date information through

communication with other agents. On the other hand, agent i

might be close to CgVi
, requiring bndi to be small in order

for the condition to hold. We deal with this by specifying a

tolerance ε > 0 that can be selected a priori by the designer.

Formally, the memory updating mechanism followed by each

agent is described by the pseudo-code in Algorithm 2.

Algorithm 2 : one-step-ahead update policy

Agent i ∈ {1, . . . , n} performs:

1: set D = Di

2: compute L = gVi(D) and U = dgVi(D)
3: compute q = CL and r = bnd(L, U)
4: if r ≥ max {‖q − pi‖, ε} then
5: reset Di by acquiring up-to-date location information
6: end if

According to Algorithm 2, agent i checks at each time step

if condition (10) is feasible or bndi ≤ ε, and therefore it is

advantageous to execute the motion control law for

one timestep. One could also implement a refined version

of this decision policy making use of the fact that agent i

has all the information it requires to perform this check for

multiple steps into the future.

C. The self-triggered centroid algorithm

The self-triggered coordination algorithm is the result of

combining the motion control law of Section V-A and the up-

date policy of Section V-B with a procedure to acquire up-to-

date information about other agents when this requirement is

triggered (cf. 5: in Algorithm 2). A trivial update mechanism

will be to provide each agent with up-to-date information

about the location of all other agents in the network; however,

this is costly from a communications point of view. Instead,

we propose an alternative algorithm that only provides up-

to-date location information of the Voronoi neighbors at

the specific time when step 5: is executed. The Voronoi

cell computation is borrowed from [1]. We present it

in Algorithm 3, adapted to our scenario.

Algorithm 3 : Voronoi cell computation

1: initialize Ri = mink∈{1,...,n}\{i} ‖pi − pi
k
‖ + vmaxτ

i
k

2: detect all pj within radius Ri

3: set W (pi, Ri) = B(pi, Ri) ∩
`

∩j:‖pi−pj‖≤Ri
Hpipj

´

4: while Ri < 2maxq∈W (pi,Ri)
‖pi − q‖ do

5: set Ri := 2Ri

6: detect all pj within radius Ri

7: set W (pi, Ri) = B(pi, Ri) ∩
`

∩j:‖pi−pj‖≤Ri
Hpipj

´

8: end while
9: set Vi = W (pi, Ri)

10: set Ai = Ni ∪ {i} and Di
j = (pj , 0) for j ∈ Ni

The Voronoi cell computation is based on the

agent gradually increasing its communication radius until all

the information required to construct its exact Voronoi cell

has been obtained. It can be shown [16] that an agent i can

compute the sets L and U in the algorithms described above

with the information provided by Algorithm 3.

The combination of Algorithms 1-3 leads to the synthesis

of the self-triggered centroid algorithm de-

scribed in Algorithm 4 (πAi denotes the map that extracts

from Di the information about the agents contained in Ai).

VI. CONVERGENCE ANALYSIS

In this section, we analyze the asymptotic convergence prop-

erties of self-triggered centroid algorithm.
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Algorithm 4 : self-triggered centroid algorithm

Initialization

1: set Di and Ai by running Voronoi cell computation

2: set Di
i = (pi, 0)

At timestep ℓ, agent i ∈ {1, . . . , n} performs:

1: set D = πAi (Di)
2: compute L = gVi(D) and U = dgVi(D)
3: compute q = CL and r = bnd(L, U)
4: if r ≥ max {‖q − pi‖, ε} then
5: reset Di and Ai by running Voronoi cell computation

6: set D = πAi (Di)
7: set L = gV (D) and U = dgV (D)
8: set q = CL and r = bnd(L, U)
9: end if

10: move to tbb(pi, vmax, q, r)
11: set Di

i = (tbb(pi, vmax, q, r), 0)
12: set Di

j = (pi
j , ri

j + vmax∆t) for j 6= i

An extension of the algorithm that makes agents decrease

their maximum speed as the network gets closer to the

set of centroidal Voronoi configurations is explored in [16].

The case of a constant maximum velocity is analyzed here.

Note that this algorithm can be written as a map fstca :
(S×R≥0)

n2

→ (S×R≥0)
n2

which corresponds to the com-

position of a “decide/acquire-up-to-date-information” map

finfo and a “move-and-update-uncertainty” map fmotion, i.e.,

fstca(D) = fmotion(finfo(D)) for D ∈ (S × R≥0)
n2

. Our

analysis strategy here is shaped by the fact that finfo, and

consequently, fstca are discontinuous. Our objective is to

prove the following result characterizing the asymptotic

convergence properties of the trajectories of the algorithm.

Proposition VI.1 For ε ∈ [0,diam(S)), the agents’ po-

sition evolving under the self-triggered centroid

algorithm from any initial network configuration in Sn

converges to the set of centroidal Voronoi configurations.

Given that the map fstca is discontinuous, we cannot apply

the discrete-time LaSalle Invariance Principle. Our proof

strategy consists of constructing a closed set-valued map T ,

whose trajectories include the ones of fstca, and apply the

LaSalle Invariance Principle for set-valued maps [2]. For

reasons of space, we do not include the full proof and only

provide a sketch. The interested reader is referred to [16].

The definition of T is as follows. For convenience, we recall

that D = (D1, . . . ,Dn) ∈ (S×R≥0)
n2

, and that the elements

of Di are referred to as ((pi
1, r

i
1), . . . , (p

i
n, ri

n)). To ease the

exposition, we divide the construction of T in two steps, a

first one that captures the agent motion and the uncertainty

update to the network memory, and a second one that

captures the acquisition of up-to-date network information.

Motion and uncertainty update: Note that once the uncer-

tainty radius about the position of an agent hits the diameter

of S, it does not need to grow anymore. This justifies the

definition of the continuous motion map M : (S×R≥0)
n2

→
(S × R≥0)

n2

whose ith component is

Mi(D) =
(

(pi
1,min

{

ri
1 + vmax∆t,diam(S)

}

), . . . ,

(tbb(pi
i, vmax, CgVi

(πAi(Di)),bnd(πAi(Di))), 0),

. . . , (pi
n,min

{

ri
n + vmax∆t,diam(S)

})

,

where Ai = {i} ∪ argminj∈{1,...,n}\{i} ri
j .

Acquisition of up-to-date information: In each timestep,

agents are faced with the decision of whether to acquire

up-to-date information about the location of other agents.

This is captured by the set-valued map U : (S × R≥0)
n2

⇉

(S × R≥0)
n2

that, to D ∈ (S × R≥0)
n2

, associates the

Cartesian product U(D) whose ith component is either Di

(agent i does not get new information) or the vector

((p′1, r
′
1), . . . , (p

′
n, r′n))

where (p′j , r
′
j) = (pj

j , 0) for j ∈ {i} ∪ Ni and (p′jr
′
j) =

(pi
j , r

i
j) otherwise (agent i gets new information). Recall

that Ni is the set of neighbors to agent i given the partition

V(loc(D)). It is not difficult to show that the set-valued map

U is closed (a set-valued map T : X ⇉ Y is closed if xk →
x, yk → y and yk ∈ T (xk) imply that y ∈ T (x)). We define

the set-valued map T : (S×R≥0)
n2

⇉ (S×R≥0)
n2

by T =
U ◦M. Given the continuity of M and the closedness of U ,

the map T is closed. Let γ = {D(tℓ)}ℓ∈Z≥0
be an evolution

of the self-triggered centroid algorithm, then

γ′ = {D′(tℓ)}ℓ∈Z≥0
, with D′(tℓ) = finfo(D(tℓ)), is a

trajectory of the dynamical system

D′(tℓ+1) ∈ T (D′(tℓ)). (11)

With T formally defined, one can show that the aggregate

function H is monotonically nonincreasing along the trajec-

tories of T . Furthermore, it can also be shown that the omega

limit set Ω(γ′) is weakly positively invariant. The final step

then uses this fact to show that Ω(γ′) is contained in the set

of centroidal Voronoi configurations [16].

VII. SIMULATIONS

In this section, we provide several simulations of the

self-triggered centroid algorithm. All simu-

lations are done with n = 8 agents moving in a 4m × 4m

square, with a maximum velocity vmax = 1m/s operating

with ∆t = .025s. We compare our algorithm against the

move-to-centroid strategy where agents have perfect location

information at all times, see [1]; we refer to this as the

benchmark case. For each agent i ∈ {1, . . . , n}, we adopt

the following model [20] for quantifying the total power Pi

used by agent i to communicate, in dBmW power units:

Pi = 10 log10





n
∑

j∈{1,...,n},i6=j

β100.1Pi→j+α‖pi−pj‖





where α and β are positive real parameters that depend on

the characteristics of the wireless medium and Pi→j is the

power received by agent j of the signal transmitted by agent

i. In our simulations, all these values are set to 1.

Figures 3 and 4 illustrate an execution of the

self-triggered centroid algorithm for a

density φ which is a sum of two Gaussian functions, and

compare its performance against the benchmark case. One

can see in Figure 4 how, as ε gets larger, the communication

effort of the agents decreases, at the cost of a slower

convergence on the value of H.
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(a) (b)

Fig. 3. Network trajectories of (a) the benchmark case and (b) the
self-triggered centroid algorithm with ε = 0.25. The black
and grey dots correspond to the initial and final agent positions, respectively.
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Fig. 4. Plots of (a) the communication power P used by the network and
(b) the value of H in each timestep comparing three different executions.

Figure 5 shows the communication power used and the

time to convergence of the self-triggered centroid

algorithm averaged over 20 random initial conditions for

varying ε. Note that for small ε, the network performance

does not deteriorate significantly while the communication

effort by the individual agents is substantially smaller.
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Fig. 5. Plots of the average (a) communication power consumption Pavg

and (b) timesteps to convergence Tavg over 20 simulations for varying ε.

VIII. CONCLUSIONS

We have proposed the self-triggered centroid

algorithm. This strategy combines an update law to

determine when old information needs to be updated and

a motion control law that uses this information to decide

how to best move. We have analyzed the correctness of the

proposed algorithm using tools from computational geometry

and set-valued analysis. Our simulations have illustrated

our theoretical results and have shown a performance our

algorithm comparable to the constant communication, perfect

information case, while requiring substantially less commu-

nication effort. In future work, we plan to characterize analyt-

ically the tradeoff between performance and communication

cost, provide guarantees on the network energy savings when

using the proposed algorithm, and explore the extension of

these ideas to other motion coordination tasks.

ACKNOWLEDGMENTS

This research was supported in part by NSF awards CMMI-

0908508 and CCF-0917166.

REFERENCES

[1] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[2] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks. Applied Mathematics Series, Princeton University Press,
2009. Electronically available at http://coordinationbook.info.

[3] A. Arsie and E. Frazzoli, “Efficient routing of multiple vehicles with
no communications,” International Journal on Robust and Nonlinear
Control, vol. 18, no. 2, pp. 154–164, 2007.

[4] A. Kwok and S. Martı́nez, “Deployment algorithms for a power-
constrained mobile sensor network,” International Journal on Robust
and Nonlinear Control, vol. 20, no. 7, pp. 725–842, 2010.

[5] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, “Distributed algorithms
for environment partitioning in mobile robotic networks,” IEEE Trans-
actions on Automatic Control, 2010. To appear.

[6] M. Schwager, D. Rus, and J. J. Slotine, “Decentralized, adaptive
coverage control for networked robots,” International Journal of
Robotics Research, vol. 28, no. 3, pp. 357–375, 2009.

[7] C. G. Cassandras and S. Lafortune, Introduction to Discrete-Event
Systems. Springer, 2 ed., 2007.

[8] M. Velasco, P. Marti, and J. M. Fuertes, “The self triggered task model
for real-time control systems,” in Proceedings of the 24th IEEE Real-
Time Systems Symposium, pp. 67–70, 2003.

[9] R. Subramanian and F. Fekri, “Sleep scheduling and lifetime maxi-
mization in sensor networks,” in Symposium on Information Process-
ing of Sensor Networks, (New York, NY), pp. 218–225, 2006.

[10] X. Wang and M. D. Lemmon, “Self-triggered feedback control systems
with finite-gain L2 stability,” IEEE Transactions on Automatic Control,
vol. 54, no. 3, pp. 452–467, 2009.

[11] A. Anta and P. Tabuada, “To sample or not to sample: self-triggered
control for nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 55, no. 9, pp. 2030–2042, 2010.

[12] P. Wan and M. D. Lemmon, “Event-triggered distributed optimization
in sensor networks,” in Symposium on Information Processing of
Sensor Networks, (San Francisco, CA), pp. 49–60, 2009.

[13] D. V. Dimarogonas and K. H. Johansson, “Event-triggered control
for multi-agent systems,” in IEEE Conf. on Decision and Control,
(Shanghai, China), pp. 7131–7136, 2009.

[14] M. Mazo Jr. and P. Tabuada, “Decentralized event-triggered control
over wireless sensor/actuator networks,” IEEE Transactions on Auto-
matic Control, 2011. To appear.

[15] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Event-
triggered control for discrete-time systems,” in American Control
Conference, (Baltimore, MD), pp. 4719–4724, July 2010.

[16] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic
networks for optimal deployment,” Automatica, 2010. Submitted.

[17] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. Wiley Series in
Probability and Statistics, Wiley, 2 ed., 2000.

[18] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tessel-
lations: Applications and algorithms,” SIAM Review, vol. 41, no. 4,
pp. 637–676, 1999.

[19] J. Sember and W. Evans, “Guaranteed Voronoi diagrams of uncertain
sites,” in Canadian Conference on Computational Geometry, (Mon-
treal, Canada), 2008.

[20] S. Firouzabadi, “Jointly optimal placement and power allocation in
wireless networks,” Master’s thesis, University of Maryland at College
Park, 2007.

1044


