
  

  

Abstract—- In this paper, the control of time-delay bilateral 

teleoperation systems is considered. Control complexity of 

such systems arises due to the nonlinear and uncertain 

dynamics of the system as well as the latency in data 

communication between the master and slave sides. Hence, a 

novel control scheme is proposed in this paper which improves 

both stability and transparency of the system despite the above 

mentioned limitations. The proposed controller is composed of 

two control loops. First, a local Lyapunov-based adaptive 

controller is applied (in both master and slave sides) to cancel 

system nonlinearities. Subsequently, a new observer-based 

controller scheme is proposed to achieve the stability and 

performance (transparency) objectives. Using the Lyapunov 

techniques, stability and performance objectives are cast as 

some Linear Matrix Inequality (LMI) feasibility conditions. 

Experimental results are presented to illustrate the enhanced 

performance of the proposed controller methodology. 

 

I. INTRODUCTION 

ILATERAL master-slave teleoperation systems provide 

remote object manipulation for human operators with 

similar conditions as those of the remote location. 

Application of such systems is where direct contact with the 

environment is hazardous or too difficult. Some examples 

are space explorations, nuclear operations, robotic surgery, 

etc. The reader is referred to [1] for a historical overview. 

It can be verified that control of teleoperation systems is 

complicated due to a lot of challenges. The dynamics of 

master and slave robots are often nonlinear and subjected to 

uncertainty. Another cause of difficulty is the uncertainty 

presents in the interaction of these robots with unknown and 

widely varying operator and environment dynamics. Finally, 

the communication time delay in telerobotic applications is 

the main obstacle to maintaining both transparency and 

stability of the system. Communication time delay causes a 

trade-off between stability and transparency. 

Several control schemes have been proposed for 

teleoperation systems. Some of them are compared in [2] 

from stability and performance points of view. In several 

papers Robust H∞-based controller and µ-synthesis have 

been used for teleoperation system ([3]-[9]). In [3] and [4] 

the time delay was not considered but the most important 

problem occurring in teleoperation systems is unknown time 
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delay especially when the communication channel is World 

Wide Web. In [5], time delay was approximated using a 

Pad´e approximation but it is clear that the frequency 

response of low order Pad´e approximation does not mimic 

the original frequency response especially at high 

frequencies. A simple and common method is treating time 

delay as a perturbation to the system as done in [6]-[9]. 

However such treatment of the delay is unrealistic and 

because of special frequency response of delay can yield 

conservative control designs. In [10], a method was 

introduced based on a continuous-time delay reduction 

technique and the LQG. However, such model-based LQG 

controller does not possess enough robustness against 

uncertainty and good performance in the presence of time 

delay. 

In [11] and [12] an adaptive controller was introduced to 

eliminate system nonlinearities. Then, a controller is 

designed to deal with time delay based on recursive adobe 

problem that was already introduced in [13]. However, the 

iterative synthesis and implementation of their presented 

controller is extremely complex. 

Linear Matrix Inequality (LMI) is a powerful and easy to 

implement method to deal with stability and stabilization 

problems. Based on this approach several controllers were 

designed for uncertain time delayed systems ([14]-[17]). In 

[14], a stabilizing controller was designed for a general time 

delay system. However, no performance measure was 

guaranteed as a result of applying this controller. In [15],an 

LMI-based controller was applied to a teleoperation system 

and achieved good stability in the presence of time delay and 

uncertainty. However the method was developed for linear 

model of the system and also no experiment was conducted 

to support the simulation results. 

In this paper, a new method is proposed to deal with time-

delay, uncertainties and nonlinearities of the teleoperation 

system. First, local adaptive controllers are designed on both 

master and slave sides to eliminate nonlinearities of the 

system. Then a new observer-based controller based on LMI 

is designed to deal with time-delay and uncertainties of the 

system. The main novelty of this paper is introducing a new 

observer based controller which possesses the optimum 

performance measure between all stabilizing controllers. 

Combining adaptive control and the proposed observer-

based control is another novelty of this paper. 

The rest of the paper is organized as follows. Section II 

presents designing of local adaptive controllers for master 

and slave. In Section III the dynamics of the system is given. 

The robust controller design is introduced in Section IV. 

Sections V and VI depict simulation and experimental 
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results obtained by employing the proposed method. Finally, 

conclusions are stated in Section VII.  

II. LOCAL ADAPTIVE CONTROLLER DESIGN  

The dynamics of the master robot incorporating the 

human operator and the slave robot incorporating the 

environment can be stated as follows ([11] and [18]) 
*
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where indices m, s, h, e indicate master, slave, human 

operator and environment, respectively. Local adaptive 

nonlinear controllers used here are similar to those proposed 

in [19] and also used in [11] for teleoperation system. The 

local control laws for the master and slave robots are given 

by 

ˆ ( )
cm m m m md m h m m

F Y V V F XλΘ= + − + −�K  (3) 

ˆ ( )
cs s s s sd s e s s

F Y V V F XλΘ= + − − −�K  (4) 

where Vmd and Vsd are two command vectors to be 

introduced later, Vm and Vs are velocity vectors, Km, Ks, A 

are positive definite diagonal matrices, and �� is a filtered 

force (see Fig.1) ���denotes the estimate of �� that contains 

all unknown parameters of the master (γ = m) or slave (γ = 

s). Ym and Ys are regressor matrices which are defined in 

[11]. 
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The parameter estimate ��� may be computed using 

standard methods of adaptive control. For example using the 

gradient update law 

ˆ T

i i i
Y rγ γ γ γρΘ =

�
 (7) 

,d h e
r V V F Xγ γ γ γβ= − + −�  (8) 

where the subscript γi is assigned to the i
th

 parameter of 

either master (γ = m) or slave (γ = s), ργi> 0 is a parameter 

update gain. To avoid getting unallowable values ����  should 

be saturated. 

By using the Lyapunov theory, it can be concluded that [19] 

2 ,r m sγ γ∞∈ =� ∩�  (9) 

  LTI models of hand and environment can be stated as 
* *

,e e e s h h h mf f Z x f f Z x= + = +
 

(10) 

  By using (8), (9), (10) the close loop local dynamics 

become linear and perturbed by bounded disturbances. 

Therefore all linear controllers can be implemented on it. A 

block diagram of the resulting system is shown in Fig. 1. 

The uncertainty of the hand and environment is introduced 

as a perturbation to their impedances. 

 
Fig 1. The block diagram of the teleoperation system 

III. PROBLEM FORMULATION  

As mentioned in the previous section, after using adaptive 

controller, the dynamics of the system become linear and are 

subjected to bounded disturbances. Another controller is 

needed to reject the disturbances and achieve a high level of 

performance in presence of time delay and uncertainties. In 

this section the linear dynamics of the system and the 

general form of an observer-based controller is stated. 

The state-space form of the system can be written as: 

1 1
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(11) 

1 1
( ) ( ) ( )y t C C x t∆= +  (12) 

2
( ) ( )z t C x t=  (13) 

where x=[xm, fm, ��	, xs, fs, ��
] are system state variables, 

u=[vmd, vsd] are control inputs, w is exogenous inputs w=[rm, 

fh
*
, rs, fe

*
], y is the measurement signals y=[xm, fm, ��	, xs, fs, 

��
] and z is regulated output z=[xm-αxxs, fh-αffe]. It’s easy to 

find A, A1, B1, B2, C1, C2 from Fig. 1. Moreover ∆A, ∆A0, 

∆B1, ∆C1 represent the uncertainty of the environment and 

the parameters and are subjected to [14] 

 

1 1 1 1 2 2 2
( ) , ( ) ,A D F t E A D F t E∆ ∆= =  (14) 
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1 3 3 3 1 4 4 4
( ) , ( ) ,B D F t E C D F t E∆ ∆= =  (15) 

( ) ( ) 1,...,4T

i iF t F t I i≤ =  (16) 

The dynamics of observer-based controller has the 

following form 

1 1 1

1 1

ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ( ) ( )
t

t h

x t A B K LC x t A x t h

B KA x d Ly tτ τ
−

= + − + −

+ +∫

�

 

(17) 

1
ˆ ˆ( ) ( ( ) ( ) )

t

t h
u t K x t A x dτ τ

−
= + ∫  

(18) 

Now the problem is finding gains K and L such that the 

system stability is guaranteed and the regulated output that 

indicates transparency of the system is bounded. 

IV. THE PROPOSED ROBUST OUTER-LOOP CONTROLLER 

In this section a method for observer-based controller 

design based on linear matrix inequality is proposed to deal 

with communication time delay and uncertainty in the 

environment and parameters. Such work was currently 

studied as a theorem in [14] but only a stabilizing controller 

for a general time delay system is proposed. However it’s 

obvious that in teleoperation system in addition to stability, 

the transparency is of high importance. To achieve such 

goal, a new theorem is presented that can find the optimum 

controller with the transparency criterion in all stabilizing 

controllers. The following theorem presents the main 

contribution of the paper: 

Theorem: Consider the system of the form (11),(12),(13) 

with constant time delay h. If there exist positive definite 

matrices X, P,W, V and R , matrices G and H, positive  scalar 

values γ and εi (i=1,…,5) that satisfy (19),(20),(21) 
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The system with observer-based controller of the form (17), 

(18) with K=GX
-1

 and L=P
-1

H is asymptotically stable and 

the corresponding H∞ performance is γ (‖�
�‖� ≤ �). To 

achieve the optimum controller with performance criterion, γ 

should be minimized. 

Proof: Consider the following functional 

2
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V(x,e) is Lyapunov function candidate introduced in [14]: 
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where operator D is neutral transformation defined as ([20]) 
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Similar to the proof of BRL in [21] the H∞ performance is 

achieved if  
2
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Now, if the following inequality holds ([14]), 
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By using (42), (44), (45) and (52) the following inequality 

yields 
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From [14] ��� and ��
 should be negative definite. By using 

the schur complement those inequalities are equivalent to 
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Once again utilizing schur complement yields in  
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where 

12 0 1x
N SA A=−  (63) 

1

18 22
x
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1 1
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T T

xN h T A E E Aε− −=− +  (65) 
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Let 
1
,X S

−=  ,G KX=  1
,W U

−=  (67) 

1
,Y hT

−=  
1 1

,R h Q
− −=  ,H LP=  (68) 

Now, by pre & post multiplying (61), (62) and (43) 

respectively by diag{X,Y,I,I,I,I,I,I}, diag{I,I,R} and W after 

using Schur complement (19), (20) and (21) are obtained, 

which completes the proof. 

Remark 1: Note that, obtaining γ which solves the robust 

stability and performance condition implies the LMI 

equations reaching large matrices K and L, so two LMI 

constraints are added to reduce the norms of P and X: 

1 0X Iµ− >  (69) 

2 0P Iµ− >  (70) 

Therefore maximization of 1µ and 2µ will maximize X and 

P which results in minimizing K and L. 
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Remark 2:It is obvious from the equations (24) and (33) the 

term 
1γ −

is a nonlinear constraint, hence, a new variable 

1ν γ −= is defined and its maximization results in the 

minimization of γ .Note that considering aν >  results in 

0<γ <a. 

Remark 3: The matrix given in (31) is nonlinear because of 

the term K
T
K. This nonlinearity can be eliminated if the 

following inequality holds ([14]): 
1T

K K Xα −<  (71) 

1
X I

− <  (72) 

V. SIMULATION RESULTS 

The tracking of force and position was evaluated on the 

nonlinear model of the teleoperation system with proposed 

controller. The response of the system is studied for two 

cases, first by applying the observer-based controller 

suggested in [14] and second by applying the proposed 

controller. Time delay was considered to be 300ms. The 

system is subjected to bounded disturbances and 

measurement noises. All scale factors were unit. The LMIs 

were solved by CVX toolbox with sdp3 solver [22]. The 

resulting performance measure was γ=0.011. 

In Fig. 2, the responses of the system with observer-based 

controller [14] are shown. Since, with this controller no 

performance measure is guaranteed, the tracking of force 

and position should not be acceptable. Simulation results 

prove this fact. In Fig. 3, the responses of the system with 

proposed controller are plotted. The positions of master and 

slave track each other in soft and rigid environments with 

high accuracy. It should be noted that there is a small initial 

error when the environment changes from soft to rigid 

instead of violating the stability criterion. As it is obvious 

from the middle part of the figure when the slave robot is in 

the rigid environment, the position of the master robot 

should not be changed. Another interesting result is the force 

behavior. Although additional white noise is added to the 

slave force output in the simulation, the force tracking is 

accurate. 

VI. EXPERIMENTAL RESULTS 

The experimental setup used in this paper consists of two 

2-DOF robots as shown in Fig. 4. The master is a “Microsoft 

Sidewinder Force Feedback 2 Joystick”. The slave robot is 

made by authors powered by high current 12
v
 military DC 

motors and equipped with force sensors that measure the 

environment forces in 2 degrees of freedom. The control 

system runs on a PC platform with Advantech PCL-818 and 

PCL-726 DAS cards. The control code is implemented using 

Matlab Real-Time workshop and xPC Target Toolbox. 

Since, the master robot is not equipped with force sensors; 

its force was estimated using method proposed in [23]. Other 

settings were exactly the same as mentioned in the 

simulation. 

 

 
 

 

Fig. 2.  The position and force tracking for the method proposed in [14]. 

 

 
Fig. 3.  The position and force tracking for our proposed method 
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Fig. 4. Master and Slave sides used in practical experiment, the left picture 

shows the master side and the right picture shows the slave. 

 

Fig. 5 shows the experimental results of the system. As in 

the previous case, the experiment is established for soft and 

rigid environments. In both of them the position and force 

tracking is satisfactory. Also the transitions between two 

environments are stable. 

 
Fig. 5.Experimental results for the proposed method. 

VII. CONCLUSIONS 

In this paper a method for achieving stability and 

transparency in teleoperation systems under time-delay and 

uncertainty was proposed. Through the use of adaptive 

controllers the dynamics of master and slave were linearized. 

Then an observer-based controller by using LMI was 

designed to deal with time-delay and uncertainty of the 

system. Through numerical and experimental results, it was 

demonstrated that the proposed approach is quite effective 

for time-delay teleoperation control in the sense of stability 

and transparency.  
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