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Abstract— This paper is concerned with the distributed
control strategies for a group of single integrator agents with
static leaders. The information flow graph of the underlying
multi-agent network is assumed to be static, undirected, and
connected. A bounded control law is proposed which is shown to
have strict connectivity preservation property. The containment
of the followers by leaders is subsequently proved by using the
LaSalle invariance principle. The effectiveness of the proposed
strategy is demonstrated by simulations.

I. INTRODUCTION

Cooperative control of a network of autonomous agents

has been a topic of considerable research interest in recent

years [1], [2], [3]. In this line of research, it is aimed

to achieve a global objective, such as consensus, flocking,

formation, and containment, by applying an appropriate

distributed control strategy [2], [4], [5].

One of the important issues in cooperative control of

a multi-agent system is to maintain network connectivity

during the operation. This problem has been thoroughly

studied in the literature for various global objectives. As an

effective control design methodology for this type of system,

one can search for potential functions or nonlinear weights

that tend to infinity when an edge in the network is about to

lose connectivity [6], [7], [8], [9]. However, this method may

not be feasible in general, as the actuators can only handle

finite force or torque. To remedy this shortcoming, bounded

distributed connectivity preserving control strategies are pro-

posed in [10], [11].

In the containment problem, it is desired that a subset

of the agents, called followers, converge to the convex hull

formed by the rest of the agents, called leaders, which

could be stationary or moving. A hybrid Stop-Go policy is

presented in [5], which is shown to be convergent if the

leaders are stationary and the interaction graph is connected.

The work [12] proposes a containment control strategy for

unicycle agents, where the leaders are supposed to converge

to a predefined formation.

In this work, bounded connectivity preserving control

laws are presented for multi-agent systems in order to

achieve containment. It is assumed that the system consists

of single integrator agents with static leaders. The infor-

mation exchange between the agents is constrained, and
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is specified mathematically by an information flow graph,

which is assumed to be static, undirected, and connected.

The results from the authors’ previous work on connectivity

preservation of single integrator agents is first used to show

the strict connectivity preservation for the proposed control

law. LaSalle invariance principle is subsequently used to

prove the convergence of the followers to the convex hull

of the leaders. The proposed control strategy is verified by

simulations.

II. PROBLEM FORMULATION

Consider a set of n single integrator agents in a plane with

the dynamics of the form

q̇i(t) = ui (1)

where qi(t) denotes the position of agent i in the plane at

time t. Denote with G = (V,E) the information flow graph,

where V = {1, . . . ,n} is the set of vertices, and E ⊂V ×V is

the set of the edges. It is assumed that the information flow

graph G is connected and undirected, and that each agent

is only allowed to incorporate the relative position of its

neighbors in its control law. Denote the set of the neighbors

of agent i in G with Ni(G), and the degree of agent i in

G with di(G). Two agents i and j are said to be in the

strict connectivity range if ‖qi −q j‖< d, for a pre-specified

positive real number d, where ‖ · ‖ denotes the Euclidean

norm. It is assumed that all the agents in Ni(G) are initially

located in the strict connectivity range of agent i. It is also

assumed that each agent either belongs to the set of leaders

L or the set of followers F . In this paper only the case of

static leaders is considered, i.e., the case when ui ≡ 0, for

i ∈ L; the case of moving leaders is left for future work.

The objective is to design a control strategy such that

• the followers converge to the convex hull of the leaders,

i.e.

lim
t→∞

qi(t) ∈ Conv{q j| j ∈ L}, ∀i ∈ F (2)

• strict connectivity is preserved in the sense that if

‖qi(0)− q j(0)‖ < d for all (i, j) ∈ E, then ‖qi(t)−
q j(t)‖< d, for all (i, j) ∈ E and all t ≥ 0.

III. MAIN RESULTS

For every agent i, define

πi(t) :=
1

2
∏

j∈Ni(G)

(d2 −‖qi(t)−q j(t)‖
2) (3)
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Consider the control inputs of the form

q̇i =
∂πi

∂qi

, i ∈ F (4)

The aim of this section is to show that under the control

law given by (4), the followers converge to the convex hull

of the leaders while preserving strict connectivity as defined

earlier. Define

σi(t) :=
1

2
∑

j∈Ni(G)

‖qi(t)−q j(t)‖
2 (5)

Let the notion of connectivity preservation be introduced

as an alternative to the strict connectivity preservation. A

control strategy is called connectivity preserving, if ‖qi(0)−
q j(0)‖ ≤ d for all (i, j) ∈ E implies that ‖qi(t)−q j(t)‖ ≤ d,

for all (i, j) ∈ E and all t ≥ 0.

Notation 1: For any given function h(x,y), by
∂h
∂y

h(x,0) we mean ∂h
∂y

h(x,y)|y=0 (and similarly,
∂h
∂x

h(0,y) = ∂h
∂x

h(x,y)|x=0). Notice that while this may

be considered standard notation, it is emphasized here for

the sake of clarity, and to avoid possible confusion.

To show the strict connectivity preservation for the pro-

posed control law, the following theorem is borrowed from

[11].

Theorem 1: Consider a set of n agents in the plane with

the dynamics of the form (1), and control inputs ui =

− ∂hi(σi,πi)
∂qi

. If hi satisfies the following conditions

∂hi

∂σi

(σi,0) = 0,
∂hi

∂πi

(σi,0)< 0, ∀σi ∈ R
+ (6)

then the resultant control law is connectivity preserving.

By choosing hi = −πi for i ∈ F , the control law given

in (4) satisfies the statement of Theorem 1 and also clearly

meets the conditions given in (6). However, the connectivity

preservation cannot be deduced directly from Theorem 1

since the control inputs of the leaders (ui ≡ 0 for i ∈ L) do

not satisfy the conditions given in (6). It is shown in the

sequel how by using a simple trick connectivity preservation

is ensured even though conditions (6) hold only for the

followers.

Construct a new graph Ḡ from G as follows. For any i∈ L,

consider two virtual agents i1 and i2 initially located at a

distance d from each other and from i. Add these two new

vertices to V (G), and all possible edges between i, i1, and

i2 to E(G). Choose hi = −πi, hi1 = −πi1 , and hi2 = −πi2

(which clearly satisfy conditions (6), and the statement of

Theorem 1). Then connectivity preservation is guaranteed

for Ḡ, according to Theorem 1. To deduce connectivity

preservation for G, it suffices to show that static leaders of

G also stay fixed in Ḡ. The control input of agent i ∈ L in

Ḡ (and similarly those of i1 and i2) can be written as

q̇i =
∂πi

∂qi

= ∑
j∈Ni(Ḡ)

πi j(qi −q j) (7)

where πi j for i ∈V (Ḡ) is defined as

πi j(t) := ∏
k∈Ni(Ḡ)

k 6= j

(d2 −‖qi(t)−qk(t)‖
2) (8)

Since by assumption i, i1, and i2 are initially located at a

distance d from each other, all the coefficients in (7) are

initially 0 (similarly for i1 and i2), and hence these three

agents stay fixed at a distance d from each other at all

times. Therefore, connectivity preservation in the case of

static leaders for G can be deduced from that for Ḡ.

Using this connectivity preservation property, it is now

desired to show the strict connectivity preservation as well

as the convergence of the followers to the convex hull of

the leaders under the control law given in (4). Consider the

function π(t) defined by

π(t) = ∏
(i, j)∈E(G)

i< j

(d2 −‖qi(t)−q j(t)‖
2) (9)

Note that

π̇ = ∑
i∈F

q̇i
T ∂π

∂qi

= ∑
i∈F

q̇i
T ∂πi

∂qi

π̄i

= ∑
i∈F

π̄i‖q̇i‖
2 (10)

where π̄i is the product of those terms in π which do not

appear in πi (i.e. π = πiπ̄i). It results from connectivity

preservation that π̄i ≥ 0 for t ≥ 0, and hence π̇ ≥ 0 for

t ≥ 0, implying that π is a non-decreasing function of time.

To prove the strict connectivity preservation property, it is

enough to note that if π(0)> 0, then π(t) > 0 for all t ≥ 0

since π is a non-decreasing function of time.

To show the convergence of the followers to the convex

hull of the leaders, first note that 0 < π < d|E(G)| and

π̇ ≥ 0. Therefore, using LaSalle’s invariance principle one

can conclude the convergence of the agents to the largest

invariant set in π̇ = 0 (which is q̇i = 0 for all i ∈ F , i.e. an

equilibrium of the system), on noting that the coefficients π̄i’s

are positive due to strict connectivity preservation. Therefore,

it suffices to show that at equilibrium, there exists at least

one leader at each vertex of the convex hull of the agents.

Assume that there is a follower i at a vertex of the convex

hull of the agents coinciding with no leader. It is implied

from q̇i = 0 that ∑ j∈Ni(G) πi j(qi −q j) = 0. Solving this for

qi, one arrive at

qi = ∑
j∈Ni(G)

αi jq j (11)

where αi j =
πi j

∑ j∈Ni(G) πi j
. Clearly, 0 < αi j < 1 (from strict

connectivity preservation) and ∑ j∈Ni(G) αi j = 1. This means

that qi is in the convex hull of its neighbors. Thus, for qi

to be at a vertex of the convex hull of the agents, it should

coincide with all of its neighbors in Ni(G). Repeating the

same argument, one can conclude that qi should coincide

with the agents reachable from i in G. This is a contradiction
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Fig. 1: The information flow graph G along with Ḡ
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Fig. 2: The agents’ planar motion

as every leader is reachable from i since G is connected. This

completes the proof of the convergence of the followers to

the convex hull of the leaders.

IV. SIMULATION RESULTS

Consider a team of 3 static leaders and 3 followers, with

the information flow graph given in Fig. 1. Let d be equal

to 1, and the initial position of each agent be marked by its

index, as shown in Fig. 2. The graph Ḡ (obtained by adding

the virtual agents to G), is also depicted in Fig. 1.

The motion of the agents, the relative distances, and the

control inputs of the followers are depicted in Figs. 2, 3,

and 4, respectively. As can be seen from these figures, the

followers converge to the triangle created by the static leaders

while preserving the strict connectivity.

V. CONCLUSIONS

This work presents a distributed control strategy for the

containment problem. The important characteristics of the
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Fig. 3: The relative distances
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Fig. 4: The norms of the control inputs

proposed control law are boundedness and connectivity

preservation. It is assumed that the followers have single

integrator dynamics, and that the leaders are static. The

convergence of the followers to the convex hull of the leaders

is shown using the LaSalle invariance principle, based on

the strict connectivity preservation property of the proposed

control strategy.
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