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Abstract— This paper presents a new learning method for
Mixture of Expert ARX (MEARX) models and its application
to identification of PieceWise ARX (PWARX) hybrid systems
models. While accurate deterministically-switched PWARX
models are obtainable from probabilistically-switched MEARX
models, important issues such as model structure selection (i.e.
estimation of the number of modes and ARX lag orders) and
estimation with sparse/noisy data remain open. This paper
addresses these issues through a new variational Bayesian
MEARX learning approximation. This not only permits com-
putationally efficient estimates for MEARX/PWARX regressor
weights and mode boundary parameters, but also allows for
theoretically sound Bayesian model structure selection. Numer-
ical hybrid system ID examples from the literature demonstrate
the proposed approach.

I. INTRODUCTION

The important and challenging problem of hybrid system

identification has attracted much recent attention (e.g. see

[1], [2]). Of particular interest is the problem of identifying

PieceWise AutoRegressive eXogenuous (PWARX) models for

nonlinear systems that can be described/approximated via

non-Markov switching linear dynamics. As discussed in [3],

PWARX models are a special case of the highly flexible

piecewise affine (PWA) model class and are equivalent

to other popular hybrid system model classes, for which

sophisticated control design techniques have been recently

developed and succesfully applied.

As discussed in [4], while many good methods exist for

PWARX ID, many important problems still remain open.

Chief among these is the need for reliable and theoret-

ically sound solutions to the difficult problem of model

structure selection, i.e. estimating the appropriate number

of discrete system modes and the corresponding discrete

ARX regression lag orders. Although some model selection

procedures exist, these are sensitive to process noise, sparse

data records, and tuning parameters that are often difficult

to interpret physically [4], [5]. Refs. [6], [7] introduced

Bayesian PWARX ID methods that use probability distri-

butions to incorporate prior knowledge and extract model

parameter confidence bounds, both of which are especially

useful for sparse and noisy data. However, their reliance on

computationally intensive Monte Carlo sampling procedures

makes these Bayesian methods difficult to implement when

the model structure is unknown. Ref. [4] further notes that the

use of deterministic classifiers for discrete mode estimation

in most PWARX ID methods increases computational cost

and can create difficulties in estimating discrete mode bound-

aries. For instance, incomplete modal partitions or ‘holes’

may form in some cases, while post-hoc adjustments may

be needed in other cases to correct large prediction errors.

Ref. [8] recently proposed an elegant solution to this last

problem, in which a probabilistic ‘soft mode’ generalization

of PWARX known as Mixtures of Expert of ARX (MEARX)

[9] is used to simultaneously estimate the ARX and boundary

parameters for each discrete mode. However, the important

issues of model selection and estimation with sparse/noisy

data have so far remained open for this approach.

This paper addresses these issues through a new variational

Bayesian (VB) learning approach for MEARX models. The

proposed method leads to a computationally efficient ‘fully

Bayesian’ MEARX/PWARX ID scheme, in that Bayes’ rule

is used to estimate model parameters and select appropriate

model structures in a theoretically sound manner using only

closed form iterative updates.

II. BACKGROUND

A. PWARX ID problem formulation

Consider a discrete-time system with noisy observed out-

put yk ∈ R and deterministic mapping f(·),

yk = f(vk) + ek, (1)

where ek is an error term. For fixed input lag na ≥ 1, fixed

output lag nb ≥ 1, and n = na + nb, let vk ∈ R
n×1 be

vk = [yk−1, ..., yk−na
, uk−1, ..., uk−nb

]T , (2)

where uk ∈ R represents a known exogeneous input (uk can

also be a vector, without loss of generality). If xk ≡ [vTk , 1]
T ,

a PWARX model has the PWA mapping

f(vk) =











f1(xk) = wT1 xk, if xk ∈ V1

...

fm(xk) = wTmxk, if xk ∈ Vm

, (3)

where m ≥ 1 is the number of discrete modes and wj ∈
R

(n+1)×1 is the parameter vector for mode j ∈ {1, ...,m}.

The sets Vj are convex polyhedra (or ‘regions’) over the

regressor space V ⊆ R
r, satisfying

Vj = {vk ∈ R
r : Hjxk � 0} , (4)

where Hj ∈ R
zj×r and ‘�’ denotes elementwise inequality.

As per [10], the regions Vj form a complete partition of V , so
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that each Hj represents zj ≤ m−1 linear inequalities defin-

ing where mode j is ‘active’ in V . The matrix of modal ARX

parameters and the set of region matrices are respectively

denoted by W ≡ [w1, ..., wm] and H ≡ {H1, ..., Hm}. The

set of discrete structural model parameters is denoted here as

Ω = {m,na, nb}. The PWARX ID problem can be stated as

follows: given N measurement data Y = {y1, ..., yN} and

corresponding inputs U = {u1, ..., uN}, determine Ω and

the corresponding parameters W and H.

As [4] notes, the first major challenge of PWARX ID

lies in simultaneously solving a set of regression problems

(estimating W ) and a classification problem (estimating H)

for fixed Ω. The second major challenge lies in identifying

Ω itself: m can be arbitrarily large while na and nb can

be different in each discrete mode, which makes estimating

W and H more complex. Furthermore, there are no obvious

metrics by which to select Ω, especially in the case of sparse

and noisy data.

B. PWARX ID via MEARX ID

Ref. [8] proposed PWARX ID using MEARX models [9],

which are a special case of the Mixture of Experts (ME)

model from the machine learning and neural network fields

[11]. A general MEARX model is defined as a non-Markov

switching probabilistic mixture of ARX models,

yk =
m
∑

i=1

P (sk = i|xk,Θ)fi(xk) + ek, (5)

where the modal weighting function P (sk = i|xk,Θ) (with

parameter set Θ = {θ1, ..., θm}) gives the conditional proba-

bility that the discrete mode state sk equals i ∈ {1, ...,m} as

a function of xk, where
∑m
i=1 P (sk = i|xk) = 1. The modal

ARX functions fi(xk) are defined as in (3) with modal ARX

parameters wi again defining the columns of W . Since (5)

is a probabilistic generalization of (1), Ω = {m,na, nb} is

also used here to describe the set of discrete MEARX model

parameters. Ref. [8] defines P (sk = i|xk,Θ) via the softmax

function,

P (sk = i|xk,Θ) =
exp

(

θTi xk
)

∑m
j=1 exp

(

θTj xk
) , (6)

where each softmax weight θi ∈ R
(r+1)×1 and the ‘prob-

abilistic boundaries’ between the discrete modes are linear

hyperplanes [11]. This last property enables straightforward

transformation of a softmax-based MEARX model into a

PWARX model with the same Ω. Specifically, H for the

corresponding PWARX model can be formed from Θ by

setting each Hi ∈ H as

Hi = [θ1 − θi, ... , θm − θi]
T

(excluding θi − θi). (7)

Following this transformation, the modal ARX parameters

wi ∈ W for the PWARX model are set equal to the corre-

sponding wi ∈ W in the MEARX model, ∀ i ∈ {1, ...m}.

Ref. [8] proves that this transformation from MEARX to

PWARX guarantees a complete modal partition of V , and

shows (with real and synthetic data) that accurate PWARX

models are readily obtained from MEARX models that are

suitably identified in terms of Ω,W, and Θ.

Direct continuous optimization methods using nonlinear

least-squares (NLS) [8] or maximum likelihood (ML) [9]

can be used to estimate W and Θ in MEARX models with

fixed Ω. This enables simultaneous estimation of H and

W , in contrast to most other PWARX ID methods which

estimate H and W separately. However, NLS and ML are

both sensitive to outliers and thus prone to severe overfitting

[12]. For model selection, [8] compares various Ω settings

using separate training and validation data to find the model

structure with lowest PWARX prediction error. However, this

approach does not use all available information to estimate

Θ and W , and can therefore be wasteful if N is small.

This approach can also be time-consuming, since multiple

training-validation splits must be used for each candidate Ω
to obtain unbiased error estimates.

III. FULLY BAYESIAN IDENTIFICATION

A Bayesian learning approach can be used to address these

issues for MEARX/PWARX ID. As discussed in [6], [7], the

Bayesian system ID approach is especially useful when N is

limited, since overfitting can be easily avoided and suitable

statistical confidence bounds are readily obtained. Above

all, the Bayesian approach leads to a principled data-driven

model selection procedure via the ‘Bayesian Ockham’s razor’

[11], which uses Bayes’ rule in the space of model structures

to identify the simplest model that best explains the data. To

the authors’ knowledge, Bayesian model selection has not

yet been applied to hybrid system identification problems.

A. Model for Bayesian MEARX ID

For fixed Ω = {m,na, nb} and corresponding regression

inputs xk for k ∈ {1, ..., N}, consider the following variables

and their prior conditional probability distributions:

• W = [w1, ..., wm] with p(W |~α) =
∏m
i=1 p(wi|αi),

where p(wi|αi) = Nwi
(0, α−1

i I) is a zero mean Gaus-

sian distribution with unknown inverse variance αi,
• the inverse variances ~α = [α1, ..., αm] with p(~α) =
∏m
i=1 p(αi; a0, b0), where p(αi; a0, b0) = Gαi

(a0, b0)
is a Gamma distribution with known shape and scale

parameters a0 and b0,

• Θ = [θ1, ..., θm] with p(Θ|~β) =
∏m
j=1 p(θj |βj), where

p(θj |βj) = Nθj (0, β
−1
j I) with unknown inverse vari-

ance βj ,

• inverse variances ~β = [β1, ..., βm] with p(~β) =
∏m
j=1 p(βj ; c0, d0), where p(βj ; c0, d0) = Gβj

(c0, d0)
is a Gamma distribution with known c0 and d0,

• discrete mode sk for output yk, where P (sk = j|xk,Θ)
is the softmax distribution (6),

• observed output yk at time k with mode-conditional pdf

p(yk|xk, sk = j) = N (fj(xk), τ
−1), where fj(xk) =

wTj xk and the unknown inverse noise variance τ has

the Gamma pdf p(τ |h0, l0) = Gτ (h0, l0) with known

h0 and l0.

The pdf p(yk|xk, sk = j) arises if ek is zero-mean Gaussian

noise in (5), which the Central Limit Theorem justifies. The
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Gaussian priors on wi encode the belief of a smooth spectrum

for each modal ARX process [12]. The αi and βi variables

protect against any overfitting that commonly occurs with

sparse data; they are treated as unobserved variables since

their best values are unknown.

Next, define S = {s1, ..., sN} and the unobserved m×N
binary label matrix T with elements tjk, where tjk = 1 if

sk = j and tjk = 0 otherwise. Define Ξ = [~α, ~β, τ,W,Θ, S]
to be the set of all unknown variables. The joint pdf for

[Ξ,Y] given U can be shown to be

p(Ξ,Y|U,Ω; a0, b0, c0, d0, h0, l0) =

p(τ |h0, l0)
m
∏

i=1

p(αi; a0, b0)p(wi|αi)p(βi; c0, d0)p(θi|βi)

×
N
∏

k=1

m
∏

j=1

[p(yk|xk, sk = j) · P (sk = j|xk,Θ)]
tjk (8)

B. Bayesian parameter and model inference

The proposed MEARX ID approach has two applications

of Bayes’ rule: (i) parameter estimation for fixed Ω, and

(ii) model selection over Ω. For (i), we require the posterior

parameter pdf p(Ξ|Y,U,Ω). When the known output obser-

vations Y are taken into account, applying Bayes’ rule to

(8) yields

p(Ξ|Y,U,Ω) =
p(Ξ,Y|U,Ω)

∫

p(Ξ,Y|U,Ω)dΞ
=
p(Ξ,Y|U,Ω)

p(Y|U,Ω)
, (9)

where
∫

(·)dΞ denotes marginalization (summa-

tion/integration) over all possible states of Ξ and the Gamma

distribution constants are suppressed for convenience. For

(ii), the results of (i) are used to find the model posterior

P (Ω|Y,U). If a prior P (Ω) is assumed for each member

of a finite set of unique MEARX model structures M, then

applying Bayes’ rule again yields

P (Ω|Y,U) =
p(Ω,Y|U)

∑

M p(Ω,Y|U)
=

P (Ω)p(Y|U,Ω)
∑

M P (Ω)p(Y|U,Ω)
.

(10)

As [11] shows, (10) enforces the ‘Ockham’s razor’ principle

over M via the model likelihood term p(Y|U,Ω) in the

denominator of (9), which is naturally the larger for the

simpler models in M that explain the observed data well.

Hence, for a given P (Ω) (e.g. uniform, as is typical), the

posterior (10) can be used to select the best model structure

Ω∗ ∈ M using a MAP estimate, while the corresponding

parameter posterior (9) can be used to find point estimates

of W and Θ, e.g. using the MAP or MMSE criterion. Note

that if the true generating model for the data is in M, it will

on average have the highest value for (10) [11].

However, the main challenge here is the marginalization

of (8) to get p(Y|U,Ω) in (9) and (10), since the complex

conditional dependencies between the elements of Ξ (given

Y and U) make the required integrations/summations an-

alytically intractable. The next section shows how (9) and

(10) can be efficiently approximated via a new variational

Bayes (VB) learning approximation for MEARX models.

IV. VARIATIONAL BAYES LEARNING

In VB learning, the analytically intractable posterior p ≡
p(Ξ|Y,U,Ω) is approximated by an analytically tractable

distribution q ≡ q(Ξ|Y,U,Ω) that minimizes the Kullback-

Leibler divergence (KLD) functional,

KL(q||p) =

∫

q log
q

p
dΞ, (11)

where KL(q||p) ≥ 0 and KL(q||p) = 0 iff p = q [11].

The KLD acts as an information-theoretic similarity measure

between two pdfs, and can therefore be used to find a

good ‘free-form’ probabilistic approximation to p, where q
is restricted to a pdf family having some desired conditional

independence properties for the elements of Ξ. Since p is

unknown, (11) is minimized by maximizing a lower bound

L to the constant model log-likelihood log p(Y|U,Ω), where

[11] shows

log p(Y|U,Ω) = L+ KL(q||p), (12)

for L =

∫

q(Ξ|Y,U,Ω) log
p(Ξ,Y|U,Ω)

q(Ξ|Y,U,Ω)
dΞ, (13)

and L ≤ log p(Y|U,Ω) follows from (12) and the non-

negativity of (11). Hence, q can be obtained by analytically

maximizing L, which is defined via (8). Moreover, L can be

used to approximate log p(Y|U,Ω) in (9) and (10).

For MEARX learning, q is specified here via the typical

‘mean field’ approximation, where

q = q(τ)

m
∏

i=1

q(αi)q(wi)q(βi)q(θi)

N
∏

k=1

m
∏

j=1

q(Sk = j)

=

V
∏

z=1

q(ψz), for ψz ∈ Ξ, (14)

and where V = 1 + 4m + Nm denotes the total number

of hidden variables in Ξ. Note that (14) implies conditional

independence among all ψz ∈ Ξ. Ref. [11] shows that this

choice of q leads to the following general formula for finding

each factor q(ψz) that maximizes (13),

log q(ψz) = E [log p(Ξ,Y|U,Ω)]q(Ξ)\q(ψz)
+ const., (15)

where the right-hand side denotes the expected value of

the log joint pdf (8) with respect to all factors in (14)

excluding q(ψz), which is the factor of interest on the left-

hand side. This leads to a coupled set of nonlinear equations

for each log q(ψz) that can be solved iteratively in closed

form via a generalization of the expectation-maximization

(EM) algorithm, so that the resulting cyclic VB updates are

often referred to as the VBEM algorithm [12]. As such, L
is guaranteed to increase monotonically on each VB update

cycle (i.e. each single pass through all elements of Ξ) until

q converges to a local minimum of (11).

A. Lower bound softmax approximation

The VBEM algorithm via (15) entails integration of the log

of (8) with respect to Θ, which cannot be done in closed form

since the log of the denominator of (6) is not analytically
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integrable. To avoid computationally expensive sampling-

based or quadrature-based solutions to this problem, an

analytical lower bound approximation to (6) is used instead.

Ref. [13] shows that the softmax function (6) defining p(sk =
i|xk,Θ) can be approximated by an unnormalized Gaussian

function f(sk = i, xk,Θ),

f(sk = i, xk,Θ) = exp
(

θTi xk
)

exp(−Φk) (16)

Φk = γk +

m
∑

j=1

θTj xk − γk − ξjk

2

+ λ(ξjk)[(θ
T
j xk − γk)

2 − ξ2jk] + log(1 + eξjk), (17)

λ(ξjk) =
1

2ξjk

[

1

1 + exp(−ξjk)
−

1

2

]

, (18)

where f(sk = i, xk,Θ) ≤ P (sk = i|xk,Θ) and the

variational shape/scale parameters ξjk and γk control the

tightness of the bound for j ∈ {1, ...,m} and k ∈ {1, ..., N}.

Substituting (16) for (6) in (8) induces a lower bound

p̃(Ξ,Y|U,Ω) on the joint pdf, where p̃(Ξ,Y|U,Ω) ≤
p(Ξ,Y|U,Ω). Assuming the parameters ξ and γ are known

(as described next, these can be estimated in a modi-

fied VBEM algorithm), it is easy to show that replacing

p(Ξ,Y|U,Ω) with p̃(Ξ,Y|U,Ω) in (13) therefore also in-

duces a new model log-likelihood lower bound L̃, where

L̃ ≤ L. Thus, eq. (15) becomes

log q(ψz) = E [log p̃(Ξ,Y|U,Ω)]q(Ξ)\q(ψz)
+ const.. (19)

B. Explicit VB update formulas

After substituting the required distributions into (19) and

simplifying the resulting terms for each log q(ψz), it can be

shown that the following VB factors q(ψz) = exp[log q(ψz)]
are obtained:

• q(wi) = Nwi
(µwi

,Σwi
), where E [wi] = µwi

and

Σ−1
wi

= E[αi] · I + E [τ ] ·
N
∑

k=1

E[tks]xkx
T
k (20)

µwi
= Σwi

·

(

E [τ ] ·
N
∑

k=1

E[tik]ykxk

)

(21)

• q(θi) = Nθi(µθi ,Σθi), where E [θi] = µθi and

Σ−1
θi

= E[βi] · I +
N
∑

k=1

2λ(ξsk)xkx
T
k , (22)

µθi = Σθi ·

(

N
∑

k=1

[

E[tik]−
1

2
+ 2γkλ(ξik)

]

xk

)

(23)

• E [tik] = q(sk = i) =
exp(ηTi )∑
m
j=1

exp(ηj)
, where

ηi = E[θi]
Txk

−
1

2
E [τ ] · (y2k + xTk E[wiw

T
i ]xk − 2ykE[wi]

Txk),

(24)

for E[wiw
T
i ] = Σwi

+ µwi
µTwi

• q(αi) = Gαi
(ai, bi), where E [αi] =

ai
bi

and

ai = a0 +
n+ 1

2
, (25)

bi = b0 +
1

2
E
[

wTi wi
]

= b0 +
1

2

[

tr
(

Σwi
+ µTwi

µwi

)]

(26)

• q(βi) = Gβi
(ci, di), where E [αi] =

ci
di

and

ci = c0 +
n+ 1

2
, (27)

di = d0 +
1

2
E
[

θTi θi
]

= d0 +
1

2

[

tr
(

Σθi + µTθiµθi
)]

(28)

• q(τ) = Gβi
(h, l), where E [τ ] = h

l
and

h = h0 +
N

2
, l = l0 +

1

2
(1 + ρ), (29)

ρ =

N
∑

k=1

m
∑

i=1

E [tik] (y
2
k + xTk E[wiw

T
i ]xk − 2ykE[wi]

Txk)

Ref. [13] shows that ξjk and γk are generally estimated as

ξ2ik = xTk E[θiθ
T
i ]xk + γ2k − 2γkµ

T
θi
xk (30)

γk =
1
2 (
m
2 − 1) +

∑m
i=1 λ(ξik)µ

T
θi
xk

∑m
i=1 λ(ξik)

(31)

Although not provided explicitly here due to limited space,

it can be shown that the variational lower bound L̃ to

p(Y|U,Ω) can be computed in closed form via

L̃ = E [p̃(Ξ,Y|U,Ω)]q(Ξ|Y,U,Ω) , (32)

where most of the required terms for the resulting expression

are already computed in (20)-(31) on each VB update cycle.

Table I summarizes the iterative VBEM algorithm for fixed

Ω. The VBEM algorithm is guaranteed to monotonically

increase the value of L̃ following steps 1 and 2, so L̃ can be

used to gauge convergence. Note that γk and ξjk are non-

linearly coupled, so an extra inner-loop of nlc steps is needed

for convex convergence of these parameters with all q(θi)
fixed (nlc ≤15 is often sufficent if Y is normalized). Since

the VBEM algorithm converges to local KLD minimizers in

q(Ξ) [11], multiple initializations should be used to ensure

convergence to the best solution.

C. VB model selection

To select the best Ω∗ = {m∗, n∗a, n
∗
b} from a finite set

of candidate models M (e.g. which can be constructed by

specifying upper and lower bounds for the unknown elements

of Ω), the VBEM algorithm in Table I can be applied

to each candidate Ωc ∈ M to estimate a corresponding

approximation L̃Ωc
to log p(Y|U,Ωc). Assuming no prior

preference for any of the models in M, P (Ωc) can be set to

the uniform distribution in (10), so that logP (Ωc|Y,U) ∝
log p(Y|U,Ωc) ≈ L̃Ωc

. Hence, a MAP estimate of Ω∗

can be found by choosing the Ωc ∈ M with the largest

L̃Ωc
. To obtain a PWARX model, one can then apply the

transformation method of Section II-B to the Ω∗ MEARX

model using the MAP W and Θ estimates, which become

[µw∗

1
, ..., µwm∗

] and [µθ1∗ , ..., µθm∗
], respectively.
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TABLE I

VBEM ALGORITHM FOR FIXED Ω MEARX MODEL

0. Given: Y, U, fixed Ω with initial µθj ,Σθj ,

γk for j ∈ {1, ...m} and k ∈ {1, ..., N},

and prior parameters a0, b0, c0, d0, h0, l0

1. M-step: for all q(θj) fixed,

for i=1:nlc

(a) recompute each ξjk for fixed γk via (30)

(b) recompute each γk for all fixed ξjk via (31)

end

2. E-step: for all j ∈ {1, ...m} and k ∈ {1, ..., N}

and for all fixed ξjk and γk ,

(a) recompute each q(wj) via (20)-(21)

(b) recompute each q(θj) via (22)-(23)

(c) recompute each q(Sk = j) via (24)

(d) recompute each q(αj) via (25)-(26)

(e) recompute each q(βj) via (27)-(28)

(f) recompute q(τ) via (29)

3. Stop if L̃ converged; else, Repeat 1 and 2.

V. NUMERICAL EXPERIMENTS

This section demonstrates the proposed VB learning pro-

cedure for MEARX-based PWARX ID using two PWARX

hybrid systems taken from [10].

A. Example 1: unknown m with known na and nb

Consider example 1 of [10], where the true PWARX

hybrid system is given by the following W and H parameters

for Ωtrue = {3, 1, 1},

w1 = [−0.4, 1, 1.5]T , H1 =

[

4 −1 10
1 0 4/9

]

,

w2 = [0.5,−1,−0.5]T , H2 =

[

−4 1 −10
5 1 −6

]

,

w3 = [−0.3, 0.5,−1.7]T , H3 =

[

−5 −1 6
−1 0 −4/9

]

,

Note that for this system, vk = [yk−1, uk−1]
T and xk =

[vTk , 1]
T as per (3), where uk ∼ U [−4, 4]. Figure 1 (a) shows

a typical data 200 point data set for this system with two

of the switching boundaries (red and blue lines). Ref. [10]

identifies this system with N = 200 data points corrupted by

bounded noise ek ∈ [−0.2, 0.2], where na = 1 and nb = 1
are known a priori but m is unknown. The same assumptions
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Fig. 1. Learning results for example 1: (a) typical N = 200 data set,
(b) estimated VB lower bounds to data log-likelihoods vs. m for Ω =
{m, 1, 1}, with clear maximum at m = 3 (mean and standard deviations
shown).

are used here for VB MEARX learning, except that the

problem is made slightly harder by assuming ek is distributed

as N (0, 0.75) to make the noise magnitude about four times

larger. Unlike [10], the inverse noise variance τ = (σ2)−1

is treated here as an additional estimated parameter with a

continuous prior over all non-negative τ . The gamma prior

scale and shape variables for the Bayesian MEARX model

are all set to a0 = b0 = c0 = d0 = h0 = l0 = 1.

VB MEARX learning was applied to 20 randomly gener-

ated data sets, where M = {Ω |m ∈ [1, 6], na = 1, nb = 1}.

Figure 1 (b) plots the resulting L̃ statistics for each candidate

Ω ∈ M, shwoing that clear peaks are obtained at the correct

number of modes m = 3 in all cases. The Ockham’s razor

effect for Bayesian model comparison is evident in Figure

1 (b): overly simple models are penalized for fitting the

data poorly, while overly complex models that can fit the

data as well as the true model (e.g. m = 4 and above)

are penalized through having larger parameter spaces over

which to distribute probability mass. The resulting m = 3
estimates for W and H are also accurate, e.g. the following

wi estimates are obtained with the data shown in Fig. 1,

ŵ1 = [−0.3227, 0.9760, 2.1844]T ,

ŵ2 = [0.5170,−1.0379,−0.4755]T ,

ŵ3 = [−0.3219, 0.5137,−1.4665]T ,

More precise estimation quality measures can be obtained

via the metrics proposed by Juloski, et al. [5]. The average

relative weight errors ǫi =
‖ŵi−wi‖

‖wi‖
for each estimated ŵi

are ǫ1 = 0.2124, ǫ2 = 0.1238, and ǫ3 = 0.1043; the

average number of mode misclassifications is 2.1 out of 200,

with a maximum of 3 out of 200 across all trials. Hence,

despite the higher noise levels imposed here, the parameter

estimates obtained via VB are still quite good. Note that

similar learning results were found for various other choices

of the gamma prior scale and shape variables. The procedure

in Table I required only 4 secs to run in Matlab for m = 3,

and each sweep from m = 1 to 6 required about 78 secs.

B. Example 2: completely unknown Ω with sparse/noisy data

A more challenging PWARX ID problem from [10]

considers Ωtrue = {4, 2, 2} and noise bounded between

[−0.25, 0.25] for N = 1000 data points. The true columns

for W are given by

w1 = [−0.05, 0.76, 1.00, 0.50,−0.50]T ,

w2 = [1.21,−0.49,−0.30, 0.90, 0]T ,

w3 = [1.49,−0.50, 0.20,−0.45,−1.70]T ,

w4 = [−1.20,−0.72, 0.60,−0.70, 2.000]T . (33)

As [10] notes, this problem is challenging since the number

of parameters to be estimated for the PWARX model is

relatively large for the amount data provided. However, while

[10] obtains accurate parameter estimates without knowing

m a priori, it was assumed that na and nb were known a

priori and that ek was hard-bounded.

For VB MEARX learning, Ω is completely unknown, as is

τ . Furthermore, four different sparsity-noise conditions are
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Fig. 2. L̃ results for example 2 for different sparsity and noise levels
for learning, showing clear peaks at Ω = {4, 2, 2} in all cases (results for
na = nb shown only for clarity): (a) N = 500, σ2 = 0.25, (b) N =
500, σ2 = 0.75, (c) N = 1000, σ2 = 0.25, (d) N = 1000, σ2 = 0.75.

imposed by letting σ2 ∈ {0.25, 0.75} and N ∈ {500, 1000}.

Hence, the problem becomes even more challenging, since

Ω is unknown, the noise level can be greatly increased,

and the amount of data can be reduced by half. The input

uk ∼ U [−0.5, 0.5] and the true H is given by H1 =
[δ2, 0,−(δ1 + δ3), 0, 0], H2 = [δ1 + δ2, 0, δ1, 0, 0], H3 =
−H1, and H4 = −H2, where δi is a unit vector in R

3×1.

The number of data points per mode (N1, N2, N3, N4)
for each (N, σ2) pairing are: (186,184,67,63) for (500,

0.25); (169,161,90,80) for (500,0.75); (358,379,131,132) for

(1000,0.25); and (328,337,173,162) for (1000,0.75). Note

that modes 3 and 4 are not as well-observed as modes 1

and 2. All gamma shape and scale parameters are again set

to 1 in each N and σ2 cases. For model selection in each

(N, σ2) case, M = {Ω | m ∈ [1, 6], na ∈ [1, 4], nb ∈ [1, 4]}.

Figure 2 shows the final L̃ values from VB MEARX learning

obtained for the different candidate Ωs in each (N, σ2)
example; note that only symmetric lag models na = nb are

shown for clarity. These plots clearly show that L̃ peaks

at Ωtrue even with increased noise and greatly reduced data

levels. Hence, even under challenging learning conditions, L̃
still provides a reliable metric for model selection.

The relative weight error metrics (ǫ1, ǫ2, ǫ3, ǫ4), classifi-

cation error metrics Nmissclass/N , and estimated noise error

at Ωtrue in each (N, σ2) case are as follows: (0.0526, 0.1403,

0.2307, 0.2580), 3/500, and 0.0236 for (500,0.25); (0.0924,

0.3194, 0.1078, 0.4079), 13/500, and 0.0781 for (500,0.75);

(0.0494, 0.0568, 0.1531, 0.1782), 8/1000 and 0.0167 for

(1000,0.25); and (0.2098 0.1758 0.0873 0.1998), 7/1000

and 0.0483 for (1000,0.75). Thus, the PWARX estimates

produced by the VB-MEARX learning procedure are rea-

sonable for N = 1000 under both noise conditions, while

the parameter estimates for N = 500 degrade noticeably

when moving from the low noise condition to the high noise

condition. Note that most of the errors in (ǫ1, ǫ2, ǫ3, ǫ4)
occur in the w3 and w4 coefficients for the uk−2. This is

unsurprising, since modes 3 and 4 are not well-observed in

the data and since uk is sampled over a very narrow range,

making these particular parameters more difficult to estimate.

Despite this, the VB model selection procedure is still able

to correctly determine all elements of Ω via L̃.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a variational Bayesian (VB) tech-

nique for MEARX learning models. The development here

was motivated by the close connection between MEARX

ID and PWARX hybrid system ID, for which the issues

of model selection and learning with sparse/noisy data

remain problematic. The VB learning procedure enables

efficient parameter estimation and model selection over an

unknown discrete number of modes, unknown ARX lag

orders and unknown process noise magnitude. Numerical

examples demonstrated the ability of the proposed method

to produce useful parameter and model structure estimates

under sparse and noisy data conditions. Future work will

focus on improving the mean field approximation in (14),

conducting formal comparisons of the VB learning method

to other PWARX ID methods, and extending VB learning to

full hybrid linear system identification.
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