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Abstract— In the aircraft industry, it is common to use
physically redundant components to ensure that the overall
system meets the necessary safety requirements. For systems
where physical redundancy is impractical (e.g, Unmanned
Aerial Vehicles), analytical redundancy can be used to reduce
the number of components needed. However, it is more difficult
to certify the safety of an analytically redundant system. This
paper presents a performance analysis framework that applies
to both physically and analytically redundant sensor systems
with linear time-invariant dynamics and additive faults. The
framework is used to compare and certify the performance of
two air-data sensor examples—one with physically redundant
altitude sensors, and another that exploits the analytical rela-
tionship between altitude, airspeed, and flight path angle. In
both examples, a threshold fault detection scheme is used.

I. INTRODUCTION

The aircraft industry has many years of experience de-

signing systems driven by extremely stringent safety require-

ments. The system availability and integrity requirements

for commercial flight control electronics are typically on the

order of no more than 10−9 catastrophic failures per flight

hour [1], [2]. The industry has converged to a design solution

that is based almost exclusively on physical redundancy

at all levels of the design. For example, the Boeing 777

control law software is implemented on three primary flight

computing modules. Each computing module contains three

dissimilar processors with control law software compiled

using dissimilar compilers. The inertial and air data sensors

have a similar level of redundancy [3], [4].

The designs used in the aircraft industry achieve extraor-

dinarily high levels of availability and integrity. However,

the use of physical redundancy dramatically increases system

size, complexity, weight, and power consumption. Moreover,

such systems are extremely expensive in terms of design

and development costs, as well as the unit production costs.

There is an increasing demand for high-integrity, but at

the same time low cost, fault tolerant aerospace systems,

e.g., Unmanned Aerial Vehicles and fly-by-wire in lower

end business/general aviation aircraft. In such applications,

analytical redundancy may be used to limit the number of

sensors needed, but the ability to detect sensor failures may

also be diminished. The use of analytical fault detection

algorithms would represent a major shift away from the

current design approach used by the aerospace industry. One

T. J. Wheeler and A. K. Packard are with Department of Mechanical En-
gineering, University of California, Berkeley. Email: twheeler@berkeley.edu

and pack@me.berkeley.edu.
P. Seiler and G. J. Balas are with the Aerospace and Engineering

Mechanics Department, University of Minnesota, Twin Cities. Email:
seiler@aem.umn.edu and balas@umn.edu.

critical aspect preventing this shift is the need to certify the

airworthiness of safety-critical systems. In particular, there

is a lack of tools to rigorously analyze the reliability for

systems that use analytical redundancy.

This paper presents a framework for the rigorous perfor-

mance analysis of fault detection schemes based on ana-

lytically redundant sensors with linear time-invariant (LTI)

dynamics. It is shown that this framework also applies to

physically redundant sensor systems with LTI dynamics.

The performance analysis is carried out for a particular

sensor example with little justification for the choice of

numerical parameter values. The emphasis is on the method

of analysis rather than the design of the particular sensor

systems analyzed.

The outline of the paper is as follows: Section II demon-

strates that both types of sensor systems have the same

basic structure if the sensor dynamics are LTI. Using a

thresholding fault detection scheme [5], [6], [7], probabilistic

performance metrics for are defined for this common LTI

system structure. Relevant results from reliability theory are

presented in Section III. Section IV introduces an air-data

sensor example, and the numerical performance analysis of

the air-data example is presented in Section IV-C. Finally,

conclusions and possible avenues of future research are

discussed in Section V.

II. PROBLEM FORMULATION

We begin by presenting a unified framework for analyzing

physically and analytically redundant sensor systems with

LTI sensor dynamics. Consider the physically redundant

sensor system in Fig. 1. The two identical sensors have the

same discrete-time LTI sensor dynamics S. Sensor 1 uses

S to measure a quantity u and produce m̂, while Sensor 2

uses the same S to measure u and produce m̃. Both sensors

are affected by an i.i.d. Gaussian random process {vi,k} and

a random fault signal { fi,k}, such that the event { fi,k = 0}
indicates that the Sensor i is in the nominal mode (i.e., no

fault) at time k. The residual {rk} is defined as rk := m̂− m̃,

for all k. In the absence of noises v1 and v2 and faults f1

and f2 the residual would be zero. Since the dynamics of S

are LTI and the noises and faults enter additively, the overall

system represented by Fig. 1 is also LTI.

Consider the analytically redundant sensor system in

Fig. 2. As in the physically redundant case, the sensor

dynamics S and T are discrete-time LTI systems; however, in

this case, S and T are different. Again, for i = 1,2, {vi,k} is

an i.i.d. Gaussian noise and { fi,k} is a random fault signal.

Sensor 1 uses S to measure some quantity u and produce
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Fig. 1. Physically redundant sensor system with LTI sensor dynamics S,
subject to noises v1 and v2 and random fault signals f1 and f2.
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Fig. 2. Analytically redundant sensor system with LTI sensor dynamics
S and T , subject to noises v1 and v2 and random fault signals f1 and f2.
The LTI system P represents a dynamic analytical relationship between the
quantities m̂ and n̂.

m̂. Sensor 2 uses T to measure some other quantity w

and produce n̂. The block labeled P is an LTI system that

represents the analytical relationship between m̂ and n̂. In

the absence of noises and faults, the residual r produced by

P acting on the inputs m̂ and n̂ is zero. Because S, T , and P

are LTI and the noises and faults enter additively, the overall

system represented by Fig. 2 is also LTI.

A. Performance Metrics

Since the physically redundant sensor system (Fig. 1) and

the analytically redundant sensor system (Fig. 2) are both

represented by discrete-time LTI dynamics, it suffices to

consider the general case:

xk+1 = Axk +Buuk +Bvvk +B f fk,

rk =Cxk +Duuk +Dvvk +D f fk,
(1)

where {uk} is a known sequence of physical quantities, {vk}
is an i.i.d. Gaussian sequence with vk ∼ N (0, I), for all k,

and { fk} is a random fault sequence. Assume that if vk = 0

and fk = 0, for all k, then the residual is zero (i.e., rk = 0,

for all k).

The performance metrics are defined with respect to a

residual thresholding scheme. That is, a fault is declared

if the magnitude of the residual exceeds some threshold.

Applications of fixed thresholding [5], [6] and time-varying

thresholding [7] have appeared in the literature. More con-

cretely, the threshold function is defined as

δ (r) := I(|r|> ε),

where I is the indicator function and ε > 0 is the threshold.

In this paper, we assume that a fixed threshold is used for

all time.

At each time k ≥ 0, define H0,k := { fk = 0} to be the

event that no fault is occurring and H1,k := { fk 6= 0} to

be the event that some fault is occurring. Similarly, define

R0,k := {δ (rk) = 0} to be the event that the fault detector

decides that no fault is occurring and R1,k := {δ (rk) = 1} to

be the event that the fault detector decides that some fault is

occurring. The performance of the threshold fault detector δ ,

with respect to system (1), is quantified by the probability

of a true negative

pTN
k := P(R0,k ∩H0,k), (2)

the probability of a false positive

pFP
k := P(R1,k ∩H0,k), (3)

the probability of a false negative

pFN
k := P(R0,k ∩H1,k), (4)

and the probability of a true positive

pTP
k := P(R1,k ∩H1,k), (5)

where the names of these probabilities are taken from the

statistical hypothesis testing literature [8], [9]. Collectively,

we refer to these quantities as the performance metrics for

the fault detector.

Although the probabilities (2)–(5) provide all the neces-

sary information, their numerical values can be difficult to

interpret. For example, suppose that P(H1,k) ≈ 0 for k =
0,1, . . . ,T . This implies that

P(H1,k) = pFN
k + pTP

k ≈ 0.

Since both pFN
k and pTP

k are small, it is difficult to get a

sense of how well the fault detection scheme will perform

in the presence of a fault at times k ∈ {0,1, . . . ,T}. In this

case, it is beneficial to consider the relative magnitudes of

pFN
k and pTP

k . This approach gives rise to two conditional

probabilities: the probability of detection

pD
k := P(R1,k |H1,k) =

pTP
k

pTP
k + pFN

k

, (6)

and the probability of a false alarm

pF
k := P(R1,k |H0,k) =

pFP
k

pFP
k + pTN

k

. (7)

Note that, by rearranging equations (6) and (7), the perfor-

mance metrics can be computed from pD
k , pF

k and P(H1,k).

B. Computational Procedure

For k ≥ 0, define the notation f0:k := { f0, f1, . . . , fk}.

Assume that { fk} takes values in some finite set F , so

that f0:k ∈ F k+1 can take only finitely many different val-

ues. Also, assume that P( f0:k = f̂0:k) is known (or easily

computable), for all f̂0:k ∈ F k+1 and all k ≥ 0. Fix a final

time T . Note that, conditional on the event { f0:T = f̂0:T},

the system (1) is linear-Gaussian. Thus, the conditional
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distribution of the residual rk given { f0:T = f̂0:T} is Gaussian,

where the conditional mean is given by the recurrence

x̂k+1 := E(xk+1 |{ f0:T = f̂0:T}),

= Ax̂k +Buuk +B f f̂k,

r̂k := E(rk |{ f0:T = f̂0:T}),

=Cx̂k +Duuk +D f f̂k,

(8)

and the conditional variance is given by

Σk+1 := E((xk+1 − x̂k+1)(xk+1 − x̂k+1)
T |{ f0:T = f̂0:T}),

= AΣkAT +BvBT
v ,

Λk := E((rk − r̂k)
2 |{ f0:T = f̂0:T}),

=CΣkC
T +DvDT

v .

(9)

We assume that x̂0 and Σ0 are known.

Since f0:T can only take finitely many discrete values, the

performance metric pTN
k can be written as

pTN
k = P(R0,k |H0,k)P(H0,k)

= ∑
f̂0:k∈G k+1

(

∫ εk

−εk

p(rk | f̂0:k)drk

)

P( f0:k = f̂0:k),

where G k+1 := { f0:k ∈ F k+1 : fk = 0} is the set of all

fault signals that do not put the system in a fault mode at

time k. The Gaussian conditional density p(rk | f̂0:k), which

is N (r̂k,Λk), is obtained by simulating (8) and (9) with the

appropriate f̂0:k. Similarly, pFN
k can be written as

pFN
k = ∑

f̂0:k∈H k+1

(

∫ εk

−εk

p(rk | f̂0:k)drk

)

P( f0:k = f̂0:k),

where H k+1 = { f0:k ∈ F k+1 : fk 6= 0} is the set of fault

signals that put the system in a fault mode at time k. Since

P(R1,k |H0,k) = 1−P(R0,k |H0,k), pFP
k can be written as

pFP
k = ∑

f̂0:k∈G k+1

(

1−
∫ εk

−εk

p(rk | f̂0:k)drk

)

P( f0:k = f̂0:k).

Finally, pTP
k is determined by

pTP
k = 1− (pTN

k + pFP
k + pFN

k ),

for all k. Thus, each performance metric is computed as a

weighted sum of terms of the form
∫ ε
−ε p(r)dr, where p(r)

is a Gaussian density. Such terms are easily evaluated using

the error function, which can be implemented accurately and

efficiently as a rational approximation [10].

III. FAULT MODELS & RELIABILITY THEORY

Let τ be a random variable that represents the failure

time of some physical component, and let f and F be the

probability density function (PDF) and cumulative density

function (CDF) of τ , respectively. The failure rate is defined

as the expected number of failures in some interval of time
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0 t
b

t
w

t

Time
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ar
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e

Fig. 3. The “bathtub curve” describes the hazard rate function of many
real-world systems that have a burn-in phase (time 0 to tb) and a wear-out
phase (after time tw).

given that no failure has occurred yet. More precisely, the

failure rate is defined as

ρ∆t
(t) :=

P(t < τ ≤ t +∆t |τ > t)

∆t

=
F(t +∆t)−F(t)

∆t(1−F(t))
,

for each t and ∆t . Taking the limit as ∆t → 0 yields the

hazard rate at time t:

h(t) :=
f (t)

1−F(t)
.

In many applications, the hazard rate takes the shape of the

“bathtub curve” shown in Fig. 3. Initially, the probability of

a failure is high as the component is “burned in”. Then, for

a period of time, say tb to tw, the hazard rate is constant.

Finally, after time tw, the component begins to wear out and

failures become more likely. Because failures may be rare,

the empirically estimated failure rate for a long time interval

may be the only available statistic for the component. Hence,

it is common to assume that the component is in the middle

of the bathtub curve where h(t) is constant. See [11] for a

more thorough discussion of reliability theory.

Suppose that the failure time of some component is

modeled by an exponentially distributed random variable τc

with parameter λ , which we write as τc ∼ Exp(λ ). The PDF

and CDF of τc are

fc(t) := λe−λ t , Fc(t) := 1− e−λ t ,

respectively. Therefore, the hazard rate of τc is

hc(t) =
λe−λ t

1− (1− e−λ t)
= λ .

Since the hazard rate of τc is constant, the exponential

distribution is a useful model for the constant portion of the

bathtub curve (tb to tw in Fig. 3). However, τc only applies

to continuous-time models.

The discrete analog of the exponential distribution is the

geometric distribution. Let ∆t be the discrete sample time

such that k = t/∆t , and let τd be a geometric random variable

with parameter q, which we write as τd ∼ Geo(q). The

probability mass function (PMF) and CDF of τd are

fd(k) := (1−q)k−1q, Fd(k) := 1− (1−q)k,
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respectively, for k ≥ 1. Although the hazard rate is not well-

defined in discrete time, the failure rate of τd at time t = k∆t

is

ρd,∆t
(k) =

q

∆t

.

Note that ρd,∆t
(k) does not depend on k. To see the con-

nection between τc and τd , consider the parameter value

q̂ = 1− e−λ∆t . The CDF of τd ∼ Geo(q̂) is

Fd(k) = 1− (e−λ∆t )k = 1− e−λk∆t = Fc(k∆t),

and the failure rate is

ρd,∆t
(k) =

q̂

∆t

=
1− e−λ∆t

∆t

≈ λ −
λ 2∆t

2
+O(∆2

t ),

which converges to hc(t) = λ as ∆t → 0. Hence, τd ∼Geo(q̂)
is an accurate discrete representation of τc ∼ Exp(λ ), for

small ∆t . The following application utilizes this connection

between the exponential and geometric distributions to model

component failures.

IV. APPLICATION: AIR-DATA PROBES

Nearly all aircraft flying today utilize air data probes

to measure total and static pressure in order to determine

airspeed and altitude. For proper operation, the probes must

be free of any blockages, e.g. due to icing or dirt. Failures

of these probes have resulted in numerous fatal accidents

of commercial, military, and general aviation aircraft (e.g.,

Air France Flight 447 [12], [13]). To combat these failures,

sensor hardware redundancy is typically combined with

voting systems such that erroneous measurements can be

detected and discarded. This section considers the problem

of fault detection in two air-data sensor systems—one based

on physical redundancy and the other based on analytical

redundancy.

A. Sensor Equations

The basic air data relationships are derived in [2]. For

compressible air and subsonic speeds, the static and total

pressures, Ps and Pt , are related to calibrated (indicated)

airspeed V by

V = φ1(Pt ,Ps) := c0

(

5

(

Pt −Ps

P0
+1

)
2
7

−5

)

1
2

, (10)

where c0 := 340.294 m/s is the speed of sound at sea level

and P0 := 101.325kPa is the static pressure at sea level. The

indicated airspeed model φ1 does not account for changes

in density due to changes in altitude. Hence, the indicated

airspeed deviates from the true airspeed at altitudes above

sea level. A more accurate model would use a measurement

of the outside air temperature to determine the changes in

density and compute the true airspeed. By restricting our

attention to low altitudes, we ignore this complexity and

assume that V equals the true airspeed.

For altitudes in the troposphere (up to about 17000km),

the static pressure Ps is related to altitude h by

h = φ2(Ps) :=
T0

L

(

1−

(

Ps

P0

)LR/g
)

(11)
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Fig. 4. Plot of (a) the (indicated) airspeed V as a function of differential
pressure Pd := Pt −Ps and (b) the altitude h as a function of static pressure
Ps. The values plotted here are typical for subsonic flight in the troposphere.

φ2

φ2

Ps

βsv1

bs f1

βsv2

bs f2

rp

h̃
−

ĥ

Fig. 5. System of two physically redundant altitude sensors. Both sensors
measure the same static pressure Ps, but each sensor is corrupted by
independent noise signals v1 and v2 and fault signals f1 and f2.

where T0 := 288.15K is the temperature at sea level, L :=
6.49 K/km is the troposphere lapse rate, g := 9.80665 m/s2. is

the gravity constant at sea level, and R := 287.0529 J/kg·K is

the specific gas constant for dry air. These sensor equations

are plotted in Fig. 4. Note that φ1 and φ2 are only mildly

nonlinear for modest changes in airspeed and altitude.

B. Sensor Systems Considered

Using the air-data sensors as our example, we demonstrate

how to apply the framework of Section II. Consider the phys-

ically redundant sensor system in Fig. 5 and the analytically

redundant sensor system in Fig. 6. The physically redundant

system consists of two static pressure ports, modeled by φ2,

while the analytically redundant system consists of a static

port (φ2), a pitot probe (φ1), and a direct measurement of the

flight path angle. In order to apply the methods of Section II,

the sensor systems must be LTI. Hence, we assume that

aircraft is performing a gentle climb maneuver where the

airspeed is constant, the flight path angle is positive but

small, and the altitude slowly increases. Since the sensor

equations are only mildly nonlinear for small changes in

altitude (see Fig. 4), we linearize the sensor equations at

the initial altitude and assume that this linearization holds

over the entire climb. The maneuver is parameterized by the

triple (V̄ , γ̄,h0), and the increasing altitude is given by the

analytical relationship

h(t) = h0 +
∫ t

0
ψ(V̄ , γ̄)ds,

where ψ(V,γ) := V sin(γ). The sensor equations φ1 and

φ2 are then inverted to find the corresponding Pt and Ps

trajectories. Define P̄t and P̄s to be the initial values of these

trajectories. Both sensor systems are linearized about the

point (P̄t , P̄s) and then discretized in time.
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Analytical Relationship

φ2

φ1 ψ
∫

W

γ̂

V̂

h̃

−

ĥ
Ps

βsv3

bs f3

Pt

βt v4

bt f4

γ

βγ v5

ra

Fig. 6. System of three air data sensors measuring static pressure Ps, total
pressure Pt , and flight path angle γ , respectively. The sensors are subject
to noises v3, v4, and v5 and random fault signals f3 and f4. A dynamic
analytical relationship is to generate the residual signal ra.

In Fig. 5 and 6, the signals v1,v2, . . . ,v5 are independent

Brownian motions, which are scaled by the positive constants

βs, βt , and βγ . The fault signals f1, f2, f3, and f4 are defined

as fi(t) := I(t ≥ τi), where τ1, τ2, τ3, and τ4 are independent

exponential random variables such that τ1,τ2,τ3 ∼ Exp(λs)
and τ4 ∼ Exp(λt). The constants bs and bt determine the

magnitudes of these bias faults.

The first-order linearization of φ1 about (P̄t , P̄s) is

φ1(P̄t +βtv4 +bt f4, P̄s +βsv3 +bs f3)

≈ φ1(P̄t , P̄s)+Φ1

[

βt v4+bt f4
βsv3+bs f3

]

,

and the first-order linearization of φ2 about P̄s is

φ2(P̄s +βsv j +bs f j)≈ φ2(P̄s)+Φ2(βsv j +bs f j),

where Φ1 := (∇φ1)
T , Φ2 := dφ2/dPs. Similarly, ψ is linearized

about (V̄ , γ̄) as follows:

ψ(V̂ , γ̄ +βγ v5)≈ Ψ1V̂ +Ψ2βγ v5,

where Ψ1 := sin(γ̄) and Ψ2 := V̄ cos(γ̄). As the noisy signal

ψ(V̂ , γ̂) passes through the integrator, the noise accumulates

and h̃ diverges from ĥ. To counteract this effect, a high-pass

or “washout” filter with transfer function

W (s) =
s

s+a
, a > 0,

is applied to the difference ĥ − h̃. Essentially, this filter

cancels the integrator pole at zero and places a stable pole at

−a < 0. The drawback of using this filter is that it removes

the DC component from the signal ĥ− h̃, which could mask

faults if the bias magnitudes bt and bs are small.

The linearized equation for the residual of the physically

redundant system (Fig. 5) is

rp = Φ2βs(v1 − v2)+Φ2bs( f1 − f2). (12)

The residual of the analytically redundant system (Fig. 6) is

given by the linearized dynamics

η̇ =−aη − [a Ψ1]u+Bvv+B f f ,

ra = η +[1 0]u+Φ2βsv3 +Φ2bs f3,
(13)

where η0 =−h0, u := [h0 V̄ ]T , v := [v3 v4 v5]
T , f := [ f3 f4]

T ,

and

Bv =
[

−aΦ2βs −Ψ1Φ12βs −Ψ1Φ11βt −Ψ2βγ

]

,

B f =
[

−aΦ2bs −Ψ1Φ12bs −Ψ1Φ11bt

]

.
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Fig. 7. Performance metrics {pTN
k } (solid line), {pFP

k } (dashed line), and

{pFN
k } (dotted line) for the physically redundant sensor system in Fig. 5.

The quantity {pTP
k } is omitted for the sake of clarity.
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Fig. 8. Conditional probabilities {pD
k } (solid line) and {pF

k} (dashed line)
for the physically redundant sensor system in Fig. 5.

Therefore, both rp and ra are governed by continuous-time

LTI dynamics. Define a sample time ∆t , and discretize equa-

tions (13) accordingly. (Note that the static map (12) does

not need to be discretized.) Because the Brownian motions

v1,v2, . . . ,v5 have independent increments, the discretized

signals {v′i,k} are i.i.d. Gaussian random processes with v′i,k ∼
N (0,∆t), for all k. To discretize the fault model, define the

parameters qs := 1−e−λs∆t and qt := 1−e−λt ∆t , the random

variables τ ′1,τ
′
2,τ

′
3 ∼ Geo(qs) and τ ′4 ∼ Geo(qt), and the fault

signals f ′i,k = I(k ≥ τ ′i ) for all i = 1,2, . . . ,4 and all k. Then,

the discretized linearized dynamics with the noises {v′i,k} and

fault inputs { f ′i,k} fit the framework of Section II.

C. Numerical Results

For this analysis, the sample time is ∆t = 0.05s; the flight

path is given by V = 45 m/s, γ = 0.5 ◦, and h0 = 200m; the

noises are parameterized by βs = 690Pa, βt = 690Pa, and

βγ = 0.2 ◦; the fault biases are bs = 335Pa and bt =−275Pa;

the fault probabilities are qt = qs = 1.38 × 10−7, which

corresponds to a mean time-to-failure (MTTF) of about

1000 hrs [11]. For both systems, the threshold is ε = 9m.

The pole of the “washout” filter is a = 0.001.

The performance metrics for the physically redundant alti-

tude sensors are shown in Fig. 7. Note that the performance

metrics are constant in time because the residual dynamics

are memoryless. For all k, their values are pTN
k = 0.9709,

pFP
k = 0.0271, and pFN

k = 1×10−6. The corresponding joint

probabilities {pD
k } and {pF

k} are plotted in Fig. 8. For all k,

their values are pD
k = 0.9995 and pF

k = 0.0271.

The performance metrics for the analytically redundant

sensor configuration are shown in Fig. 9. Although these
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Fig. 9. Performance metrics {pTN
k } (solid line), {pFP

k } (dashed line), and

{pFN
k } (dotted line) for the analytically redundant sensor system in Fig. 6.

The quantity {pTP
k } is omitted for the sake of clarity.
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Fig. 10. Conditional probabilities {pD
k } (solid line) and {pF

k} (dashed line)
for the analytically redundant sensor system in Fig. 6.

quantities vary with time, the washout filter W causes steady-

state convergence. The steady-state values are pTN
k → 0.9785,

pFP
k → 0.0195, and pFN

k → 4.5 × 10−6. Hence, the overall

system reliability, given by pTN
k , is comparable to that of

the physically redundant configuration. Because a fault is so

unlikely in the time interval considered, the joint probabilities

are dominated by the small marginal probability P(H1,k). By

definition, the conditional probabilities, shown in Fig. 10,

are not multiplied by P(H1,k), so their time-varying nature is

much more apparent. Note that these probabilities converge

to the steady-state values pD
k → 0.9977 and pF

k → 0.0196.

Since the performance metric {pTN
k } quantifies the overall

system reliability, the values plotted in Fig. 9 certify the

reliability of this analytically redundant sensor scheme when

the ε-threshold fault detector is used.

V. CONCLUSIONS & FUTURE WORK

For sensors with linear-time invariant dynamics and ad-

ditively entering noises and faults, both physically and an-

alytically redundant sensor systems can be written as an

LTI system that produces a residual. Applying a threshold

fault detector to the residual, we formulated probabilistic

performance metrics that apply to any LTI sensor network

that generates a residual. These metrics are easily computable

if the noises are Gaussian and the faults take finitely many

values. This performance analysis was applied to two air-data

sensor networks—one consisted of two physically redundant

altitude sensors, while the other exploited the analytical

relationship between measurements of altitude, airspeed, and

flight path angle. The numerical results in Section IV-C illus-

trate, for particular parameter values, how the performance

metrics vary with time, how the same framework can be used

to compare the performance of different sensor systems, and

how the performance metrics certify the overall reliability of

the sensor system.

Future work on this topic will include extensions of the

performance analysis framework to more complex sensor

systems. For example, the sensor dynamics could be linear

time-varying or perhaps even nonlinear. Also, the occurrence

of a fault could affect the structure of the sensor dynamics,

as well as the structure of the fault signal. Since the analysis

performed in Section IV depends on a particular flight path,

it would be interesting to determine which flight path yields

the worst fault detector performance.
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