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Abstract— In this work we study the problem of real-time
optimal distributed partitioning for perimeter patrolling in the
context of multi-camera networks for surveillance. The objec-
tive is to partition a line of fixed length into non-overlapping
segments, each assigned to a different camera to patrol. Each
camera has both physical mobility range and limited speed,
and it must patrol its assigned segment by sweeping it back
and forth at maximum speed. Here we propose three different
distributed control strategies to determine the extremes of the
patrolling areas of each camera. All these strategies require only
local communication with the neighboring cameras but adopt
different communication schemes: synchronous, asynchronous
symmetric gossip and asynchronous asymmetric gossip. For the
first two schemes we provide theoretical convergence guaran-
tees, while for the last scheme we provide numerical simulations
showing the effectiveness of the proposed solution.

I. INTRODUCTION

Current and future generations of video-surveillance sys-
tems target large scale scenarios where tens or even hun-
dreds of smart Pan-Tilt-Zoom (PTZ) cameras coordinate
one another to monitor the environment, cooperate so as
to detect and track events, and perform high level decision
tasks, through video content analysis algorithms. To this
aim, cameras appear as actuated sensor nodes embedded
in the installation environment and connected through a
communication network.

Trading-off between the complexity of the installation and
the coverage performance, one canonical task of such sys-
tems is that of patrolling, meaning the act of walking around
an area in order to protect or supervise it [1]. In this sense,
a good patrolling strategy is one that minimizes the time lag
between two visits to the same location, thus ensuring that all
locations are constantly monitored. In particular, there exists
an interesting variety of outdoor video-surveillance scenarios
where this task takes the structure of perimeter patrolling, in
which the patrolling action is limited to the one dimensional
boundary of the area to be protected.

To briefly review the literature, we start by pointing out
how the problem of patrolling shows analogies with the
problem of dynamic optimal coverage in sensor networks, as
in [8], [9] where a team of mobile agents needs to coordinate
to attain distributed coverage of an area while avoiding col-
lisions. Similarly, considering coordinated robotic systems,
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interesting issues are raised in [10], where a multi-agent
cooperative solution is studied to be robust and adaptive
to perimeter changes. Also, the behavior of the agents so
as to ensure efficient communication is taken into account.
Again, in [6], [2], [12] a theoretical analysis of multi-agent
patrolling is carried out, where conditions that guarantee
the existence of optimal strategies are studied by means of
graphs analysis. As for multi-camera tracking in surveillance
networks, most of the literature is concerned with computer-
vision problems, for which we address the reader to the
survey on intelligent surveillance systems [15]. On the other
hand, in [7] a distributed algorithm for PTZ camera networks
is presented, to perform coordinated task relying only on a
local communication scheme to ensure system scalability.

A final and remarkable note is given, concerning the
concept of equitable partitioning, studied in [13], [14] again
within the scope of multiagent robotic systems: in this
respect, the idea of partitioning the operational space into
balanced areas of influence, while considering also the
physical constraints of the agents is close in spirit to the
problem we address (see also [3]), as will appear explicit in
the formalization of the problem.

The remainder of the paper is organized as follows. In
Section II we review the perimeter patrolling problem and
its optimal solution. In Section III we formulate the problem
we aim to solve in this paper. In Section IV, Section V and
Section VI we propose three different solutions depending
upon the communication protocol adopted by the cameras
to exchange information. Specifically, in Section IV we
assume the cameras communicate synchronously and we
introduce the synchronous optimal partitioning algorithm.
In Section V we assume the cameras communicate with
each other through a symmetric-gossip type communication
protocol and we present the symmetric gossip partitioning
algorithm. Finally, in Section VI we assume the cameras
exchange information according to an asymmetric gossip
communication protocol and to deal with this scenario we
introduce the asymmetric gossip partitioning algorithm.

II. PERIMETER PATROLLING

In this section we review the problem of patrolling a one-
dimensional environment of finite length with a finite number
of cameras and its optimal solution as described in [3].

Specifically let L = [−L,L], L > 0, denote the segment
to be monitored and let N be the cardinality of the camera
set. The cameras are labeled 1 through N and, for the sake
of simplicity, we assume the following properties:
• the cameras are 1-d.o.f., meaning that the field of view

(f.o.v.) of each camera is allowed to change due to pan
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movements only;
• the cameras have fixed coverage range, meaning that

during pan movements the camera coverage range is
not altered by the view perspective;

• cameras have point f.o.v..
In this context the following further definitions are intro-
duced:

(i) Di = [Di,inf , Di,sup] ⊂ L is the total coverage range
of i-th camera due to the scenario topology, the agent
configuration and their physical constraints;

(ii) vi ∈ [−Vi,max, +Vi,max] is the (bounded) speed of
i-th camera during pan movements;

(iii) Ai = [ai−1, ai] denotes the effective coverage of the
i-th camera where, clearly, it must hold Ai ⊆ Di,∀ i ∈
{1, . . . , N};

(iv) zi(t) : R+ → Di, is the continuous function mapping
the position of the f.o.v. of the i-th camera as a function
of the time variable t.

In our analysis, we assume that the coverage ranges Di,
i ∈ {1, . . . , N}, satisfies the following interlacing constraint,

Di,inf ≤ Di+1,inf , Di,sup ≤ Di+1,sup.

D1 
D2 

D3 
D4 

Fig. 1. Perimeter patrolled by a camera set. For the first four cameras,
the physical coverages {Di} with some overlapping sections are shown,
together with the optimal partition domains {Ai}.

In order to properly define the patrolling problem we need
to introduce an appropriate cost function J and state an
optimality criterium. The authors in [3] propose a functional
J whose rationale is as follows: at each time instant t and
position x ∈ L, J is equal to 0 if location x is currently seen
by any camera (∃i s.t. zi(t) = x), else it takes a positive
real value as increasing as the time is passing since the last
visit of x ∈ L.

More simply, in this context, we reasonably assume that
the cost J is a monotonic function of the time lag Tlag
defined as the maximum (w.r.t. x ∈ L) elapsed time between
two visits of the same location, therefore the minimization
problem for J corresponds to the computation of the smallest
time lag Tlag , constrained to the system dynamics

żi(t) = vi(t) s.t.

{
|vi(t)| ≤ vi,max
zi(t) ∈ Di

. (1)

A. Optimal trajectory without coverage bounds

The optimal solution to the patrolling problem can be
easily established in the absence of coverage constraint

zi(t) ∈ Di, or equivalently, under the assumption that
Di = L, i ∈ {1, . . . , N}.

Proposition II.1 The optimal coverage of the whole perime-
ter as the minimization of index J without the coverage
constraint (zi(t) ∈ Di) as in (1), is attained assuming
that every camera is moving at its maximum speed, i.e.
|vi(t)| = vi,max with a periodical motion of period T in
non-overlapping coverage interval Ai. The area length |Ai|
and optimal period T are obtained as

T =
4L∑N

i=1 |vi,max|
and |Ai| = vi,max

T

2
(2)

The proof of the above Proposition can be found in [3].
In this case we denote the optimal partition by {A∗i }

N
i=1,

A∗i =
[
a∗i−1, a

∗
i

]
, which is formally described as

a∗0 = −L, a∗N = L

a∗i = a∗i−1 + vi
T

2
. (3)

B. Optimal trajectory with coverage bounds

In general, the optimal solution to the patrolling problem
without any constraint is not equivalent to the constrained
optimal solution; this happens if the unconstrained solution
is feasible, that is if and only if Ai ⊆ Di. In this respect,
we introduce the optimal patrolling period with constraints,
T c. In general it holds: T c ≥ T , the equality standing only
when the feasibility constraint is not violated.

To cope with the case where the unconstrained solution
violates this feasibility condition, the authors in [3] suggest
an optimal strategy that yields the splitting of the patrolling
perimeter into smaller subintervals.

Proposition II.2 If the unconstrained solution yields Ai *
Di for some i, then in any optimal solution of the problem
A∗i =

[
a∗i−1, a

∗
i

]
that satisfies the constraints A∗i ⊆ Di there

must exists at least one j such that a∗j−1 = Dj,inf or a∗j =
Dj,sup.

If a∗j−1 = Dj,inf , then one optimal solution can be
obtained by splitting the domain into L` = [−L,Dj,inf ]
and Lr = [Dj,inf , L] and considering two separate coverage
problems with constraints. Let the optimal patrolling period
of the previous subproblems be T

`

c and T
r

c , respectively.
Then, the optimal global patrolling period with constraints
is given by T c = max{T `c, T

r

c}. Similar considerations can
be applied if a∗j = Dj,sup.

Due to limitations of space we refer the reader to [5] for
the proof of the above result and of all the results in the rest
of the paper.

Loosely speaking, Proposition II.1 and Proposition II.2
state that the optimal solution is attained by dividing the
segment L into N separate segments, and having each cam-
era following a periodical motion at its maximum speed in
its coverage area Ai. In doing so the problem of minimizing
the index J (or equivalently the time lag Tlag) is reduced
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to the optimal choice of Ai for each camera. This optimal
partitioning problem will be the focus of our analysis in the
rest of the paper.

We consider an ”iterative” and ”distributed” scenario.
Specifically, we assume each camera is initialized at time
t = 0 with a partition Ai(0) that, in general, does not
coincide with the optimal solution. Each camera is allowed
to iteratively update Ai using only the local information
coming from the neighboring cameras. The goal is to provide
strategies that lead the cameras to asymptotically reach the
optimal steady-state configuration for patrolling extremes.

In the next section we formally describe the setup we
consider and the problem we aim to solve.

III. DISTRIBUTED OPTIMAL PARTITIONING: PROBLEM
FORMULATION

We assume that at time t = 0 each camera is initialized
with a dominance interval Ai(0). More precisely, for i ∈
{1, . . . , N} let Ai(0) = [ai,`(0), ai,r(0)] where ai,`(0) and
ai,r(0) are respectively the left extreme and the right ex-
treme of Ai(0). We assume that the set {A1(0), . . . , AN (0)}
satisfies three constraints. Firstly, we assume a physical
constraint, that is, for i ∈ {1, . . . , N}, Ai ⊆ Di. Secondly,
a covering constraint is posed, that is,⋃

i∈{1,...,N}

Ai(0) = L.

Finally, the interlacing constraint is introduced, meaning
that, for i ∈ {1, . . . , N − 1},

ai,`(0) ≤ ai+1,`(0), ai,r(0) ≤ ai+1,r(0).

Observe that the interlacing and the covering constraints
imply that a1,`(0) = −L and aN,r(0) = L.

The goal is to design iterative algorithms that allow the
cameras to update their dominance intervals using only
information coming from neighboring cameras and such that

(i) the physical, the covering and the interlacing con-
straints are satisfied at each iteration; and

(ii) the set of dominance intervals converge to the optimal
partition.

It is worth clarifying that for neighboring cameras we
mean that camera i, i ∈ {2, . . . , N − 1} exchange infor-
mation with camera i− 1 and camera i+ 1. If i = 1 (resp.
i = N ) the only neighbor of camera 1 (resp. N ) is camera
2 (resp. N − 1).

In the next sections we consider three different scenarios
depending upon the communication protocol adopted by the
set of cameras to exchange information with each other.
Specifically, in Section IV we suppose that the cameras
communicate with each other synchronously, that is, at each
communication round, each camera transmits to its neighbors
the information related to its current dominance interval. In
this context, we introduce the synchronous optimal partition-
ing algorithm.

In Section V, we relax the synchronism of the previous
section and we consider a symmetric gossip-type commu-
nication protocol; in this case, at each iteration of the

partitioning algorithm only a pair of neighboring cameras
communicate with each other while the other cameras do
not transmit or receive any information. Accordingly, we in-
troduce the symmetric-gossip optimal partitioning algorithm.

Finally, in Section VI, we assume the cameras adopt an
asymmetric gossip-type communication protocol. While in
the symmetric gossip at each communication round the active
link is bidirectional, that is, if camera i transmits to camera
i+1 ,then at the same time camera i+1 transmits to camera
i, in the asymmetric gossip only one direction is active, that
is, either camera i transmits to camera i + 1 or camera i +
1 transmits to camera i. In this section, we introduce the
asymmetric-gossip optimal partitioning algorithm.

IV. SYNCHRONOUS OPTIMAL PARTITIONING ALGORITHM

In this section, we introduce the synchronous optimal par-
titioning algorithm (denoted as OPA hereafter). We start our
analysis by considering the case without physical constraints,
or equivalently by assuming that Di = [−L,L].

For the sake of the notational convenience, in this section
and in the rest of the paper we denote Vi,max simply by vi.

A. Implementation without physical constraints

This algorithm is formally described as follows.
Processor states: For each i ∈ {1, . . . , N}, camera i keeps

in memory the extremes defining its dominance interval,
i.e., ai,` and ai,r. Moreover, we assume also that each
camera knows the maximum patrolling-speed of its
neighboring cameras;

Initialization: For i ∈ {1, . . . , N} values ai,`(0), ai,r(0)
are given as part of the problem. We assume that the
initial conditions satisfy the covering and interlacing
constraints.

Transmission iteration: At each time instant t ∈ N, each
camera transmits to its neighbors the extremes of its
dominance interval and receives from its neighbors the
extremes of their neighbors’ dominance regions.

Extremes’ iteration: At time t ∈ N, for i ∈
{2, . . . , N − 1}, camera i updates the value of its
current left extreme ai,`(t) to the value ai,`(t + 1) ∈
[ai−1,`(t), ai,r(t)] according to the following neighbors’
equal traveling time criterion
”the time required to camera i to travel at the speed vi
from ai,`(t+1) to ai,r(t) is equal to the time required by
the camera i− 1 to travel at speed vi−1 from ai−1,`(t)
to ai,`(t+ 1)”;
similarly camera i updates the value of its current
right extreme ai,r(t) to the value ai,r(t + 1) ∈
[ai,`(t), ai+1,r(t)] in such way that
”the time required to camera i to travel at the speed vi
from ai,`(t) to ai,r(t+1) is equal to the time required by
the camera i+1 to travel at speed vi+1 from ai,r(t+1)
to ai+1,r(t)”.
Formally ai,`(t+1) and ai,r(t+1) satisfy the conditions

ai,`(t+ 1)− ai−1,`(t)
vi−1

=
ai,r(t)− ai,`(t+ 1)

vi
(4)
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and
ai+1,r(t)− ai,r(t+ 1)

vi+1
=
ai,r(t+ 1)− ai,`(t)

vi
. (5)

From Eqs. 4-5 it follows

ai,`(t+ 1) =
ai,r(t)vi−1 + ai−1,`(t)vi

vi−1 + vi
(6)

and

ai,r(t+ 1) =
ai+1,r(t)vi + ai,`(t)vi+1

vi + vi+1
. (7)

For i = 1 and i = N we have that

a1,`(t) = −L, aN,r(t) = L, for all t ∈ N,

while a1,r(t) and aN,`(t) are updated similarly to (6)
and (7), i.e.,

a1,r(t+ 1) =
a2,r(t)v1 − Lv2

v1 + v2
, (8)

and

aN,`(t+ 1) =
aN−1,`(t)vN + LvN−1

vN−1 + vN
. (9)

Observe that from (6), (7) , (9) and (8) it follows that, for
t ≥ 1,

ai,r(t) = ai+1,`(t) for i ∈ {1, . . . , N − 1}. (10)

This fact allows for a simpler description of the OPA as
we next show. For t ≥ 1, let us introduce the variables
a0(t), a1(t), . . . , aN (t) defined by

a0(t) := −L, ai(t) := ai,r(t) = ai+1,`(t), aN (t) := L
(11)

Then the dynamics of the OPA algorithm can be equivalently
described by the following updating rule, for t ≥ 1,

ai(t+ 1) =
ai+1(t)vi + ai−1(t)vi+1

vi + vi+1
. (12)

The following Proposition state the main properties of the
OPA.

Theorem IV.1 Consider the OPA under the assumption that
Di = L for i ∈ {1, . . . , N}. Let {Ai(0)}Ni=1 be the initial
set of dominance intervals, which is assumed to satisfy the
covering and interlacing constraints. Then, the evolution t→
{Ai(t)} generated by the OPA satisfies:

(i) the covering and interlacing constraints are verified for
all t ∈ N; and

(ii) the set {Ai(t)}Ni=1 converges asymptotically to the
optimal solution {A∗i }

N
i=1 defined in (3).

We evaluate now the performance of the OPA in terms of
number of iterations required to lead the set of dominance
intervals {Ai(t)}Ni=1 close enough to the optimal partition
{A∗i }

N
i=1. To make precise the concept of being close enough

we follow the treatments in [11] and [4]. Let IL denote
the set of all the sub-intervals of L. Then, for ε > 0, let

us introduce the notion of ε-optimal partition task Tε−OP :
INL → {true, false} defined as

Tε−OP
(
{Ai}Ni=1

)
=
{

true, if |ai,r − a∗i | ≤ ε,
∣∣ai,` − a∗i−1

∣∣ ≤ ε, ∀ i
false, otherwise

Accordingly, we introduce the notion of (worst-case) time
complexity T C (Tε−OP ,OPA) as

T C (Tε−OP ,OPA) = sup
{Ai(0)}N

i=1

inf
{
t ∈ N s.t.

Tε−OP
(
{Ai(t′)}

N
i=1

)
= true,∀t′ ≥ t

}
The following proposition characterizes the time-

complexity of the OPA under the assumption that vi = v
for some v > 0 and for all i ∈ {1, . . . , N}.

Proposition IV.2 Consider the OPA under the assumption
that, for all i ∈ {1, . . . , N}, vi = v. Then

T C (Tε−OP ,OPA) ∈ Θ
(
N2 log(ε−1)

)
B. Implementation with physical constraints

In this section we suitably modify the OPA illustrated in
the previous section in order to adapt it to a general set
of physical constraints D1, . . . , DN . Basically, the modifica-
tions we introduce are two.

The first modification refers to the additional knowledge
that each camera must have about the physical constraints of
its neighbors. Specifically, we assume the processor of the
i-th camera keeps in memory not only ai,`(t), ai,r(t), vi,
vi−1, vi+1 but also Di, Di−1 and Di+1.

Secondly, we have to take into account the fact that the
updating rules (6), (7) might violate the physical constraints;
for instance it might happen that ai,r > Di,sup or ai,` <
Di,inf . To deal with this situation we modify the extremes’
updating rules as follows. Without loss of generality we
consider only how cameras i and i+1 update ai,r and ai+1,`,
respectively.

We distinguish between three cases

(i)
ai+1,r(t)vi + ai,`(t)vi+1

vi + vi+1
> Di,sup;

(ii)
ai+1,r(t)vi + ai,`(t)vi+1

vi + vi+1
< Di+1,inf ;

(iii)
ai+1,r(t)vi + ai,`(t)vi+1

vi + vi+1
∈ [Di+1,inf , Di,sup] .

If case (i) is verified then

ai,r(t+ 1) = ai+1,`(t+ 1) := Di,sup;

if case (ii) is verified then

ai,r(t+ 1) = ai+1,`(t+ 1) := Di+1,inf ;

if case (iii) is verified then

ai,r(t+ 1) = ai+1,`(t+ 1) :=
ai+1,r(t)vi + ai,`(t)vi+1

vi + vi+1
.
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One can see that the modified OPA satisfy the property
that the physical, the covering and the interlacing constraints
are satisfied for all t ≥ 0. A theoretical analysis of the
convergence properties of the modified OPA will be the
subject of future research.

V. SYMMETRIC GOSSIP-TYPE IMPLEMENTATION

In this section we introduce the symmetric gossip optimal
partitioning algorithm (denoted as sOPA hereafter). This al-
gorithm is based on a symmetric gossip-type communication
protocol. Basically at each iteration of the algorithm only a
pair of neighboring cameras exchange information with each
other, while the remaining cameras do not transmit or receive
any information.

Again, we start our analysis by considering the uncon-
strained problem, or equivalently by assuming that Di =
[−L,L].

A. Implementation without physical constraints

With the respect of the OPA, the Transmission iteration
and the Extremes’ update are changed as follows
Transmission iteration: For t ∈ N, during the t-th iteration

of the sOPA, only a pair of neighboring cameras (i, i+
1) communicate with each other; the communicating
link is bidirectional, namely, camera i sends to camera
i+ 1 the values of its extremes ai,`(t) and ai,r(t), and
camera i+1 sends to camera i the values of its extremes
ai+1,`(t) and ai+1,r(t).

Extremes’ iteration: For h /∈ {i, i+ 1}, camera h left
unchanged its extremes, i.e., ah,`(t + 1) = ah,`(t)
and ah,r(t + 1) = ah,r(t). Based on the information
received, camera i modifies only its right extreme while
camera modifies only its left extreme. Analogously to
OPA we have that

ai,r(t+1) = ai+1,`(t+1) :=
ai+1,r(t)vi + ai,`(t)vi+1

vi + vi+1
.

(13)
We characterizes now the convergence properties of the

sOPA. We provide conditions ensuring both deterministic
and probabilistic convergence. We start with the deterministic
convergence.

Theorem V.1 Consider the sOPA, under the assumption that
Di = L for i ∈ {1, . . . , N}. Let {Ai(0)}Ni=1 be the initial
set of dominance intervals which is assumed to satisfy the
covering and interlacing constraints. Moreover assume that
there exists a positive integer number T such that, for all
t ∈ N, any pair of neighboring cameras (i, i + 1), i ∈
{1, . . . , N −1}, communicates with each other at least once
within the interval [t, t+T ). Then the evolution t→ {Ai(t)}
generated by the sOPA algorithm satisfies:

(i) the covering and interlacing constraints are verified for
all t ∈ N; and

(ii) the set {Ai(t)}Ni=1 converges asymptotically to the
optimal solution {A∗i }

N
i=1 defined in (3).

We provide now conditions ensuring probabilistic conver-
gence.

Theorem V.2 Consider the sOPA algorithm under the as-
sumption that Di = L for i ∈ {1, . . . , N}. Let {Ai(0)}Ni=1

be the initial set of dominance intervals which is assumed
to satisfy the covering and interlacing constraints. Moreover
assume that there exists a real number p̄, 0 < p̄ < 1, such
that, for all t ∈ N and for all i ∈ {1, . . . , N − 1}

P [(i, i+ 1) communicates at iteration t] ≥ p̄. (14)

Then the evolution t → {Ai(t)} generated by the sOPA
algorithm satisfies:

(i) the covering and interlacing constraints are verified for
all t ∈ N; and

(ii) the set {Ai(t)}Ni=1 converges almost surely to the
optimal solution {A∗i }

N
i=1 defined in (3).

B. Implementation without physical constraints

In presence of general physical constraints Di the above
updating rules are modified similarly to the previous sce-
nario.

VI. ASYMMETRIC GOSSIP-TYPE IMPLEMENTATION

In this section we introduce the asymmetric gossip optimal
partitioning algorithm (denoted as aOPA hereafter). This
algorithm is based on an asymmetric gossip-type com-
munication protocol. This communication protocol is less
demanding than the symmetric gossip-type communication
protocol since it does not require a bidirectional exchange
of information. Indeed, at each iteration of the algorithm
there is only one camera sending information to one if its
neighbors.

Similarly to the previous sections, we first consider the
unconstrained case.

A. Implementation without physical constraints

With the respect of the OPA and sOPA, the Transmission
iteration and the Extremes’ update are changed as follows
Transmission iteration: For t ∈ N, there is only one

camera transmitting information to one of its neighbors
during the t-th iteration of the aOPA; without loss of
generality we assume that camera i transmits the values
of its extremes ai,`(t) and ai,r(t) to camera i+ 1;

Extremes’ iteration: For h 6= i + 1, camera h left un-
changed its extremes, i.e., ah,`(t + 1) = ah,`(t) and
ah,r(t+1) = ah,r(t). Based on the information received
camera i+1 updates only the extreme ”closer” to camera
i. Specifically ai+1,r(t+1) = ai+1,r(t) while ai+1,`(t+
1) is updated as follows: if ai+1,r(t)vi+ai,`(t)vi+1

vi+vi+1
>

ai,r(t) then

ai+1,`(t+ 1) := ai,r(t) (15)

otherwise

ai+1,`(t+ 1) :=
ai+1,r(t)vi + ai,`(t)vi+1

vi + vi+1
. (16)
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Unfortunately, we were not able to prove so far any type of
convergence of the above algorithm. However we conjecture
that assumptions similar to the ones stated in Theorem V.1
and in Theorem V.2 guarantee also the deterministic and the
almost-surely convergence of the aOPA.

We show the effectiveness of aOPA in Section VII through
some numerical simulation. We conclude by observing
that, if {Ai(0)}Ni=1 satisfies the covering and interlacing
constraints, then the updating rules (15) and (16) imply
ai+1,`(t + 1) ≤ ai,r(t) for all t ≥ 0; in other words the
covering and interlacing constraints are satisfied also by
{Ai(t)}Ni=1 for all t ≥ 0.

B. Implementation with physical constraints
In presence of general physical constraints Di the above

updating rules are modified similarly to the previous two
scenarios.

VII. NUMERICAL EXAMPLES

In this section we provide two examples showing the
effectiveness of the aOPA.

Example VII.1 We consider a set of 50 cameras with the
goal of patrolling the interval L = [−100, 100]. We assume
that the velocities are all equal to the same value v, i.e.,
vi = v, for all i ∈ {1, . . . , N}. We assume that at each
iteration of the aOPA, an edge of E is randomly chosen.

To evaluate the performance of aOPA we consider the
following functional cost

J(t) =
1
N

10∑
i=1

(
ai,`(t)− a∗i−1

)2 + (ai,r(t)− a∗i )
2

where according to (3) we have a∗i = −100 + 4i. The
obtained result is plotted in Figure 2. Observe that J goes
to 0 as t increases showing the effectiveness of the aOPA.

200 400 600 800 1000 1200 1400 1600 1800 20000

0.2
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1
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J/N

Fig. 2. Simulation of the aOPA with N = 50 cameras.

Example VII.2 We consider a set of N = 6 cameras with
the goal of patrolling the interval L = [−100, 100]. Again
we assume that all the velocities vi, i ∈ {1, . . . , N}, take the
same value v and that at each iteration of the aOPA, an edge
of E is randomly chosen. In Figure 3 we plot the behavior of
ai,`, ai,r, i ∈ {1, . . . , N}. The simulation shows how ai+1,`

and ai,r converge to the same value.
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Fig. 3. Behavior of the extremes when aOPA is applied with N = 6
cameras.
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