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Abstract— The paper presents a methodology to account for
battery aging in the energy management strategy for a hybrid
electric vehicle. An optimal control problem is formulated to
minimize fuel consumption as well as battery aging, using
recently developed methods for battery lifetime modeling. The
approach relies on the concept of severity factor map, a tool
used to quantify the aging effects of a battery due to its different
on-vehicle operating conditions. The optimal control problem
is solved using Pontryagin’s Minimum Principle, showing with
simulations the effect of the new control approach compared
to the standard energy management strategies.

I. INTRODUCTION

Energy management of hybrid electric vehicles [1] is a
theme that has seen the contribution of many authors in
recent years, with application of traditional optimal control
theory, in particular Pontryagin’s Minimum Principle, in
order to find the solution that is optimal with respect to
a given cost function. In most cases, the cost function is
the fuel consumption during a driving cycle or the total
emissions of carbon dioxide.

In this paper, instead, the optimization objective is the
minimization of fuel consumption and battery wear (or ag-
ing) during a driving cycle. The overall reduction of battery
life deriving from its usage is treated as an additional cost,
that can be quantified thanks to an appropriate description of
the aging process. The approach leverages recent advances
in understanding and quantifying battery aging, summarized
in Section II. The optimal control problem is formulated in
Section III, and its solution using Pontryagin’s Minimum
Principle (PMP) is discussed in Section IV, highlighting the
differences with respect to the traditional case in which the
fuel consumption is the only minimization objective. The
PMP can be implemented online as an adaptive equiva-
lent consumption minimization strategy (ECMS). Section V
presents simulation results to demonstrate the usefulness of
this approach.

II. BATTERY AGING

It is well known that the charge/discharge cycles un-
dergone by electrochemical batteries tend to decrease their
charge capacity and the amount of power they can deliver
(by increasing the internal resistance). Many research papers
are devoted to quantifying the loss of capacity/power during
a battery’s lifetime and its relation to the actual operating
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conditions [2], [3], [4], [5]. In fact, the battery in a vehi-
cle operates under highly dynamic conditions that do not
match the cycles traditionally used by the manufacturers
to characterize the cycle life in laboratory conditions. A
framework for phenomenological battery life estimation in
electrified vehicles has been proposed in recent years by
researchers at the Ohio State University [6], [7], [8], [9], and
is briefly summarized in this section. It is based on a damage
accumulation model that uses the concept of accumulated
Ah-throughput, i.e. the total amount of electrical charge (in
both charge and discharge) that can flow to and from the
battery before this reaches the end of life. The accumulated
Ah-throughput depends on the actual operating conditions:
in fact, at the cell level, the severity of the charge transfer
depends on the current severity relative to battery size (i.e.,
C-rate Ic), the operating temperature θ, and the depth of
discharge DOD = 1 − SOC [7]. The C-rate is an index
defined as the ratio of the current (in A) to the nominal
charge capacity (in Ah):

Ic =
I [A]

Qbatt [Ah]
. (1)

In electric and hybrid vehicles, the quantity that is con-
sidered as the main indication of battery age is its charge
capacity, and the generally accepted definition of end of life
corresponds to the capacity reaching 80% of the original
value [10].

Usually, battery manufacturers define battery life with
respect to a nominal cycle with these characteristics: Ic = 1,
DOD = 100%, θ = 25◦C. The battery life Γ is defined as
the total Ah-throughtput when the battery is subject to this
nominal load cycle [8]:

Γ =

ˆ EOL

0

|Inom(t)| dt. (2)

where Inom(t) is the nominal current and EOL indicates the
battery end of life. For a given battery, the quantity Γ defined
by (2) is constant.

In this paper, we characterize the aging effect of any cycle
the battery undergoes with respect to the nominal cycle, using
the concept of severity factor, σ. The severity factor of a
given cycle (i.e. a set of values of current, temperature, SOC
and DOD) is defined as

σ (I, θ, SOC) =
γ(I, θ, SOC)

Γ
=

´ EOL
0

|I(t)| dt´ EOL
0

|Inom(t)| dt
(3)

where γ(I, θ, SOC) is the battery duration (Ah-throughput)
corresponding to a given sequence of current, temperature,
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and SOC; and Γ is the total Ah-throughput corresponding to
the nominal cycle. The severity factor represents the relative
aging effect with respect to the nominal cycle, and it is higher
than 1 for conditions which are more severe in terms of aging
(i.e. would bring to shorter life).

In order to compute the effective life depletion from the
charge exchange, the effective Ah-throughput [9] is computed
as

Aheff (t) =

ˆ t

0

σ (I(τ), θ(τ), SOC(τ)) · |I(τ)| dτ (4)

which represents the amount of charge that would need to
be exchanged using the nominal cycle to have the same
aging effect as the actual cycle undergone by the battery.
The condition of end of life is defined as the moment at
which Aheff (t) = Γ. The quantity Aheff (t) is the measure
of the battery aging used in this paper and it is part of the
cost function for our problem formulation in the formAheff

Γ ,
which represents the fraction of life depleted during a driving
cycle.

The concept of severity maps to express the relative aging
effect of a cycle was proposed in [8], [9] specifically for the
case of plug-in hybrid electric vehicles (PHEVs). In those
vehicles, the battery charge capacity is quite large, to allow
significant all-electric range. Thus, the C-rate tends to be
fairly small and therefore its effect on aging is negligible.
An example of a severity factor function depending on SOC
and temperature is shown in [8]. The severity factor map as
postulated in [8] originates from data available in literature
for Li-ion phosphate battery cells. Experimental testing is
currently undergoing at the Ohio State University Center for
Automotive Research, in order to build such maps.

Following a similar approach, the severity factor map of
Figure 1 is postulated in this paper. The map shown is a
function of three parameters, and is represented here as a
surface in the domain (SOC, Ic) parameterized in θ. Since
the focus of this paper is on charge-sustaining HEVs (with
smaller batteries than PHEVs), the effect of C-rate is not
negligible anymore and is actually the most important aging
factor. Another aspect specific to HEVs is the SOC range,
less wide than in plug-in vehicles. The temperature effect
is also important, as temperature above 25 ◦C makes aging
faster. The map shows a region where σ ≈ 1, corresponding
to operating conditions that do not harm the battery more
than the nominal cycle; and a region where, instead, the
severity factor is much higher, indicating conditions that are
very severe in terms of battery aging.

The map is only postulated and experimental data points
are needed to validate it, especially in the regions with
higher severity. However, it is believed to be a reasonable
assumption for the purpose of this paper, which focuses on
the methodology rather than the experimental results.

III. PROBLEM FORMULATION

The objective of the optimal control strategy is to minimize
the overall cost during a trip. Unlike most preceding works
on HEV optimization [1], in which the cost function is the
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Fig. 1: Severity factor map used for the simulations

fuel consumption, in this paper the cost includes both the
fuel consumption and the fraction of battery life depleted:

J =

ˆ tf

0

(1− α) · ṁf (u(t), Preq(t)) +

α · ca
1

Γ
σ (I(u(t)), θ(t), SOC(t)) · |I(u(t))| dt (5)

where ṁf is the fuel consumption, u(t) = Pbatt(t) is the
control variable, Preq(t) the total power demand. ca is a
transformation coefficient of the battery wear, to make it
dimensionally compatible with the fuel consumption, and α
is a weighting factor to adjust the relative importance of
the two cost contributions. α is arbitrary, while ca has the
meaning of a physical parameter. For instance, a meaningful
value for ca is obtained by expressing the two costs in
terms of monetary expense: thus ca is the ratio of the
battery replacement cost to the cost of 1 kg of gasoline.
The power split between the engine and the battery, denoted
as u(t), is the control variable for the problem. It determines
univocally the battery current I(t), given the instantaneous
power request Preq(t). In physical terms, the power split
variable chosen here is the battery power. The total power
demand Preq(t) is an external input and its instantaneous
value is assumed to be known at each time.

The system has two states: the temperature and the state
of charge, both of which affect significantly battery aging. In
this paper, the temperature variation is neglected, assuming
a constant temperature: θ(t) = θ0. The SOC is then the only
dynamic state; its equation, derived using the circuit model
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Fig. 2: Battery circuit model to derive (6)

of Figure 2, is1:

˙SOC (Pbatt, SOC, θ) = − 1

Qbatt
I (Pbatt, SOC, θ) =

−
Voc(SOC) +

√
V 2
oc(SOC)− 4 · Pbatt ·Req (SOC, θ)

2 ·Req (SOC, θ) ·Qbatt
(6)

where Qbatt is the battery charge capacity, Pbatt is the power
at the battery terminals, Voc(SOC) the open-circuit voltage,
and Req (SOC, θ) the equivalent internal resistance.

Adding the temperature as a second state and optimizing
the temperature control may prove interesting in itself and
practically valuable, but it adds complexity to the problem,
resulting in an optimal control problem with two states
(similar to what is proposed in [11]). In this paper, this aspect
is not considered and instead focus is given to the effect of
aging on the energy management. Investigating the effect
of thermal management represents a further enhancement,
which is object of current work.

IV. ANALYTICAL SOLUTION

Pontryagin’s Minimum Principle (PMP) [12], [13] is ap-
plied to the problem in order to find an implementable
optimal solution to the energy management problem [14],
[15]. The principle states that the optimal control u∗(t)
minimizes at each instant the Hamiltonian function defined
as follows

H (u, SOC, θ, Preq, λSOC , λθ) =

(1−α)·ṁf (u, Preq)+α·ca
1

Γ
σ (I, θ, SOC)·|I (u, SOC, θ)|

+ λSOC(t) ˙·SOC(u, SOC, θ), (7)

where the co-state variable λSOC(t) evolves according to the
following dynamic equations:

λ̇SOC(t) = − ∂H

∂SOC
= αca

1

Γ

∂σ (I, θ, SOC)

∂SOC

− λSOC(t)
∂ ˙SOC (u, SOC, θ)

∂SOC
(8)

while the state variable SOC(t) evolves according to (6).
The resulting systems of two differential equations has a

known initial condition (initial SOC), and one final condition
that is imposed (the SOC value desired at the end).

1To simplify the notation, from now on the time-dependence of u(t),
SOC(t), θ(t) is not indicated explicitly when they are used as function
arguments.

A. Case A: aging is not taken into account

If the weight of aging α is set to zero in the cost function
(5) , the standard HEV energy management problem is
found:

H (u, SOC, θ, Preq, λSOC) =

ṁf (u, Preq) + λSOC(t) ˙·SOC(u, SOC, θ), (9)

λ̇SOC(t) = − ∂H

∂SOC
= −λSOC(t)

∂ ˙SOC (u, SOC, θ)

∂SOC
(10)

For a more intuitive representation [15], the Hamiltonian can
be rewritten by introducing the equivalence factor s(t) =
λSOC(t) · Qlhv/Ebatt, which is a rescaling of λSOC(t) to
make it adimensional:

H (u, SOC, θ, Preq, s) =

ṁf (u, Preq) + s(t) · Ebatt
Qlhv

˙·SOC(u, SOC, θ), (11)

where Ebatt is the battery total energy and Qlhv the fuel
lower heating value (i.e. its specific energy). Eq. (11) can
be seen as an equivalent fuel consumption in which the term
s(t)·Ebatt

Qlhv

˙·SOC(u, SOC, θ) represents the fuel consumption
equivalent to the charge/discharge of the battery.

Since the equivalence factor is proportional to the co-state
λSOC(t), its variation is also given by a rescaling of (10):

ṡ(t) = −Qlhv
Ebatt

· λ̇SOC(t) = −s(t)∂
˙SOC (u, SOC, θ)

∂SOC
.

(12)
Thus, the control at each instant is given by

u∗(t) = arg minH (u, SOC, θ, Preq, s) , (13)

with

SOC(t) = SOC(0)− 1

Qbatt

ˆ t

0

I(SOC, θ, u)dτ (14)

and

s(t) = s0 −
ˆ t

0

s(τ)
∂ ˙SOC (u, SOC, θ)

∂SOC
dτ. (15)

While the initial value of state of charge is given, the
initial value s0 of the equivalence factor is not known a-
priori. Instead, it is known the final value of the state, which
should be

SOC(tf ) = SOCtarget. (16)

For a given driving cycle, there exists only one initial
value of the equivalence factor for which the solution that
minimizes (11) at each time is also such that the terminal
condition SOC(tf ) = SOCf is satisfied [15], [16]; this
corresponds to the optimal solution to the problem.

In the case of offline optimization, in order to obtain a
solution that meets both terminal conditions on SOC, a di-
chotic search is used to determine the initial value s(0) = s0
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of the equivalence factor that generates the correct final value
SOC(tf ) [15], [16]; for online implementation, instead, the
equivalence factor is changed dynamically using feedback
of the state of charge. For example, the method proposed in
[17] recognizes the fact that the effect of the initial value s(0)
affects the behavior during the entire optimization horizon;
thus, the overall horizon is divided into smaller sections and
the initial value is modified at the beginning of each section
using SOC feedback, in order to reach the desired SOCtarget
after several sections.

B. Case B: aging is taken into account

In this case the cost of aging is taken into account (i.e.
α 6= 0). The Hamiltonian (7) becomes

H (u, SOC, θ, Preq, λSOC) =

(1− α) · ṁf (u, Preq) + λSOC(t) ˙·SOC (u, SOC, θ)

+ α · ca
1

Γ
σ (I, θ, SOC) · |I (u, SOC, θ)| (17)

and the co-state variation is given by

λ̇SOC(t) = − ∂H

∂SOC
=

−α · ca
1

Γ

∂σ (I, θ, SOC)

∂SOC
−λSOC(t)

∂ ˙SOC (u, SOC, θ)

∂SOC
.

(18)

These equations can be written in terms of equivalent fuel
consumption and equivalence factor:

H (u, SOC, θ, Preq, s) =

(1− α) · ṁf (u, Preq) + s(t) · Ebatt
Qlhv

˙·SOC(u, SOC, θ)

+ α · ca
1

Γ
σ (I, θ, SOC) · |I (u, SOC, θ)| (19)

ṡ(t) = −s(t)∂
˙SOC (u, SOC, θ)

∂SOC
−α Qlhv

Ebatt
ca

1

Γ

∂σ (I, θ, SOC)

∂SOC
(20)

In (19), the three terms represents respectively the cost
of using the engine (fuel consumption), the cost of using
the battery in terms of energy (discharge or charge), and the
cost in terms of battery life depletion. A parallel with the
previous approach described in Section IV-A can be drawn.
The first two terms are the same in both cases, and their sum
is interpreted as an equivalent fuel consumption accounting
for battery charge/discharge, as described in Section IV-
A. However, in this case an additional term is present,
accounting for the aging effect of a given control action:
it can be seen as the fuel consumption equivalent of the
battery life depletion. In addition to this direct influence
of aging on the instantaneous cost, the variation of the
equivalence factor s(t) also depends on the aging effect,
because of the term ∂σ(I,θ,SOC)

∂SOC in (20). In keeping with the
ECMS interpretation, this means that even the cost of battery
energy is affected by the shape of the severity factor surface,
increasing when a SOC variation makes more intense the

TABLE I: Vehicle characteristics

Vehicle mass 1800 kg

Engine max. power 100 kW

Motor max. power 25 kW

Battery energy capacity 1 kWh (3600 kJ)

Battery Ah life (nominal cycle), Γ 20000 Ah

TABLE II: Cost assumptions for two examples. Battery replacement
cost is estimated for a 1-kWh Li-Ion battery, for the final customer.
Cost of gasoline observed in April 2011.

Battery cost Gasoline cost ca [kg]

Europe 2000 C 1.5 C/l = 2.1 C/kg ~950

USA 3000 $ 3.5 $/gal = 1.3 $/kg ~2300

aging effect on the battery. The term ∂σ(I,θ,SOC)
∂SOC is obtained

as the numerical gradient of the surface shown in Figure 1.
The solution is still given by (13) and (14), which remain

the same, while (15) becomes

s(t) = s0 −
ˆ t

0

s(τ)
∂ ˙SOC (u, SOC, θ)

∂SOC
dτ

−
ˆ t

0

α
Qlhv
Ebatt

ca
1

Γ

∂σ (I, θ, SOC)

∂SOC
dτ. (21)

Again, like in the previous case, the behavior of the
solution depends on the initial value of the equivalence
factor, s0. Note that, formally, case B is identical to case
A when α = 0.

V. SIMULATION RESULTS

Simulations are ran using a quasi-static model for vehicle
longitudinal dynamics and powertrain energy flows, imple-
mented using look-up tables for computing fuel consumption
and battery power. The vehicle considered is a mid-size sedan
with a parallel hybrid powertrain, whose characteristics are
listed in Table I.

The cost of battery life is ca = cbatt

cfuel
where cbatt is the

cost of battery replacement, and cfuel is the cost of 1 kg
of fuel. Orders of magnitude for the numerical values are
reported in Table II. Since the focus of this paper is not
on economic evaluation, these values are intended only to
generate an estimate of ca, which is set to 950kg for the
simulations in this paper.

The two approaches described in Sections (IV-A) (no ag-
ing) and (IV-B) (with aging) are compared here, considering
offline optimization of the value s0. The variation of the
equivalence factor s(t) is given by either (15) or (21) in the
two approaches respectively.

The battery depletion is computed using directly (4),
where the severity factor is obtained by interpolation of the
surface in Figure 1, and the derivative ∂σ

∂SOC is computed
taking the numerical gradient of the surface.

The results on a cycle composed by the Artemis urban
and suburban cycle are shown in Figure 3. The cases α = 0,
α = 0.35, and α = 0.5 are shown. The first represents
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Fig. 3: Comparison of the solutions obtained with and without
accounting for the aging effect in the cost function.
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Fig. 4: Variation during the driving cycle of the equivalence factor
given by (20) for the three cases of Figure 3.

the approach A, while the latter are two instances of case
B. A difference in the SOC evolution is evident between
the three cases: in particular, the solutions that account
for battery aging (α > 0) tend to keep the SOC in a
different range, corresponding to less harmful conditions
for the battery, while the case α = 0 tends to use the
battery more aggressively. The equivalence factor changes
significantly between the three cases. In fact, s represents
the weight of the battery power with respect to the rest of
the Hamiltonian, and adding battery aging to the two original
elements of the Hamiltonian function (fuel consumption and
battery power) changes the balance among the terms.

The dynamic variation of s(t), instead, is very small in all
cases, so much that it is invisible in Figure 3. The variation
alone (with respect to the initial value) is shown in Figure 4.
It remains essentially related to the SOC variation, since the
contribution of aging, visible in Figure 5, is 2 or 3 orders of
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Fig. 5: Contribution of aging to the equivalence factor variation of
Figure 4, as given by the second term of (20).
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magnitude smaller than the overall variation.

The fuel consumption and battery expected life are re-
ported in Figure 6, which shows this cycle (denoted as
Urb+Sub) together with other regulatory driving cycles.
From the bar plot, it is clear how accounting for battery
aging has a significant impact on the battery lifetime depleted
during the trip, but this introduces a tradeoff with fuel
consumption, which increases, since the battery is used to
a minor extent. The tradeoff point depends on the value of
the parameter α, which weighs the increase in battery life
and the penalization in fuel consumption.

For a visual justification of the differences in terms of
aging, Figure 7 shows the operating points corresponding
the three cases on the severity factor map: it can be seen
how the strategies that account for battery aging operate in
a narrower range of state of charge and current, to ensure
lower values of the severity factor.
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Fig. 7: Distribution of the operating points on the severity factor
map, for the three cases compared in Figure 3

CONCLUSION

A generic approach to take into account battery aging in
energy management strategies is proposed in this paper, using
recently developed approaches to battery lifetime estimation.
While the results obtained are based a postulated map of
the severity factor, still to be verified experimentally, the
approach has the potentiality to account quantitavely for
battery aging in the context of energy management strategies.
The results will depend strongly on the quality of aging
characterization for the batteries used, and introduce a com-
promise between the performance (fuel consumption) and the

battery lifetime. Ongoing reseach focuses on experimental
validation of the severity factor map, and on the introduction
of thermal dynamics in the optimization problem.
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