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Abstract— In this paper, we revisit the problem of distur-
bance rejection for an integrator chain system with actuator
saturation and input additive disturbances. The goal is to
design a nonlinear state feedback law to globally practically
stabilize the closed-loop system, which means that any closed-
loop system trajectory will converge to any arbitrarily small
closed set where the origin is inside. The numerical examples
will show the effectiveness of the proposed control design.

I. INTRODUCTION AND PRELIMINARY RESULTS

In this paper, we will revisit the problem of global practical
stabilization for an integrator chain system with actuator
saturation and input additive disturbances. The system we
will consider in this paper is

ẋn = xn−1

ẋn−1 = xn−2

...
ẋ2 = x1

ẋ1 = σ(u+ ν),

where u ∈ R is the control input and ν is the disturbance
whose magnitude is bounded, i.e., |ν| < d, d > 0. σ is the
standard saturation function,

σ(u) = sign(u) min(1, |u|). (1)

Stabilization of the integrator chain system with actuator
saturation had been a popular research topic. In [6], it had
been proved that the global stabilization can not be achieved
via linear state feedback law. Hence, in [4], a linear state
feedback law is introduced by applying low gain design
technique to achieve semi-global stabilization, i.e., for any
pre-defined arbitrarily large set, any system trajectory starting
from this set will converge to the origin asymptotically. A
nonlinear state feedback law has been explicitly constructed
to achieve the global stabilization in [7], which means that
any system trajectory will be driven to the origin as time
goes to ∞.

As the problem of stabilization has been solved for the
integrator chain system with actuator saturation, system
robustness has been a naturally arisen problem for the
integrator chain system with not only actuator saturation but
also disturbances. In this paper, we will consider that there
are input additive disturbances in the system and propose a
nonlinear state feedback law to achieve the global practical
stabilization, i.e., any system trajectory will converge to
a pre-defined arbitrarily small closed set where the origin
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resides inside in a finite time. Actually, this problem has been
already addressed by some researchers. In [5], semi-global
practical stabilization problem is solved for (1) through linear
state feedback law. The same system is considered in [3]
and global practical stabilization is achieved. However, the
proposed control law needs to solve an state dependent
Algebraic Riccati equation online and it will add complexity
in the real system implementation. In our recent work [1]
and [2], we propose a parameterized state feedback law for
the system (1) with 2 and 3 dimensions respectively. For any
large disturbance, all system trajectories will converge to a
pre-defined arbitrarily small closed set with the origin inside
through tuning the parameter. In this paper, we will extend
the main result in [1] and [2] to the general case (1). The
proposed control law in this paper is in the following format,

u(t) = − (f1x1(t) + f2x2(t) + σD3
(f3x3(t)+

· · ·+ σDn
(fnxn(t)))) , (2)

f1 =

√
2

2ε
, f2 =

1

ε

√√
2ε(1 + d+D3) + 1

2
,

fi =
1

ε
,Di > 1, ε ∈ (0, 1),

σDi
(u), i ∈ [3, n] is defined as

σDi
(u) = sign(u) min(Di, |u|). (3)

When Di = 1, σDi(u) becomes the standard saturation
function, σ(u). Before showing the preliminary results in
[1] and [2], we will show some notations first.

For a given positive definite matrix P ∈ R2×2 and a
positive scalar ρ, denote

ε(P, x0, ρ) :=

{
x =

[
x1

x2

]
: (x− x0)TP (x− x0) ≤ ρ

}
,

x1 and x2 are states of (1) and x0 ∈ R2 is a constant vector.
Let ε and d̄ are positive numbers, define

L(x0, d̄) :=

{
x =

[
x1

x2

]
:

− d̄− 1 ≤
[
f1 f2

]
(x− x0) ≤ d̄+ 1

}
,

P (ε, d̄) :=

 √√2ε(1+d̄)+1

ε(1+d̄)

√
2

2
√

2
2

√√
2ε(1+d̄)+1

2

 ,
Li(a, b) := {xi : a ≤ xi ≤ b, a < b, i ∈ [1, n]} ,

xi is the state of (1), i ∈ [1, n]. I and 0 denote respectively
the two dimensional identity matrix and the two dimensional
zero vector.
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Lemma 1: [1] Consider the system (1) with n = 2, the
control law (2) becomes

u = −(f1x1 + f2x2).

Choose a ρ∗ such that ε(P (ε, d), 0, ρ∗) is the smallest set
with

L(0, d)
⋂
ε(I, 0, 2ε2(1 + d)2d)

⊂ L(0, d)
⋂
ε(Pε,d, 0, ρ

∗).

Denote Ω(0, d, ε) = L(0, d)
⋂
ε(P (ε, d), 0, ρ∗). Under the

proposed state feedback law, any system trajectory will enter
into Ω(0, d, ε) in a finite time. Also, as ε approaches to 0,
Ω(0, d, ε) shrinks towards the origin.

Fig. 1. ε(P (ε, d), 0, ρ∗),L(0, d) and Ω(0, d, ε)

Lemma 2: [2] Consider the system of (1) with n = 3 and
then the control law becomes

u = −(f1x1 + f2x2 + σD3
(f3x3)).

For any given d, there exists an ε∗3 ∈ (0, 1), D∗3 > 0 and
k∗3 > 1 such that, for any ε ∈ (0, ε∗3) and D3 > D∗3 , all
trajectories of the closed-loop third order system (1) will
enter χ3 in a finite time and remain there thereafter, where

χ3 =

{
x ∈ R3 :

[
x1

x2

]
∈ Ω(0, d+D3, ε),

x3 ∈ L3(−k∗3D3ε, k
∗
3D3ε)

}
.

Obviously, χ3 will shrink to the origin as ε approaches to 0.
The remainder of the paper is organized as follows.

Section II shows the global practical stabilization of the con-
sidered system. Section III will demonstrate the effectiveness
of the proposed control law by numerical examples. The
concluding remark will be drawn in Section IV.

II. MAIN RESULTS

In this section, we will address the global practical sta-
bilization of the system (1) under the control law (2). We
will first consider the fourth order system of (1) and then
extend the result to the general case by using the method of
mathematical induction.

Theorem 1: Consider the system (1) with the control law
(2), for any given d and any given arbitrarily small set
χn ∈ Rn containing the origin inside its interior, there exists
an ε∗n ∈ (0, 1) and D∗i > 0, i ∈ [3, n], such that, for any
ε ∈ (0, ε∗n) and Di > D∗i , all trajectories of the closed-loop
system (1) will enter χn in a finite time and remain there
thereafter, and χn will shrink to the origin as t goes to ∞.
Proof: First, we will consider the case of n = 4. Then the
system (1) becomes

ẋ4 = x3

ẋ3 = x2

ẋ2 = x1

ẋ1 = σ(u+ ν), (4)

and the control law (2) becomes

u = − (f1x1 + f2x2 + σD3
(f3x3 + σD4

(f4x4))) . (5)

For the system (4), we will prove that there exists
k3 > 1 and k∗4 > 1 such that x3 and x4 of (4)
will be bounded in L3(−k3(D3 + D4)ε, k3(D3 + D4)ε)
and L4(−k∗4D4ε, k

∗
4D4ε). By Theorem 1 of [1], we know

that
[
x1

x2

]
will enter ∈ Ω(0, d + D3, ε) in a finite

time, therefore we will assume that
[
x1

x2

]
is already

inside Ω(0, d + D3, ε) in the following analysis. Since
|σD4

(f4x4)| < D4, if x3 >
1
f3

(D3 +D4) = (D3 + D4)ε,
then σD3 (f3x3 + σD4(f4x4)) = D3. By the proof of The-
orem 1 in [2], we can prove that x3 will finally return to
(D3 + D4)ε in a finite time after it is over (D3 + D4)ε.
As x3 = (D3 + D4)ε and x2 > 0, then x3 will deviate
from (D3 +D4)ε toward to ∞. Denote the time x3 starts to
increase from (D3 + D4)ε as t0. Once again, by following
the proof of Theorem 1 in [2], there exists T2 and δ2, which
are functions of D3 and d and can be denoted as

T2 = g2(D3, d) > 0, δ2 = l2(D3, d) > 0,

such that if x3 keeps above (D3 + D4)ε during the time
[t0, t0 + T2], x2 < −δ2ε at the time t > t0 + T2. Since
x2 becomes negative when t ∈ (t0, t0 + T2), x3 will start
to decrease until it reaches to (D3 + D4)ε again. Since[
x1

x2

]
∈ Ω(0, d + D3, ε), there exists k2 > 0 such that

|x2| < k2ε. Because ẋ3 = x2, the maximal increase for
x3 starting from (D3 + D4)ε will be less than T2k2ε.
Symmetrically, we can conclude the same result if x3 <
−(D3 + D4)ε. Select k3 > 1 + T2∗k2

D3+D4
, then we can prove

that x3 ∈ L3(−k3(D3 +D4)ε, k3(D3 +D4)ε).
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Next, we will show that x4 ∈ L4(−k∗4D4ε, k
∗
4D4ε). If

x4 >
D4

f4
= D4ε, σ4(f4x4) = D4. Hence, the control law

(2) becomes

u = − (f1x1 + f2x2 + σD3
(f3x3 +D4)) . (6)

By the state transformation

x̃1 = x1

x̃2 = x2

x̃3 = x3 + D4

f3
,

(7)

the dynamic of x̃1, x̃2 and x̃3 will be

˙̃x3 = x̃2

˙̃x2 = x̃1

˙̃x1 = σ(− (f1x̃1 + f2x̃2 + σD3
(f3x̃3)) + ν). (8)

By Theorem 1 of [2], there exists a k∗3 > 1 such that x̃3 will
enter into the set [−k∗3D3ε, k

∗
3D3ε] in a finite time, which

means that x3 ∈ [(−k∗3D3−D4)ε, (k∗3D3−D4)ε]. So choose
D4 > k∗3D3, then x3 will be negative if it is inside the set
L3((−k∗3D3 −D4)ε, (k∗3D3 −D4)ε). Since ẋ4 = x3, it can
be shown that, as x3 becomes negative, x4 will decrease until
it reaches to D4

f4
= D4ε. As x4 = D4ε and x3 > 0, we know

that x4 will deviate from D4ε toward to ∞ for a period of
time. In this case, the system (4) can be transformed into
(8). Since D4 > k∗3D3 > D3, then (8) becomes

˙̃x3 = x̃2

˙̃x2 = x̃1

˙̃x1 = σ(− (f1x̃1 + f2x̃2 +D3) + ν),

we already know that, withing the time period, T2, x̃2 = x2

will become negative from being positive, and also x̃2 =
x2 < −δ2ε if x̃3 is kept positive, which means that x3 ≥
(−D4 + D3)ε. In the above analysis, we have shown that
x3 ∈ L3(−k3(D3 + D4)ε, k3(D3 + D4)ε). Therefore, the
maximal time for x3 to be negative is

T3 = T2 +
k3(D3 +D4)

δ2
= g3(D3, D4, d) > 0.

T3 is a constant if D3, D4 and d are chosen. Furthermore,
the maximal deviation from D4ε for x4 can be estimated
by T3k3(D3 + D4)ε. Select k∗4 > T3k3(D3 + D4), it can
be proved that the maximal deviation is proportional to ε if
D4, D3 and d are set. And this result holds if x4 < −D4ε.
Hence, x4 will enter into the set L4(−k∗4D4ε, k

∗
4D4ε) in a

finite time. So far, we have proved that, if d is given and D3

and D4 are correctly selected, any trajectory of (4) will enter
into an arbitrarily small close set χ4 with the origin inside
by tuning the parameter ε, where

χ4 =

{
x ∈ R3 :

[
x1

x2

]
∈ Ω(0, d+D3, ε),

x3 ∈ L3(−k3(D3 +D4)ε, k3(D3 +D4)ε),

x4 ∈ L4(−k∗4D4ε, k
∗
4D4ε)

}
.

In the following, we will prove the main result for the
general system (1).

We will use mathematical induction method. Therefore,
we assume that for the following system

ẋm−1 = xm−2

ẋm−2 = xm−3

...
ẋ2 = x1

ẋ1 = σ(u+ ν),m > 4,

with the control

u = − (f1x1(t) + f2x2(t) + σD3
(f3x3(t) + · · ·

+σDm−1
(fm−1xm−1(t)))

)
, (9)

and

ẋm = xm−1

ẋm−1 = xm−2

...
ẋ2 = x1

ẋ1 = σ(u+ ν),m > 4, (10)

with the control

u = − (f1x1(t) + f2x2(t) + σD3
(f3x3(t) + · · ·

+σDm
(fmxm(t)))) , (11)

if d is given and Di, i ∈ [3,m − 1], are correctly selected,
then there exist ki > 1, k∗i > 1, i ∈ [3,m−1] and k∗m−2 > 1
such that any system trajectory of (9) will enter into the set
χm−1,

χm−1 =

{
x ∈ Rm−1 :

[
x1

x2

]
∈ Ω(0, d+D3, ε),

xi ∈ Li(−ki(Di +Di+1)ε, ki(Di +Di+1)ε),

i ∈ [3,m− 2],

xm−1 ∈ Lm−1(−k∗m−1Dm−1ε, k
∗
m−1Dm−1ε)

}
,

and if σi+1(fi+1xi+1+· · ·+Σm−1(fm−1xm−1)) > Di+1 or
σi+1(fi+1xi+1 + · · ·+ σm−1(fm−1xm−1)) < −Di+1, there
exists a closed set in which xi ≤ (−Di+1 + k∗iDi)ε < 0 or
xi ≥ (Di+1 − k∗iDi)ε > 0, and xi will enter into the set in
the time which is less than

Ti = gi(D3, D4, · · · , Di, Di+1, d) > 0, i ∈ [3,m− 2].

Obviously, Ti > Ti−1. Moreover, if Dm > k∗m−1Dm−1,
there exists ki > 1, i ∈ [3,m− 1], k∗m > 1 and km > 1 such
that any system trajectory of (10) will enter into the set χm,

χm =

{
x ∈ Rm :

[
x1

x2

]
∈ Ω(0, d+D3, ε),

xi ∈ Li(−ki(Di +Di+1)ε, ki(Di +Di+1)ε), i ∈ [3,m− 1],

xm ∈ Lm(−k∗mDmε, k
∗
mDmε)} .

If xm > Dmε or xm < −Dmε, xm−1 will be less than
−Dm + k∗m−1Dm−1 from being positive or be greater than

3804



Dm − k∗m−1Dm−1 from being negative within the time,
Tm−1,

Tm−1 = gm−1(D3, D4, · · · , Dm−1, Dm, d).

As ε becomes smaller, χm−1 and χm will shrink to the
origin. Then we will consider the m+1-dimensional system
(1) and it is

ẋm+1 = xm

ẋm = xm−1

...
ẋ2 = x1

ẋ1 = σ(u+ ν), (12)

and the control u is

u = − (f1x1(t) + f2x2(t) + σD3
(f3x3(t) + · · ·

+σDm+1
(fm+1xm+1(t)))

)
. (13)

In the next, we will prove that there exists a km > 1 such
that xm of (12) will enter into the set Lm(−km(Dm +
Dm+1)ε, km(Dm +Dm+1)ε) in a finite time. We will prove
it for the case of xm > (Dm + Dm+1)ε and the case of
xm < −(Dm+Dm+1)ε can be symmetrically proved. Since
|σm+1(fm+1xm+1)| ≤ Dm+1, if xm > (Dm + Dm+1)ε,
then σm(fmxm + σm+1(fm+1xm+1)) = Dm. By the state
transformation

x̃1 = x1

x̃2 = x2

· · ·
x̃m−1 = xm−1 +Dm, (14)

the dynamic of x̃i, i ∈ [1,m− 1] will become

˙̃xm−1 = x̃m−2

˙̃xm−2 = x̃m−3

· · ·
˙̃x2 = x̃1

˙̃x1 = σ(u+ ν),

and the control law is

u = − (f1x̃1(t) + f2x̃2(t) + σD3
(f3x̃3(t) + · · ·

+σDm−1
(fm−1x̃m−1(t)))

)
.

By the assumption, we know that x̃m−1 will enter into
the set [−k∗m−1Dm−1ε, k

∗
m−1Dm−1ε] in a finite time and

remain there as long as xm > (Dm−1 + Dm)ε. Since
Dm > k∗m−1Dm−1, xm−1 will be negative if xm−1 ∈
Lm−1((−k∗m−1Dm−1−Dm)ε, (k∗m−1Dm−1−Dm)ε), which
means that xm will decrease until it reaches to (Dm +
Dm+1)ε. As xm = (Dm + Dm+1)ε and xm−1 > 0, by
the assumption, we have that the maximal time for xm−1

to be less than (−Dm + k∗m−1Dm−1)ε is Tm−1. And then

the maximal deviation for xm from Dm + Dm+1 will be
Tm−1km−1(Dm−1 +Dm)ε. Let

km = 1 +
Tm−1km−1(Dm−1 +Dm)

Dm +Dm+1
,

then it can be proved that xm will enter into the set
Lm(−km(Dm +Dm+1)ε, km(Dm +Dm+1)ε).

In the next, we will show that there exists a
k∗m+1 > 1 such that xm+1 of (12) will enter into
the set Lm+1(−k∗m+1Dm+1ε, k

∗
m+1Dm+1ε) in a finite

time and remain there thereafter. As xm+1 > Dm+1ε,
σm+1(fm+1xm+1) = Dm+1. Then by the assumption, xm
will enter into the set Lm((−k∗mDm −Dm+1)ε, (k∗mDm −
Dm+1)ε) as long as xm+1 > Dm+1ε. Choose Dm+1 >
k∗mDm, then xm will be negative if xm ∈ Lm((−k∗mDm −
Dm+1)ε, (k∗mDm − Dm+1)ε). Since ẋm+1 = xm, xm+1

will decrease until it reaches to Dm+1ε. If xm+1 = Dm+1ε
and xm > 0, xm+1 will increase from Dm+1ε and stop
increasing until xm < 0. we know that the maximal time
for xm−1 entering into the the set where xm−1 < (−Dm +
k∗m−1Dm−1)ε is Tm−1. Then the maximal time Tm for xm
being negative is

Tm = Tm−1 +
k∗m(Dm +Dm+1)

Dm −Dm−1
.

Hence the maximal increase for xm from Dm+1ε will
be km(Dm + Dm+1)Tmε. Choose k∗m+1 > 1 +
k∗m(Dm+Dm+1)Tm

Dm+1
, then xm+1 will enter into the set

Lm+1(−k∗m+1Dm+1ε, k
∗
m+1Dm+1ε). Also, as Di, i ∈

[3,m+ 1] are chosen and d is given, all time Ti, i ∈ [3,m]
will be fixed. So any trajectory will enter into the set χm+1

χm+1 =

{
x ∈ Rm+1 :

[
x1

x2

]
∈ Ω(0, d+D3, ε),

xi ∈ Li(−ki(Di +Di+1)ε, ki(Di +Di+1)ε),

i ∈ [3,m],

xm+1 ∈ Lm+1(−k∗m+1Dm+1ε, k
∗
m+1Dm+1ε)

}
,

and χm+1 will shrink toward to the origin as ε is decrease
to 0.

III. EXAMPLES

We consider the 5-th order system of (1). Let D5 =
10, D4 = 5 and D3 = 2, and choose the distur-
bance, d = 0.1 ∗ sin(t). Set the initial condition as[

0.01 0.01 0.01 0.01 0.01
]T

. Fig.2-4 and Fig.3-5
show the simulation of the states xi, i ∈ [1, 5] and the control
input with ε = 0.001 and ε = 0.0005 respectively. It can be
seen that the states will driven into a smaller state space set
as ε decreases. The first picture in Fig. 3 and Fig. 5 shows
the general picture of the control input. The second picture in
these figures shows the control input at the beginning time
of the simulation. It can be seen that the control input is
beyond the saturation limit and then decrease to be within
the saturation limit very quickly and stay there forever.
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Fig. 2. the state xi, i ∈ [1, 5], ε = 0.001 Fig. 3. the state xi, i ∈ [1, 5], ε = 0.0005
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Fig. 4. the control input u, ε = 0.001.

Fig. 5. the control input u, ε = 0.0005.

IV. CONCLUSIONS

In this paper, global practical stabilization is achieved for
an integrator chain system with actuator saturation and input
additive disturbances. Under the proposed control law, any
system trajectory will be driven into a pre-defined arbitrarily
small closed set with the origin inside in a finite time and
remain there thereafter.
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