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Abstract— In this paper, the unfalsified adaptive control [1] is
reestablished with a new term, weak cost-detectability, replacing
the cost-detectability. The weak cost-detectability implies that a
bounded property of a cost function for the final controller in a
switching algorithm is sufficient for stability of an underlying
adaptive control system, but the converse may not be true.
With the weak cost-detectability instead of the cost-detectability,
more choices of cost functions can be employed in the unfalsified
adaptive control. Some of the choices introduced in this paper
are shown to be greater than the cost functions suggested in
[2] but have the same limit values. This property is achieved
by seeking a better fictitious reference signal for the purpose
of developing greater cost functions while, in [2], a particular
choice of fictitious reference signal is used. An example is
provided where a weakly cost-detectable cost function leads
to faster convergence in the switching algorithm than a cost-
detectable cost function.

I. INTRODUCTION

The unfalsified adaptive control [1] exploits collected
data in a real-time experiment rather than employs any
assumption on a plant and disturbance signals. Based on the
concept of the unfalsified control [3], the unfalsified adaptive
control stabilizes a system with an unknown plant and
unknown disturbance signals using ε-hysteresis algorithm [4]
whenever there exists a feasible controller in a candidate
controller set, provided that a plant-independent cost function
of the switching algorithm is cost-detectable.

A candidate controller set in the unfalsified adaptive con-
trol can contain infinite number of controllers but there is a
restriction, which is called the SCLI assumption [5], imposed
on the candidate controllers, i.e. each candidate controller
has to be causally left invertible and the causal left inverse
has to be incrementally stable. In order to expand the range
of controllers that can be placed in a candidate controller
set, the matrix fraction description method is employed in
[6] and [7]. If candidate controllers can be factored into
incrementally stable factors, then the adaptive control system
is reorganized in a way that a new reference signal is injected
between the factors of the candidate controllers. These new
controllers in the forms of their factors satisfy the SCLI
condition. Further, in [2], the factorization requirements are
removed and the unfalsified adaptive control is reestablished
with no restriction on candidate controllers. The newly-
developed fictitious reference signals exist for any controller
and cost-detectable cost functions are designed using one of
the fictitious reference signals. However, since the fictitious
reference signal used in the cost functions in [2] is a particu-
lar choice among all possible fictitious reference signals, the
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cost functions may not efficiently indicate stability of closed-
loop systems composed of a plant and candidate controllers.

In this paper, based on the unfalsified adaptive control in
[2], all the possible fictitious reference signals are taken into
consideration and the smallest fictitious reference signal in
the truncated L2-norm is sought. This smallest one replaces
the fictitious reference signal in the cost functions in [2],
which makes the cost functions increase faster. Due to the
improved increase of the cost functions, it is expected that
the convergence of the switching algorithm in a finite number
of switches [4] is achieved faster. Fast convergence means
fast stabilization and a shorter transient response. However,
in doing so, two problems arise.

First, the cost functions lose cost-detectability by replacing
the fictitious reference signal chosen in [2] with the smallest
fictitious reference signal in the truncated L2-norm. If the
cost function for the final controller is bounded, the adaptive
control system is stable. But the converse may not be
true. This property is called weak cost-detectability and the
cost-detectability would be recovered if the converse were
guaranteed to be true. Fortunately, weak cost-detectability is
shown to be a sufficient property for the cost functions for
the purpose of stability of the adaptive control system. Thus,
the unfalsified adaptive control is reestablished with the weak
cost-detectability instead of the cost-detectability.

The second problem is that in order to obtain the smallest
fictitious reference signal in the truncated L2-norm, op-
timization problems should be solved. Even with perfect
knowledge of candidate controllers, finding the optimal so-
lutions in real time must be a rough task. In order to resolve
this problem, two remedies are considered, a suboptimal
solution and finding a solution on a discrete-time basis. If
there is a suboptimal solution that is easy to obtain, then
it can be substituted for the smallest fictitious reference
signal in the cost functions, provided that it is greater than
the fictitious reference signal in [2] in the truncated L2-
norm. If solving an optimization problem takes some time
and the computation time is not negligible, the obtained
optimal or suboptimal solution can be contributed later on
top of cost functions with the fictitious reference signal in
[2]. The details are discussed in Section III. Consequently,
the improvement in the unfalsified adaptive control with a
weakly cost-detectable cost function in this paper depends
on how close the suboptimal values of the optimization
problems are to the optimal values and how often and fast
the solutions are obtained.

The paper is organized as follows. In Section II, an adap-
tive switching control system is carefully described and the
unfalsified adaptive control in [2] is summarized. In Section
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III, the unfalsified adaptive control is reestablished with
the newly-defined weak cost-detectability and weakly cost-
detectable cost functions using fictitious reference signals are
introduced. Conclusion follows in Section IV.

II. BACKGROUND OF UNFALSIFIED ADAPTIVE CONTROL

In this section, the main result of the unfalsified adaptive
control in [2] is summarized.

A. Notations and Adaptive Control System Formulation

The norm ‖ · ‖ is the L2-norm and denote by Lm2 the L2

space of m-dimensional functions of time, i.e. Lm2 = {x :
[0,∞) 7→ Rm| ‖x‖ <∞}. Define a truncated version of the
L2-norm

‖x‖t ,

√∫ t

0

xT (τ)x(τ)dτ

for any function of time x and denote the extended space of
Lm2 by Lm2e = {x : [0,∞) 7→ Rm| ‖x‖t <∞,∀t ∈ [0,∞)}.

Definition 1: (Stability) A mapping (or a system) H :
Lmi

2e 7→ Lmo
2e is said to be stable if there exist constants

αh, βh ≥ 0 such that for any given input signal x ∈ Lmi
2e

‖Hx‖t ≤ αh‖x‖t + βh for ∀t ≥ 0.

Otherwise, H is said to be unstable.
Consider an adaptive control system in Fig. 1, which

is a mapping from two system-input signals, i.e. a refer-
ence signal w =

[
qT rT sT

]T ∈ L
(my+mr+mu)
2e and

a disturbance signal d ∈ Lmd
2e , to an observed system-

output signal z =
[
uT yT

]T
. The reference signal w is

known and the disturbance signal d is unknown. The plant
P : Lmu

2e ×Lmd
2e 7→ L

my

2e is an unknown mapping from u and
d to y. When the plant P has a state, its initial condition at
time 0 is also unknown. Then, the input-output relationship
of P can be expressed by

ZP (d) =
{
xz =

[
xu
xy

] ∣∣∣∣xu ∈ Lmu
2e , xy = P (xu, d)

}
whose element is one possible experimental data over a time
interval [0,∞).

A candidate controller set C contains N number of
candidate controllers. For any given C ∈ C, the candidate
controller C : Lmr

2e × L
my

2e 7→ Lmu
2e is a mapping from

controller-input signals , denoted by rC ∈ Lmr
2e and yC ∈

L
my

2e , to a controller-output signal, denoted by uC ∈ Lmu
2e .

Further, denote by zC =
[
yTC rTC uTC

]T
the input and the

output signals of C. If C has a state, we choose one initial
state. Then, the candidate controller C can be expressed by
input-output relationship

ZC =
{
xzC

=
[
xTyC

xTrC
xTuC

]T∣∣∣xyC
∈ L

my

2e , xrC
∈ Lmr

2e , xuC
= C(xrC

, xyC
)
}
.

A switching algorithm selects a candidate controller at
each selecting time from the candidate controller set C and
keeps its controller-output signal delivered to the loop of
the adaptive control system until the next selecting time.

Switching
Algorithm

++

d

yr
P

u

s

Ĉq
++

Fig. 1. An adaptive control system

Denote by Ĉ the sequence of controllers that are chosen
and connected in the loop of the adaptive control system
by the switching algorithm and let Ĉt denote the candidate
controller that is connected in the loop of the adaptive control
system at time t ≥ 0. When a candidate controller C is
selected by the switching algorithm, the input signal of P
is given by the output signal of C as shown in Fig. 2 (a)
until the next selecting time. Thus, the input-output signal of
C is obtained by zC(t) =

[
yC(t)T rC(t)T uC(t)T

]T =[
y(t)T + q(t)T r(t)T u(t)T − s(t)T

]T
for any time t ≥

0 satisfying Ĉt = C.
When C is not connected in the loop of the adaptive

control system, C makes a closed-loop system with a sub-
controller K as shown in Fig. 2 (b). The subcontroller K is
designed to stabilize C in the closed loop. Although K in
Fig. 2 is depicted to use only the output signal of C, actually
K is allowed to use not only the output signal of C but also
every information on C with perfect knowledge of C. If
C is stable itself, K can be given as a zero subcontroller
whose output signal is 0 for ∀t ≥ 0. The role of the
subcontroller is to build a stable mapping, as in Definition 1,
from

[
rT qT + yT

]T
to a signal anywhere in the closed-

loop system of C and K while the candidate controller is not
in the loop of the adaptive control system. Thus, the output
signal of C does not blow out while it is disconnected from
the input signal of P .

B. Unfalsified Adaptive Control

Definition 2: (Fictitious reference signal) Given the can-
didate controller set C in Section II-A, fictitious reference
signals for a candidate controller C ∈ C are defined by

w̃(xzC
, xz) ,

q̃(xzC
, xz)

r̃(xzC
, xz)

s̃(xzC
, xz)

 ,
xyC

− xy
xrC

xu − xuC


for ∀xzC

∈ ZC and ∀xz =
[
xTu xTy

]T ∈ L
(mu+my)
2e .

Denote by w̃(xzC
, xz, t) the evaluated value of the signal

w̃(xzC
, xz) at time t ≥ 0.

For any given C ∈ C, xzC
∈ ZC , and xz ∈ ZP (d),

the fictitious reference signal w̃(xzC
, xz) is a hypothetical

signal that would have exactly reproduced the input-output
signal xzC

=
[
xTyC

xTrC
xTuC

]T
of C and the input-output

signal xz =
[
xTu xTy

]T
of P had the fictitious reference
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Fig. 2. A candidate controller and its subcontroller (a) when the candidate
controller is selected and connected in the adaptive control system (b) when
it is not connected

signal been injected into a fictitious system in Fig. 3, i.e.[
xTq xTr xTs

]T
= w̃(xzC

, xz).
Remark 1: Alternative types of fictitious reference signals

are used in [5], [6], and [7] under various assumptions.
If a controller C ∈ C has one degree of freedom and is

SCLI [5], then there exists xzC
∈ ZC such that a fictitious

reference signal has q̃(xzC
, xz, t) = s̃(xzC

, xz, t) = 0 for
∀xz =

[
xTu xTy

]T ∈ L
(mu+my)
2e and ∀t ≥ 0, which is

the unique fictitious reference signal in [5]. If a controller
C ∈ C has one degree of freedom and can be factored
into incrementally stable factors, then the fictitious reference
signals for C can be represented by one signal, which is the
virtual reference signal in [6].

If a candidate controller C is connected on the
loop of the adaptive control system in Section II-
A at time t ≥ 0, then it is clear that zC(t) =[
y(t)T + q(t)T r(t)T u(t)T − s(t)T

]T
, from which, to-

gether with the definition of the fictitious reference signal, it
follows that

w̃(zC , z, t) =
[
q(t)T r(t)T s(t)T

]T = w(t).

If C is not connected on the loop of the adaptive control sys-
tem, then its corresponding subcontroller K makes a closed-
loop system with C and stabilizes C so that a mapping from[
rT qT + yT

]T
to zC is stable and, hence, a mapping from[

rT qT zT
]T

to w̃(zC , z) is stable. Therefore, a mapping
from

[
wT zT

]T
to w̃(zC , z) is always stable whether or

not the candidate controller is connected in the loop of the
adaptive control system.

The observed signals in the adaptive control system in Sec-
tion II-A and the fictitious reference signals are the same as
the data from experiments on fictitious systems for each C in
Fig. 3 with the fictitious reference signal w̃(zC , z) as an input

++
C

xu
xyxrC

xyC

xuC

++

d

P

xs

xr
xq

Fig. 3. A candidate controller and a corresponding fictitious system

signal. Based on this data, the fictitious systems are assessed
by a mapping V : C × L

(mr+mu+my)
2e × L

(mu+my)
2e 7→ L1

2e

that is called a cost mapping. For any given C ∈ C, xzC
∈

ZC , and xz ∈ ZP (d), the fictitious system (P,C) in Fig. 3
is evaluated by V (C, xzC

, xz). Denote by V (C, xzC
, xz, t)

the evaluated value of V (C, xzC
, xz) at time t ≥ 0. The

cost mapping V is designed to be causal, which means that
V (C, xzC

, xz, t) depends only on C, xzC
(τ), and xz(τ) for

∀τ ∈ [0, t].
Definition 3: (Feasibility) Given the plant P and the dis-

turbance signal d in the adaptive control system in Section
II-A, together with a cost mapping V , a controller C is said
to be a feasible controller if there exist constants αf ≥ 0
such that for any given xzC

∈ ZC and xz ∈ ZP (d)

V (C, xzC
, xz, t) ≤ αf for ∀t ≥ 0.

The adaptive control problem is said to be feasible if the
candidate controller set C contains at least one feasible
controller.

Whether a controller is a feasible controller or not depends
on the plant and the disturbance signal in the experiment
conducted from time 0 to ∞.

Given the observed signal zC and z in the adaptive
control system in Section II-A and a cost mapping V , the
ε-Hysteresis Switching Algorithm [4] is employed.

Algorithm 1: (ε-Hysteresis Switching Algorithm)

Ĉt = arg min
C∈C

{
V (C, zC , z, t)− εδCĈt−

}
where ε > 0 is a constant, δij is the Kronecker’s δ, and
Ĉt− = limτ↑t Ĉτ .

Convergence of the switching algorithm in a finite number
of switches is stated in the following lemma.

Lemma 1: (Convergence)[5] Consider the adaptive con-
trol system in Section II-A, together with a cost mapping
V and Algorithm 1. Suppose that 1) V (C, xzC

, xz, t) is
nondecreasing in time t and 2) the candidate controller set
C contains at least one feasible controller (Definition 3).
Then, the number of switches is finite and V (Cf , zCf

, z, t)
remains bounded as t increases to infinity where Cf is the
final controller in the controller sequence and zCf

is the
input-output signal of Cf .

Definition 4: (Cost-detectability) Given the reference sig-
nal w and the candidate controller set C in the adaptive
control system in Section II-A, together with a cost mapping
V , the pair (V,C) is said to be cost-detectable if, for
every sequence of switched controllers Ĉ with finitely many
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switches and the accordingly observed system-output signal
z, the following statements are equivalent:

1) The function V (Cf , zCf
, z, t) is bounded as t increases

to infinity where Cf is the final controller in the controller
sequence Ĉ and zCf

is the input-output signal of Cf .
2) There exist constants αc, βc ≥ 0 such that

‖z‖t ≤ αc‖w‖t + βc for ∀t ≥ 0.
An example of the cost-detectable cost function is

V0(C, xzC
, xz, t) = max

0≤τ≤t

‖xz‖τ
‖w̃(xzC

, xz)‖τ + ρ
(1)

for ∀t ≥ 0 where ρ is a positive constant. If we use the
cost mapping V0 in (1) in Algorithm 1, the performance of a
candidate controller C is assessed by V0(C, zC , z) which is
calculated using w̃(zC , z). Note that w̃(zC , z) is a particular
selection of the fictitious reference signal for C given z.

The main result of the unfalsified adaptive control in [2]
follows.

Lemma 2: [2] Consider the adaptive control system in
Section II-A, together with a cost mapping V and Algorithm
1. Suppose that 1) V (C, xzC

, xz, t) is nondecreasing in t, 2)
the adaptive control problem is feasible (Definition 3), and 3)
the pair (V,C) is cost-detectable (Definition 4). Then, there
exist constants αu, βu ≥ 0 such that

‖z‖t ≤ αu‖w‖t + βu for ∀t ≥ 0.

III. UNFALSIFIED ADAPTIVE CONTROL WITH WEAK
COST-DETECTABILITY

In this section, the unfalsified adaptive control is reestab-
lished with weak cost-detectability which is newly defined
in the following.

Definition 5: (Weak Cost-detectability) Given the refer-
ence signal w and the candidate controller set C in the
adaptive control system in Section II-A, together with a
cost mapping V , the pair (V,C) is said to be weakly cost-
detectable if, for every sequence of switched controllers Ĉ
with finitely many switches and the accordingly observed
system-output signal z, the statement 1) implies the statement
2) in the following:

1) The function V (Cf , zCf
, z, t) is bounded as t increases

to infinity where Cf is the final controller in the controller
sequence Ĉ and zCf

is the input-output signal of Cf .
2) There exist constants αw, βw ≥ 0 such that

‖z‖t ≤ αw‖w‖t + βw for ∀t ≥ 0.
Clearly, the weak cost-detectability is less restrictive than

the cost-detectability in Definition 4.
The main theorem of the unfalsified adaptive control with

the weak cost-detectability assumption is presented in the
following.

Theorem 1: Consider the adaptive control system in Sec-
tion II-A, together with a cost mapping V and Algorithm 1.
Suppose that 1) V (C, xzC

, xz, t) is nondecreasing in t, 2)
the adaptive control problem is feasible (Definition 3), and
3) the pair (V,C) is weakly cost-detectable (Definition 5).
Then, there exist constants αa, βa ≥ 0 such that

‖z‖t ≤ αa‖w‖t + βa for ∀t ≥ 0.

Proof. Lemma 1 and Definition 5 complete the proof. �
Theorem 1 has a weaker assumption on the cost mapping

than Lemma 2 and, hence, a larger range of cost mappings
can be considered in the unfalsified adaptive control.

Consider a cost mapping V1 defined by

V1(C, xzC
, xz, t) = max

0≤τ≤t

‖xz‖τ
γ(C, xz, τ) + ρ

(2)

for ∀C ∈ C, ∀xzC
∈ ZC , ∀xz ∈ L

(mu+my)
2e , and ∀t ≥ 0

where ρ is a positive constant and

γ(C, xz, t) = inf
x∈ZC

‖w̃(x, xz)‖t (3)

for ∀t ≥ 0 with the fictitious reference signal w̃(x, xz)
defined in Definition 2. Since we only consider causal
candidate controllers, ‖w̃(x, xz)‖t is solely determined by
x(τ) and xz(τ) for ∀τ ∈ [0, t]. Hence, γ(C, xz, t) can be
obtained using the data up to time t.

The cost function for C ∈ C in (2) is always greater than
or at least equal to the cost function for C in (1) since every
possible fictitious reference signal, including w̃(xzC

, xz), is
considered in (3). From the fact that both cost functions for
C have the same limit and the cost function for C in (2)
is greater than or equal to the cost function for C in (1),
it is expected that the switching algorithm in the unfalsified
adaptive control with the cost mapping V1 in (2) converges
faster. Later, Example 1 illustrates this phenomenon.

The optimization problem in (3) can be rewritten as

γ(C, xz, t)2 = inf
xq̃∈L

my
2e ,xr̃∈Lmr

2e

‖xq̃‖2t + ‖xr̃‖2t

+ ‖xu − C(xr̃, xq̃ + xy)‖2t ,

which can be interpreted as a tracking problem (e.g. [8]) or a
model predictive control problem (e.g. [9]). If we have per-
fect knowledge of C, as we usually do, then, fundamentally,
we should be able to obtain γ(C, xz, t) with no problem.
However, mathematically, an optimization problem is not
an easy task depending on the structure of C and, thus, a
suboptimal value can be employed instead of γ(C, xz, t).
In the adaptive control system in Section II-A, one input-
output signal pair of C is observed and the corresponding
fictitious reference signal w̃(zC , z) is obtained from mere
subtraction between observed signals. Hence, we already
have one candidate for a suboptimal value in our hands,
which is the case using the cost mapping V0 in (1).

In the aspect of numerical analysis, γ(C, xz, t) may not
be calculated on a real-time basis in an experiment due to
computation time or may not be obtained continuously in
time. One way to deal with these cases is to consider an
alternative cost mapping V2 defined by

V2(C, xzC
, xz, t)

= max {Va(C, xzC
, xz, t), Vb(C, xzC

, xz, t)}
(4)
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for ∀C ∈ C, ∀xzC
∈ ZC , ∀xz ∈ L

(mu+my)
2e , and ∀t ≥ 0

where

Va(C, xzC
, xz, t) = max

0≤τ≤t

‖xz‖τ
‖w̃(xzC

, xz)‖τ + ρ

Vb(C, xzC
, xz, t) = max

1≤n≤N

‖xz‖Tn

γ(C, xz, Tn) + ρ

for ∀t ≥ 0 with a positive constant ρ and a sequence of time
points {T1, T2, · · · } at which γ(C, xz, t) is computed.

In (4), the cost mapping Va is the same as the cost mapping
V0 in (1) and the cost mapping Vb is the improvement
in the cost mapping given the limited ability to solve the
optimization problem. Thus, the improvement depends on
how close the suboptimal solution is to the optimal solution
and how often and fast the optimization problem is solved.

The two cost mappings V1 in (2) and V2 in (4) are proved
to be weakly cost-detectable in the following theorem.

Theorem 2: Given the reference signal w, the candidate
controller set C, the input-output signal zC of C for ∀C ∈
C, the observed input-output signal z of P in the adaptive
control system in Section II-A, together with cost mappings
V1 in (2) and V2 in (4), the pairs (V1,C) and (V2,C) are
weakly cost-detectable (Definition 5).
Proof. Suppose that there are finite number of switches and
denote the final controller and the final switching time by
Cf and tf <∞, respectively. Also, suppose that there exists
a constant α ≥ 0 such that V1(Cf , zCf

, z, t) ≤ α for ∀t ≥ 0.
Then, from (1) and (2), it is clear that

V0(Cf , zCf
, z, t) ≤ V1(Cf , zCf

, z, t) ≤ α
for ∀t ≥ 0. Since the pair (V0,C) is cost-detectable, it
follows, from Definition 4, that there exist constants αc,
βc ≥ 0 such that

‖z‖t ≤ αc‖w‖t + βc for ∀t ≥ 0.

Therefore, the pair (V1,C) is weakly cost-detectable. Sim-
ilarly, the pair (V2,C) can be shown to be weakly cost-
detectable. �

From Theorem 1 and 2, it can be concluded that the
unfalsified adaptive control with Algorithm 1 and the cost
mapping V1 in (2) or V2 in (4), achieves stability in the
adaptive control system in Section II-A, provided that the
feasibility assumption is satisfied.

Example 1: Suppose that the unknown plant P is de-
scribed by a state-space model

ẋ = x+ u

y = x+ d

with x(0) = 0 and d(t) = 0 for ∀t ≥ 0. The candidate
controller set is given by C = {Ci, i = 1, 2} where

C1 : uC1 = 2(rC1 − yC1)
C2 : uC2 = (1 + rC2)(rC2 − yC2)

and the reference signal is given by

w(t) =
[
q(t) r(t) s(t)

]T
=

{ [
0 2 0

]T for 0 ≤ t < 500[
0 −2 0

]T for t ≥ 500
.

Algorithm 1 is performed with ε = 0.2 and C1 initially
connected in the loop.

When the cost-detectable cost mapping V0 in (1) is em-
ployed in Algorithm 1, the result is shown in Fig. 4. The
controller C1 stabilizes P and the controller C2 acts like
a stabilizing controller until t = 500. After r changes to
−2 at t = 500, the destabilizing property of C2, which
is currently connected in the loop at t = 500, is exposed
and causes a fast increase in the cost function for C2 right
after t = 500. Accordingly, C2 is switched off and stays
disconnected. Apparently, the destabilizing property of C2

is not shown in the cost function for C2 when C2 is not
connected in the loop.

On the other hand, when the weakly cost-detectable cost
mapping V1 in (2) is employed in Algorithm 1, the result
is shown in Fig. 5. For the cost function for C2, instead
of the minimal value γ(C2, z, t) in (3), a suboptimal value
‖w̃(x̄, z)‖t with x̄ =

[
y 0 −y

]T ∈ ZC2 is employed. The
cost functions for C1 and C2 corresponding to V1 shown in
Fig. 5 (b) are greater than the cost functions for C1 and C2

corresponding to V0 shown in Fig. 4 (b). Especially, the cost
function for C2 grows very high relative to the cost function
for C1 even when C2 is not connected in the loop and, hence,
the switching stops early and the switching algorithm keeps
the controller C1 in the loop as shown in Fig. 5 (a). �

Clearly, the weak cost-detectability is less restrictive than
the cost-detectability and, hence, a larger range of cost
mappings can be considered with the weak cost-detectability,
e.g. the cost mapping V1 in (2). What can happen with a
weakly cost-detectable cost function but can not happen with
a cost-detectable cost mapping in the unfalsified adaptive
control is that, based on collected data, the adaptive control
system behaves like a stable system but the final controller
turns out to be a destabilizing controller, which means that
the cost function for the final controller goes to infinity as
time goes to infinity. Example 2 illustrates this situation.
However, this case does not happen if the unfalsified adaptive
control employs Algorithm 1 and the feasibility assumption
is satisfied.

Example 2: Consider the adaptive control system in Ex-
ample 1 with a candidate controller set C = {C2} and a
reference signal w(t) =

[
q(t) r(t) s(t)

]T =
[
0 2 0

]T
for ∀t ≥ 0. Algorithm 1 employs the weakly cost-detectable
cost mapping V1 in (2). Since there is only one candi-
date controller, switching does not occur. In V1, instead
of the minimal value γ(C2, z, t) in (3), a suboptimal value
‖w̃(x̄, z)‖t with x̄ =

[
y 0 −y

]T ∈ ZC2 is employed.
Then, it can be shown that ‖w‖2t = 4t, ‖z‖2t = 18t −

36(1− e−2t) + 45
2 (1− e−4t), and ‖w̃(x̄, z)‖2t = 9(1− e−4t)

for ∀t ≥ 0, from which it follows that ‖z‖t ≤ 3‖w‖t+ 1 for
∀t ≥ 0 but V1(C2, zC2 , z, t)→∞ as t→∞. �

IV. CONCLUSION

The assumptions on cost functions in the unfalsified adap-
tive control are loosened by replacing the cost-detectability
with the weak cost-detectability that is newly-defined in
this paper. The weak cost-detectability means that if a cost

1763



(a)

(b)

Fig. 4. The system behavior with the cost mapping V0 in Example 1 (a)
Controller index i (b) Cost functions for C1 (Solid line) and C2 (Dashed
line).

function for the final controller is bounded, the adaptive
control system is stable but the converse may not be true. The
cost-detectability would be recovered if the converse were
guaranteed to be true. The cost functions introduced in this
paper have the largest possible values by employing the best
fictitious reference signal while, in [2], a particular choice of
fictitious reference signal is employed. The improvement in
the cost functions leads to fast convergence of the switching
algorithm. The best fictitious reference signal is obtained
by solving an optimization problem with perfect knowledge
of candidate controllers. If the optimization problem is
not easy, suboptimal solutions can be employed. Also, the
optimization problem can be solved in a discrete-time basis
instead of a real-time basis.
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