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Abstract— Strobing optimization in a pursuit problem with
dynamic linear objects in discrete time involving mobile sensor
of radar or sonar type is considered. This problem is formally
represented as that of maximizing confidence probability of
the pursuer-target system state. Through recasting the latter
problem into that of stochastic optimal control, a recursive
procedure is obtained that provides an optimal solution.

I. INTRODUCTION

Mobile sensors of radar or sonar type are pervasive in
the technological systems [1], [2], and the latter type is
also found in nature [3]. In many cases these sensors utilize
strobing [4] as the key element for improving the signal-
to-noise ratio in the measuring channel. However, there is
a paucity of theoretical support for the design of optimal
strobing action.

In the present work it is shown that the strobing opti-
mization under Gaussian noise measurement - a standard
assumption in tracking problems [5] - can be recast into
the problem of confidence probability maximization for
Gaussian random vector θ ∼ N (m, γ) observable against an
additive background noise in discrete time. In the simplest
case of scalar random state this problem was first considered
in [6]. Discrete in nature, this problem was reduced in [6] to a
continuous time time-terminal optimal control one. The latter
was accomplished through the use of continuous approxima-
tion and Bellman’s dynamic programming technique, with
optimal control serving as a tool for obtaining a suboptimal
discrete time problem solution. However, no boundedness
guarantee was provided for the deviation of the latter solution
from the true optimal one.

In this paper, a similar problem of a step-by-step max-
imization of confidence probability for a dynamic linear
object in discrete time is considered. The problem is ap-
proached directly, i.e. without continuous approximation and
the use of Bellman’s equation. Using the technique proposed,
a true optimal solution is obtained.

II. MOTIVATING EXAMPLE

Consider a geometrically two-dimensional pursuer-target
system in a Cartesian plane XY depicted in Fig. 1, where
P0 and E0 are the initial positions of a pursuer P and a
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target E, respectively, and P0 is located at the origin of
the system XY . Suppose the pursuer P and the target E

Fig. 1. Example geometry of the pursuer-target system in the case of
constant pursuer velocity.

move in the plane XY with constant vector velocities u
and v, respectively, where u is directed along the X-axis.
Let the pursuer P have a sensor of a radar or a sonar type
with radiation pattern directed along the X-axis as well.
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Fig. 2. Strobe markers and strobe gates in a nested configuration.

Now we note that, as shown in Fig.2, a set of strobe
markers – the values indicating the beginning and the end
of a strobing gate – can be viewed as forming a sequence,
in discrete time t = 0, 1, 2, . . . , of the endpoints of
nested gates, i.e. intervals [xt − lt, xt + lt], located on
the symmetry axis ( X-axis) of a radiation pattern. Here,
x = (xt)t=0,1,2,... is a sequence of the centers of intervals
in the relative coordinate system attached to the pursuer P .

The latter setting gives rise to two problems:
i) how to locate the centers xt of the strobe intervals, and
ii) is it possible to optimize, in some sense, the process of
localization of these centers.
To answer these questions we first note that, given the target
E, the projection of its current position Et, described by a
state-vector θt ∈ R2 in the relative coordinate system, onto
X-axis must belong to the strobe interval [xt − lt, xt + lt],

i.e. xt − lt ≤ λ∗θt ≤ xt + lt, (1)

where λ ∈ R2 is a unit vector directed along the X-axis
and symbol * means transposition.
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Now it is clear how to formulate an optimization problem:
we need to select the centers of nested strobe intervals to
maximize the current confidence probability

P{λ∗θt ∈ [xt − lt, xt + lt]}, t = 0, 1, 2, . . . . (2)

The problem formulated in this example is solved in Section
5 where it is shown that the solution is arrived at on the basis
of a general theoretical result presented in the next section.
Two different cases are resolved: when the target velocity
vector v is known and when it is an unknown random
two-component vector. In both cases it is assumed that the
pursuer velocity vector u is known.

III. STATEMENT OF THE PROBLEM

Let on a probability space (Ω, F, P ) a linear unobservable
vector-process θ � (θt)t=0,1,2,...be given that describes an
evolution of state of the dynamical system with Gaussian
initial condition θ0 ∼ N (m, γ):

θt+1 = a(t)θt + b(t), t = 0, 1, 2, . . . , (3)

where θt ∈ Rn, a(t) ∈ Rn×n, b(t) ∈ Rn, and parameters

m ∈ Rn, γ ∈ Rn×n are given.
Let the observation process ξ � (ξt)t=1,2,... have the

representation

ξt+1 = A(t)θt + B(t)Wt+1, with ξ0 = 0, (4)

where ξt ∈ Rk, A(t) ∈ Rk×n, B(t) ∈ Rk×r, and
W � (Wt)t=1,2,... is a sequence of independent Gaussian
vectors from Rr, independent on θ0, with zero mean and
a unit covariance matrix. Denoting

ϕ(t) � Φ(t, 0) and h(t) �
∑

1≤τ≤t

Φ(t, τ)b(τ − 1), (5)

where Φ(t, s) �
∏

s≤τ<t

a(τ) with Φ(t, t) = E,

permits introducing a solution of equation (3) in the form

θt = ϕ(t)θ0 + h(t). (6)

Here E is an identity matrix.
Then, to evaluate the state vector θt one clearly needs to
evaluate the initial condition θ0.

The latter remark permits formulating the following opti-
mization problem: select a sequence x � (xt)t=0,1,2,... of
the centers of nested intervals (Fig. 2)

[xt+1 − lt+1, xt+1 + lt+1] ⊆ [xt − lt, xt + lt] (7)

to maximize payoff function represented by the confidence
probability

P{λ∗θ0 ∈ [xt − lt, xt + lt]}. (8)

Here, a decreasing sequence of the strobe marker end points
l = (lt)t=0,1,2,..., a constant vector λ, and a value x0 are
assumed to be given.

IV. PROBLEM SOLUTION

Let us now reformulate the optimization problem intro-
duced above as a stochastic control problem according to
the following recursive procedure.

Step 1. Introduce control of the centers x of strobing
intervals. For this purpose note that the condition (7) implies
the inequality

lt+1 − lt ≤ xt+1 − xt ≤ −(lt+1 − lt),

which, in turn, yields

xt+1 = xt + αt, (9)

where α � (αt)t=0,1,2,... is a control sequence satisfying
the restrictions

αt ∈ [−Δlt, Δlt], with Δlt � −(lt+1 − lt). (10)

Step 2. Recast a step-by-step payoff function (8) into the
form

J(α, t) = P{|xt − λ∗θ0| ≤ lt} → sup
αt

,

or
J(α, t) = EE

(
I{|xt − λ∗θ0| ≤ lt}/Fξ

t

)
→ sup

αt

, (11)

where I{·} is an indicator function, E is an expectation
symbol, and Fξ

t = σ {ξs, s ≤ t} is a σ-algebra generated
by observations ξ1, . . . , ξt.

Step 3. ”Dynamisize” random state vector θ0. For this
purpose introduce matrix-functions

A1(t) � A(t)Φ(t, 0) and A0(t) � A(t)h(t), (12)

and set formally θ0 = θ0(t). Then, the evolution of θ0 can
be represented as

θ0(t + 1) = θ0(t), with θ0(0) ∼ N (m, γ), (13)

and, using the notation introduced above, the observation
process takes the form

ξt+1 = A0(t) + A1(t)θ0(t) + B(t)Wt+1, ξ0 = 0. (14)

Now, for the two-component partially observable process
(θ0(t), ξt)t=0,1,2,... generated by (13) and (14), Kalman filter
describing an evolution of

mt = E
(
θ0/Fξ

t

)
, γt = E

[
(θ0 − mt)(θ0 − mt)∗/Fξ

t

]
,

takes the form [7]⎧⎨⎩ mt+1 = mt + γtA
∗
1(t)D

+
t W̃t+1, m0 = m,

γt+1 = γt − γtA
∗
1(t)[DtD

∗
t ]+A1(t)γt, γ0 = γ,

(15)

where

Dt � [B(t)B∗(t) + A1(t)γtA
∗
1(t)]

1/2, (16)

and W̃ � (W̃t)t=1,2,... is an innovation process independent
of Fξ

t represented by a sequence of independent Gaussian
vectors. Here a superscript plus stands for pseudo-inversion.
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Step 4. Rewrite (11) in the integral form. For this purpose
note that the conditional distribution of θ0, which has the
form

P{θ0 ≤ ϑ/Fξ
t } ∼ N (mt, γt),

is normal, with parameters mt, γt. Hence

P{λ∗θ0 ≤ ϑ/Fξ
t } ∼ N (λ∗mt, σ

2
t ), (17)

where σ2
t = λ∗γtλ.

Now, due to (17), the payoff function (11) can be represented
as

J(α, t) = E

{
1√

2πσt

∫ xt+lt

xt−lt

exp
(
− (z − λ∗mt)2

2σ2
t

)
dz

}
(18)

or, putting r = (z − λ∗mt)/σt, as

J(α, t) = E

{
1√
2π

∫ (xt−λ∗mt+lt)/σt

(xt−λ∗mt−lt)/σt

exp
(
−r2

2

)
dr

}
.

(19)
Step 5. Bring (19) to an analytically tractable form. For this
purpose introduce a process

yt � xt − λ∗mt, with y0 = x0 − λ∗m. (20)

Then yt+1 = xt+1 − λ∗mt+1 and hence

yt+1 − yt = (xt+1 − xt) − λ∗(mt+1 − mt) =

= αt − λ∗γtA
∗
1(t)D

+
t W̃t+1.

Finally,
yt+1 = yt + αt − εt+1, (21)

where

αt = xt+1 − xt and εt+1 � λ∗γtA
∗
1(t)D

+
t W̃t+1.

Here εt+1, (t = 0, 1, 2, . . . ), are independent Gaussian
random values with zero mean and a covariance


2
t � λ∗γtA

∗
1(t)(DtD

∗
t )+A1(t)γtλ.

Then, the payoff, in terms of the processes yt and εt+1,
takes the form

J(α, t) =

= EE

{
1√
2π

∫ (yt−1+α−εt+lt)/σt

(yt−1+α−εt−lt)/σt

exp
(
−r2

2

)
dr

/
yt−1 = y

}
.

(22)
Replacing the variable r in (22) by r1/σt and averaging
over εt ∼ N (0, 
2

t−1), we obtain

J(α, t) =

= C

∫ ∞

−∞

∫ y+α−r2+lt

y+α−r2−lt

exp
(
− r2

1

2σ2
t

)
exp

(
− r2

2

2
2
t−1

)
dr1dr2,

(23)
where C � 1/(2πσt
t−1).
Next, introducing the unit step function

χ(θ) �
{

1, θ ≥ 0,
0, θ < 0,

rewrite the integral representation (23) of the payoff function
as
J(α, t) =

= C

∫ ∞

−∞

∫ ∞

−∞
χ(r1−y−α+r2+lt)χ(y+α−r2+lt−r1)×

× exp
{
−1

2

(
r2
1

σ2
t

+
r2
2


2
t−1

)}
dr1dr2. (24)

Thus, (24) reduces the problem of calculating the value of
the payoff function J(α, t) in (11) to simply integrating the
2-dimensional Gaussian density over a 2lt-wide strip shifted
by y with respect to the origin, as illustrated in Fig. 3–5.

Step 6. To complete the task of optimal control calcula-
tion, we note that minimization of the payoff function (24)
must be carried out through compensating shift y. This is
accomplished by setting the control variable αt as

αt =

{ −yt, if |yt| ≤ Δlt = lt − lt+1,

−Δlt sign yt, if |yt| > Δlt.
. (25)

Step 7. Finally, returning back to the original optimization
problem, for given αt, the value xt+1 of the center of the
next strobe interval is calculated by formula (9).

V. EXAMPLE SOLUTION

In this example, consisting of two cases, the target dynam-
ics in the relative coordinate system is described by equation

θt+1 = θt + v − u, (26)

where v and u are 2-dimensional vectors, θ0 ∼ N (m, γ),
and the observation process is described by (4). Here and
later t = 0, 1, 2, . . . . The first case considers known constant
target and pursuer velocities, while the second case assumes
that the target velocity is a random Gaussian vector with
known mean and variance and the pursuer velocity value is
a known function of time.
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Fig. 3. Gaussian integrand in the integral representation of the payoff
function.
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A. Case 1: Constant Velocities

With the target and the pursuer velocities v and u,
respectively, being known constant vectors, it follows from
(26) that

θt = θ0 + (v − u)t, (27)

and hence the inequality (1) can be rewritten as

xt − βt − lt ≤ λ∗θ0 ≤ xt − βt + lt,

where β = λ∗(v − u) is a projection of the target relative
velocity onto the X-axis. Nesting requirement for the left
ends of strobe intervals gives

xt − βt − lt ≤ xt+1 − β(t + 1) − lt+1,

or
xt + β − lt ≤ xt+1 − lt+1. (28)

Analogously, for the right ends of strobe intervals we have
the condition (Fig. 6)

xt+1 + lt+1 ≤ xt + β + lt. (29)

Following the procedure described in the previous section,
introduce, analogously to (9), a control variable αt as

αt � xt+1 − (xt + β)

or
xt+1 = xt + β + αt. (30)

It follows from (28) and (29) that αt satisfies the restriction
(10). As it was mentioned in Section 1, our objective is to
maximize the confidence probability (2).

Note that in contrast to the statement considered in Section
2 involving the time independent stochastic variable θ0 in
(8), the confidence probability (2) contains a time-dependent
variable θt rather then θ0. Therefore, unlike (9), equation
(30) contains a shift constant β arising due to this time
dependence. However, as it will be shown below, this does
not complicate solving the problem posed in the present
example.

Indeed, direct comparison of (27) with (6) yields ϕ(t)
being identity matrix and h(t) = (v − u)t. Therefore, due
to (5), Φ(t, 0) is identity matrix as well. Consequently,

��
�
�
��
�
��




��

���

��

��

��

��
��
�
�
��
�
��

Fig. 4. Non-shifted strip in the 2-dimensional domain of integration of the
payoff function.

according to (12), A0(t) = A(t)(v−u)t and A1(t) = A(t).
Hence, the observation process ξ of (4) reduces to the form
(14). Now, setting formally θ0 = θ0(t) as in Section 3,
the Kalman filter equations (15) and the distribution (17)
become applicable to (θ0(t), ξt)t=0,1,2,... . It follows from
(17) that the conditional distribution of λ∗θt = λ∗θ0 + βt
is given by

P{λ∗θt ≤ ϑ/Fξ
t } ∼ N (λ∗mt + βt, σ2

t ), (31)

i.e. remains normal with parameters λ∗mt + βt and
σ2

t = λ∗γtλ.
Next, representing the payoff function (2) in the form (11)

as

J(α, t) = EE
(
I{|xt − λ∗θt| ≤ lt}/Fξ

t

)
→ sup

αt

, (32)

rewrite it, in view of (31) and (32), in integral form (19) as

J(α, t) = E

{
1√
2π

∫ (xt−λ∗mt−βt+lt)/σt

(xt−λ∗mt−βt−lt)/σt

exp
(
−r2

2

)
dr

}
.

(33)
As in Step 5 of the procedure in the previous section,
introduce the process

yt = xt − λ∗mt − βt, with y0 = x0 − λ∗m, (34)

that due to (30) satisfies (21). Then the representations
(30), (33), and (34) provide the possibility to directly repeat
all calculations at Step 5 of the procedure in the previous
section. This yields an optimal control law of the form (25).

B. Case 2: Gaussian Target Velocity, Varying Pursuer Ve-
locity Magnitude

Assume now that the target vector velocity is Gaussian
with v ∼ N (mv, γv), where mv and γv are given, and
the pursuer velocity is a known vector-function of time ut

directed along the X-axis.
For brevity, introduce the following notation. Denote the

relative velocity of the target with respect to the pursuer by

ν t � v − ut ∼ N (mν(t), γv), with mν � mv − ut,
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Fig. 5. Shifted by y strip in the 2-dimensional domain of integration of
the payoff function.
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Fig. 6. Strobe markers with constant shift β arising due to propagation
of the system state time dependence into the strobing gate.

and introduce a block-vector

ζ t �

⎡⎣ θt

−
ν t

⎤⎦ .

Then

ν t+1 = ν t +
(
ut − ut+1

)
, with ν 0 = v − u0. (35)

Due to (26) and (35), we have

ζ t+1 = aζ t + gt, (36)

with block-matrix a and a block-vector gt

a �

⎡⎣ E | E
− | −
0 | E

⎤⎦ , gt �

⎡⎣ 0̄
−−−−
ut − ut+1

⎤⎦ ,

under ζ 0 ∼ N
⎛⎝⎡⎣ m

−
mν

⎤⎦ ,

⎡⎣ γ | 0
− | −
0 | γv

⎤⎦⎞⎠ ,

where 0 ∈ R2×2 and 0̄ ∈ R2 are a matrix and a vector,
respectively, with zero elements.
In these notations the observation process (4) takes the form

ξt+1 = A1(t)ζ t + B(t)Wt+1, (37)

with a block matrix A1(t) = [A(t)|0]. Further on, Kalman
filter for processes (36), (37) takes the form analogous to
(15), namely{

mt+1 = gt + amt + aγtA
∗
1(t)D

+
t W̃t+1, m0 = m̃,

γt+1 = aγta
∗ − aγtA

∗
1(t)[DtD

∗
t ]+A1(t)γta

∗, γ0 = γ̃,
(38)

where

m̃ =

⎡⎣ m
−−−
mν(0)

⎤⎦ , γ̃ =

⎡⎣ γ | 0
− | −
0 | γv

⎤⎦ ,

and Dt is defined as in (16). Here

mt = E
(
ζ t/Fξ

t

)
=

⎡⎣ mθ(t)
−−−
mν(t)

⎤⎦ ,

γt = E
[
(ζ t−mt)(ζ t−mt)∗/Fξ

t

]
=

⎡⎣ γθ(t) | γθν(t)
−−− | − −−
γνθ(t) | γν(t)

⎤⎦ .

Then, the conditional distributions take the form

P{ζ t ≤ ϑ/Fξ
t } ∼ N (mt, γt),

P{λ∗θt ≤ ϑ/Fξ
t } ∼ N (λ∗mθ(t), σ2

t ), (39)

where σ2
t = λ∗γθ(t)λ.

Due to (39), as in Step 4 of the previous section, rewrite
the payoff function (2) in the form (18), substituting mθ(t)
instead of mt. Then, introducing, as above, a projection βt

of the target relative velocity ν t onto the X-axis, which,
unlike in the Case 1, will be a Gaussian random process, we
have

βt = λ∗ν t ∼ N (
λ∗(mv − ut), λ∗γvλ

)
. (40)

It is obvious that the restrictions (28), (29), and equation
(30), with β = βt and αt satisfying (10), remain valid.
Using the change of variable r = (y − λ∗mθ(t))/σt, the
integral representation (18) of the payoff function could be
rewritten in the form (19) with mθ(t) instead of mt, as in
Step 4 of the procedure in the previous section. Following
Step 6 of that procedure, introduce the process

yt = xt − λ∗mθ(t), with y0 = x0 − λ∗m. (41)

Then, in view of (30),

yt+1 − yt = xt+1 − xt − λ∗[mθ(t + 1) − mθ(t)
]

=

= βt + αt − λ∗[mθ(t + 1) − mθ(t)
]
,

where the difference in square brackets satisfies Kalman
filter (38), which in this case takes the form

mθ(t + 1) − mθ(t) = mν(t) + GtW̃t+1.

Here Gt is a matrix consisting of the first two rows of
matrix

aγtA
∗
1(t)D

+
t of (38). Hence

yt+1 = yt + αt + βt − λ∗mν(t) − λ∗GtW̃t+1, (42)

where λ∗mν(t) − βt = λ∗[mν(t) − ν t

]
.

Now introduce a process

ηt = mν(t) − ν t, with η0 = 0. (43)

It follows from (43) and Kalman filter equations (38) that

ηt+1 − ηt = mν(t + 1) − mν(t) − (ut − ut+1) = QtW̃t+1,
(44)

where Qt is a matrix consisting of the last two rows of
matrix

aγtA
∗
1(t)D

+
t of (38). Therefore,

ηt =
∑
s≤t

Qs−1W̃s ∼ N (
0, γη(t)

)
,

where γη(t) ∈ R2×2 is a covariance matrix
calculated through the elements of the matrices Qs,
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s = 0, 1, 2, . . . , t − 1. Define a scalar process

εt+1 = λ∗(ηt + GtW̃t+1

)
=

= λ∗ ∑
0<s≤t+1 Qs−1W̃s ∼ N (

0, 
2
t

)
,

(45)

where 
2
t is a covariance calculated through the elements

of the matrices Qs, s = 0, 1, 2, . . . , t, and vector λ. Here
we set formally Qt = Gt.

It follows from (42)–(45) that

yt+1 = yt + αt − εt+1.

This equation coincides with (21). Consequently, the calcula-
tions of Step 6 of the procedure in Section 4 remain valid for
the present case as well, and the optimal control law takes
the identical form, i.e. is given by (25).

VI. CONCLUSION

The strobing optimization procedure carried out in the
present work could be potentially extended to encompass
heavy tail and other non-Gaussian but symmetric distribu-
tions, and address tracking with target freely moving in the
2-dimensional and 3-dimensional space. The procedure could
be also extended to the multi-sensor/multi-target setting.
Finally, observation control in the form of the strobe gates
selection could be attempted.
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