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Abstract— This paper outlines a novel method for Coop-
erative Behavioral Control of distributed heterogeneous au-
tonomous systems, emulating the methods in which humans
collaborate. This method allows autonomous systems to col-
laborate on tasks and mission goals, similar to how humans
interact, and is effective and efficient for real–time resource
allocation. The proposed method fundamentally reduces the
required communication bandwidths by significantly decreas-
ing the amount of data necessary for real–time information
exchange between cooperating agents. This is done by creating
a swarm to estimate the beliefs of the collective, and not on
physical states which is usually done by classical approaches.
In sharing core beliefs, a collective of heterogeneous agents can
plan as an individual, inherently and naturally deconflicting the
notion of cost and optimality.

I. INTRODUCTION

In this paper we are looking to explore new techniques to
address the fundamental problems of cooperative behavior
control. Many contemporary techniques are inadequate since
they look to only control the positional states of a collective
of agents. With regards to the increasing levels of autonomy
for mobile robotic systems, there needs to be a more in depth
study of how to utilize the intelligence of these systems for
cooperative purposes.

Currently, there is a “rush to market” for many different
types of autonomous systems. These technologies, finally
reaching maturity, are becoming reliable and very practical to
handle sets of objectives with marginal human interactions.
As these systems become mass produced, further work needs
to be done to find a robust and efficient framework that
effectively promotes collaboration amongst systems contain-
ing mixed levels of autonomy, for mixed initiative mission
sets. There needs to be methods that allow these systems
to extrinsically and intrinsically collaborate and cooperate
on tasks and mission goals, similar to how humans interact.
Further, these methods must be light-weight with respect to
CPU processing requirements (since computer resources for
most systems are fined tuned to their individual basic re-
quirements), yet effective enough to properly and efficiently
coordinate efforts in real–time.

Autonomous systems, artificial or biological, internally
utilize large bandwidths of data to coordinate causal actions
based upon environmental stimuli. This is due to signals
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being transported along hard–wired processing components,
similar to the way nerves route sensory information to the
brain, or wires transmitting data to central processors. When
autonomous entities plan amongst each other, they require
wireless means of communication, such as sound, radio
waves, and stigmergic signals (e.g., hand signals). Wire-
less negotiating processes create limitations in routing data
since all other autonomous entities share the same medium,
creating an environment where communication bands col-
lide, limiting and/or disrupting the communication amongst
neighboring agents. A realistic solution should mimic nature,
which implicitly minimizes the reliance on continual, non–
yielding “wireless” communications.

Historically, many works on Cooperative Behavior Control
(CBC) deal with abstract robotic systems that contain lim-
ited, low fidelity models for analysis and control. Methods
for developing CBC architectures and algorithms historically
draw upon biological models for inspiration. Most research
is guided by ethology, the study of primal animal behaviors,
which were used as a basis for many analysis and design
models. These primal behaviors were split into primarily
three different categories such as swarming [1]–[3] (where
individual behaviors are affected and influenced by commu-
nity behaviors), flocking [4]–[6](a subset of swarming, nav-
igates entities in clusters), and foraging [7], [8] (cooperation
to augment individual perception by that of other members
in their group).

Currently, cooperative research is expanding with the
use of different models and tool sets for analyzing and
developing cooperative behaviors. As an example, Martinez
is using system theory to analyze emergent behaviors in
animal groups and is designing autonomous robotic networks
based on this methodology [9]. Caprari is looking at forming
controls over mixed societies of robots and animals using
control theories [10]. Yanfei and Passino are characteriz-
ing swarm cohesiveness as a stability property and use a
Lyapunov approach to develop conditions under which local
agent actions will lead to cohesive foraging [3]. Dioubate and
Mohamed are looking at artificial immune system that imitate
the natural immune system [11]. Andrews and Passino are
using an evolutionary game-theoretic framework to explain
why sociality may emerge in some environments and for
some agent objectives [12]. There are also works using a
consensus model [13], [14].
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Other studies deal with market based approaches, expand-
ing on the concept of economic models [15]. Stentz et al.
have developed upon market based methods [16], [17], as
well as Viguria et. al. [18], [19]. These approaches typically
require large bandwidths, in addition to a common reference
for cost.

This study address the cooperation problem by developing
a method that learns how other agents in a collective conceive
cost, and to merge all notions of cost to a central concept of
cost. This is done by each agent sharing their plans amongst
the collective, and in turn, each agent in the collective
marginally alters their internal perception to align with those
of the collective.

II. MOTIVATION

It is known that systems perform much more efficiently
when they share the same beliefs. This model is evident in
corporations, social networks, institutions, military forces,
families, and all other forms of cooperative interactions.
An interesting, and a profound point, is that all of the
aforementioned group entities behave (locally) as individuals,
with individual desires, ambitions, and goals. Each individual
is autonomous and intelligent, with vast years of cognitive
experience in simulating judgment calls and their respective
expected outcome. But, how do all of these individuals, with
powerful mental capacities, act and behave similarly in social
networks, as an individual organism? These individuals are
able to cooperate as an organism, when they share the same
beliefs.

We approach CBC with the introduction of an Internal Be-
lief Systems that comprise of the “weights” used to estimate
the effort it would take for agents to perform tasks. This
technique implicitly addresses the fundamental limitations
of communication bandwidths, as well as the deconfliction
problem. Note that goals are comprised of a sequence of
tasks assigned to agents that satisfy an overall objective.

The method proposed in this study inherently minimizes
bandwidth requirements since it models human forms of
communication [20]. we are using the AC3E (Autonomous
Collaborative Coordinative and Cooperative Environment)
construct to develop this methodology. The AC3E frame-
work, as seen in Figure 1, is a higher abstraction then the
contemporary notion of swarming. The swarming introduced
in this study is broader and more complex than the simplistic
spatial alignments of moving entities, but of the swarming
of their Internal Belief Systems.

Humans’ (who have very complex biological cognitive
processes) behavior in masses are also governed by swarming
principles. Humans inherently create plans for performing
goals. The costs of these plans are based upon each individu-
als notion of their reality, which is a function of their percep-
tion and previous experiences. The perception and knowledge
base of experiences comprises of each individuals’ belief
system.

Similar to humans, each mobile agent will determine an
optimal plan for the collective. Their respective “optimal”
plan is a function of the “environmental” states (e.g., terrain,

weather, relative distances between agents, relative distance
between agents and tasks) and their understanding of how
costly it would be for a specific agent to perform a specific
task, subject to those environmental states. By converging the
overall beliefs of each agent, the agents’ notions of optimality
will be equivalent, and hence they will share a singular notion
of global optimality.

With equivalent notions of optimality, there would be no
need for an explicit exchanging in cost (e.g., the market
based approach). The market based methodology assumes
there is a global cost that governs the behaviors of all agents.
There is no guarantee that the internal cost for one agent to
perform a task is equivalent for another. As an example,
say we have an Unmanned Ground Vehicle (UGV) built
by two different companies. Company A designs its UGV’s
utility function to calculate cost in meters, while Company
B uses inches. Now both companies’ UGVs calculate the
cost of a task to traveling between two points as the dis-
tance squared. Therefore, Company B’s UGV will always
exchange the cheapest cost for traveling between two points,
which is obviously incorrect. This means, that by using the
market based approach, agents would trade cost in different
“currency”, where as an example, UGV A uses dollars and
UGV B uses yen. With respect to potential modifications in
cost calculations (due to learning or up–grades), it would be
difficult to assign a fixed “exchange rate”, further reducing
the effectiveness of the market based approach.

Our method concedes that each heterogeneous agent will
internally have different methods and weights for determin-
ing their own individual costs to perform tasks, which are
not shared uniformly across the collective. By implementing
a mechanism to allow agents in the collective to converge
to a centralized belief system, each agent would effectively
share a single “mind”. This means that each agent would
share a singular notion of optimality, and plan equivalently.
In this ideal scenario, no communication would be needed,
effectively reducing the required communication to zero. The
market approach would not be necessary since each agent
would reach the same conclusion. Granted, any variation in
the utility functions used to calculate cost would skew each
individual notion of optimality from the center. These effects
are being analyzed, and will be presented in future works.

III. PROPOSED APPROACH

The primary intent of this study is to frame the premise
for the Swarm Belief hypothesis. To determine its fea-
sibility, basic assumptions are being considered, (1) each
agent knows its own costs, (2) each agent begins with an
approximation of its neighbors’ cost, and (3) each agent
shares the same “currency” (measure of cost). Initially, we
are looking to determine if this method is a solution for the
relaxed requirements (common currency). The results found
in Section VI shows favorable results, demonstrating that this
method is a viable method for cooperative behavior control.
We are extending these findings to address the convergence
of internal beliefs without a shared currency. This will also
be presented in future work.
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Fig. 1. AC3E Construct

Figure 1 is an example of a basic AC3E construct for
collectives of autonomous and semi-autonomous systems
to work together. The AC3E model is a derivative of the
4D/RCS model ([21], [22]), where this construct further
extends and expands cooperative behaviors. There are pri-
marily four phases in autonomous planning and control for an
individual intelligent mobile platform, (i) goal assessment,
(ii) long–range planning, (iii) short–range planning, and (iv)
closed–loop control. Note that goals comprise of a sequence
of tasks.

The CBC methods outlined in this work are implemented
during the goal assignment phase. To put the implementa-
tion into context regarding the overall AC3E paradigm, the
complete cooperative cycle is noted. After the goals have
been selected, the collective refines their individual intent
during the coordination phase of their planning. This is done
to make their actions more efficient to accomplish their
individually assigned goals, and the group’s overall goal.
This allows the collective to locally modify the original
plan due to unobserved environmental influences that affect
the expected state of the collective without having to re-
collaborate. During the execution of the plans (i.e., the short–
range planning phase), the collective will modify their be-
haviors to cooperatively accomplish their individual assigned
short–range tasks.

The belief system governs the behaviors of each au-
tonomous systems through a series of utility functions that
penalizes bad behavior and rewards good behavior. These
series of utility functions are usually a function of the
magnitude of an environmental influence, and the relative
weight assigned to that influence.

For a collective to work efficiently, they need to share a
similar belief system. This is difficult when working with
heterogeneous systems, since they inherently have different
ways of dealing with environmental influences. Systems that
learn based upon previous experiences are also difficult to
coordinate since they will dynamically change the way they
interpret the world, making their beliefs constantly in flux.

Most methods require agents to broadcast their costs
for performing tasks in real–time. This method has many
deficiencies since (i) they need large bandwidths for collab-
orating, (ii) the solutions have a great tendency to fall into a

local minima, (iii) it is difficult to deconflict costs, (iv) most
studies use homogeneous agents, where all agents have the
same a priori belief of costs and same utility functions, or
(V) have exotic marketing trade based approaches rooted in
economic theory, which will be difficult to realize in real–
world constraints.

IV. GENERIC BELIEF STRUCTURE

The principle behind creating a generic belief structure is
the understanding that all utility functions share a common
property: (i) they estimate cost by determining the expected
effort an agent would exert to negotiate an environment,
based upon the type and state of that environment, (ii) the
state of the tasks, and (iii) the state of the team members.
A generic utility function can be described as a product of
weighted sums.

The generic belief structure has the following form:

CA (Tk) =
∑
H

∑
E

∑
i∈Tk

WA
H · HWA

E · EXA
i , (1)

C̄A =
∑
k

CA (Tk) , C̄ =

NA∑
A=1

C̄A, (2)

where, Tk is a specific task; CA (Tk) is the cost of agent
A performing task Tk; C̄A is the total cost of agent A
performing all tasks; C̄ is the sum of component cost for
each agent performing assigned tasks; NA is the number of
agents in the plan; WA

H is the weight of a specific category
of environmental influences (H) relative to other categories
for agent (A); HWA

E is the weight of a specific attribute (E)
of the specific environmental category (H) for agent (A);
EXA

i is the state (i) of the attribute (E) for agent (A).
The capital letters (e.g., EXA

i ) signify the generic classi-
fication designation (e.g., such as WA

H specifying a terrain
type vs. specifying a weather condition) of the weights and
states. Lower case letters signify the specific classification
(i.e., wm is the cost of traversing over mud). The two
weights (i.e., WA

H and HWA
E ) are used to balance the relative

effect each weight has on the classification of environmental
influences. This is necessary to combine costs of mutually
exclusive quantities relative to their respective categories. As
an example, mixing the cost of performing a task may be
based on a different unit of measure than that of the cost of
navigating over a specific terrain. Therefore, the elemental
weight factor (HWA

E ) determines the relative cost of each
element within a category, and the category weights (WA

H )
determines the relative costs between different categories.

A. Belief Convergence

Initially, we consider a basic generic method for emerging
intelligence, where agents will look at each individual plan
and adjust their belief based upon their neighbors’ best
plans. Each individual agent will preform an error back–
propagation gradient–descent of the relative errors amongst
the neighboring agents’ estimated cost relative to their own
individual cost for a specified plan. After a finite number
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of training cycles, all of the agents’ beliefs should converge
close to the weights and costs of the collective.

The weight update has the following form:(
WA
k

)′
= WA

k + ∆WA
k , (3)

where WA
k is a vector, and

WA
K =

⋃{
WA
X ∈ RM ,XWA

E ∈ Rmi
}
. (4)

For each individual weight,

∆WA
k

∆
= −η∇ εA

∣∣
WA

k

,where, εA =
1

2
(E(c)− c̃)2

, (5)

and where η is the rate of learning, εA is the squared
error between the estimated (c̃) and expected (E(c)) costs.
E(c) =

∑Na

a=1 P (ca = c∗) ca, and Na is the number of
agents. In Equation 5, the derivatives are being taken with
respect to WA

K . The influence of a specific weight on the
error is formulated as (Note the lower case w is used to
specify a specific weight):

∇ εa|wa
k

=
∂εa

∂wak
=
∂εa

∂c̃

∂c̃

∂wak
, and (6)

∂εa

∂c̃
= (E(c)− c̃) , (7)

∂c̃

∂wak
=

∑
i 6=k∈WK

∏
j∈

¬
K

wjixi, (8)

where
¬
K is the set of weights that are not contained in the

class of weights to which the derivative is taken. The updated
weight has the following generic form:

(wak)
′

= wak − η (E(c)− c̃)
∑

i 6=k∈WK

∏
j∈

¬
K

wjixi. (9)

B. Example Belief Swarming: Setup and Training

As an example, suppose a Unmanned Ground Vehicle
(UGV) agent is given an assignment of a neighboring
agent performing an Information Surveillance, Reconnais-
sance (ISR) task. The task is influenced by the following
environmental considerations, (i ) the agent transitioning to
the task, (ii ) the condition of the terrain it must maneuver
over, (iii ) weather conditions, (iv) the cost of the agent
performing the given task, and (v) the cost of the agent itself.
The following is an example utility function that describes
an agent’s internal belief1, using Equation 1, is

cai =waβ

waTr (wadxdi + wamsx
ms
i

)︸ ︷︷ ︸
Transition Cost

+waG
(
wamx

m
i + wagx

g
i

)︸ ︷︷ ︸
Ground Cost

+waWw
a
sx

s
i︸ ︷︷ ︸

Weather Cost

+waTwisrx
isr
i︸ ︷︷ ︸

Task Cost

+ wav︸︷︷︸
Platform Cost

 ,

(10)

1Note that the leading category notation for the attribute weights are
removed for brevity.

where cai is the overall cost for agent “a” to perform task
“i” (the ISR task). waβ is the confidence that the agent has of
agent a’s belief in the world. waTr is the scaling weight that
adjusts how costly transitioning to the task is relative to other
categories of environmental influences. This is important
as to proportionalize the effect of one category of costs
over another since some costs may be mutually exclusive
and a judgement has to be made to determine how much
more expensive should one cost be over another. wad is the
weight used to determine the cost of agent ato move from
its current location to the location of the task. xdi is the
distance between the state of agent a and the task. wams is
the weight of transition from the agent’s current location
to the task’s location, at a given speed. waG is the weight
of the influence that ground mobility has relative to other
categories of environmental influences. wam is the weight of
traveling over a muddy terrain. xmi is the state of the mud (the
“muddiness”) the vehicle will negotiate. wag is the weight of
traveling over grass. xgi is the state of the grass. The rest of
the weights and states follow the same logical sequence, with
the exception to wav , which is the bias weight that expresses
the necessity of utilizing a particular agent over another.

V. SIMULATION SETUP

Different case scenarios are used to demonstrate belief
swarming and the overall performance of collaborating on
missions. The Robot Human Access (RHA) user interface
and Collaborative and Cooperative Command and Control
(C4) software, developed to study cooperative systems, are
used to simulate the collaboration amongst neighboring
agents. Each mission will comprise of assigning agents to a
series of tasks, either in groups or individually. It is assumed
that each agent is completely autonomous and needs no
human intervention. Figure 2 shows a sample perceptive
world map. During the Collaborative Goal phase of planning,
a course discretized grid is used for planning. Lower levels of
planning, such as the Long–Range Coordination and Short–
Range Execution phases will provide better approximations
to feedback to the Collaborative Goal planner. Section III
and Figure 1 discusses the planning cycles in more detail.

As an example, in the Long–Range Planning phase the
agents will adjust the weights that govern the mobility
belief. Therefore, the Collaborative Goal will not consider
the optimal mobility cost to reach the task, but will only look
at the “best fit” linear distance between the initial location of
the agent, and the location of the task, and the environmental
states along those points. Figure 2 shows a coarse discretized
map that is used for Collaborative Goal planning. Each cell
in the grid contains environmental information, as shown in
Table I, which outlines the environmental attributes of the
terrain.

The terrain cell attributes are quantified by the percentage
of environmental influences in each cell. As an example, if
cells contain grass, it takes into consideration the amount of
actual grass to the total amount of grass that would be present
if the cell was completely covered by grass. We will be using
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Fig. 2. Sample Perceptive World Model (PWM) Map

TABLE I
SAMPLE OF ATTRIBUTES CORRESPONDING TO FIGURE 2

Cell No 131 132 133 185 186 187
Grass (%) 0 0 39 0 0 0
Mud (%) 0 0 0 0 41 34
Uneven Terrain (%) 8 2 0 0 0 0
Unknown (%) 0 0 0 35 60 0
No Goes (%) 60 23 0 0 0 0
Wind 42 45 37 33 31 34
Wind-Dir -39 -39 -39 -30 -30 -30
Blowing Storm 1 1 1 1 1 1
Rain 0 0 0 0 0 0

this as a basis for determining how difficult it would be to
navigate over terrains of specific attributes. As an example,
if an agent has difficulties driving in mud most likely the
agent can find areas to maneuver around the mud if the entire
region has very little mud. If the region is 80% covered in
mud, then the cost will be reflective of this, since the vehicle
is more likely to get stuck in the mud.

A. Case Scenarios

In this paper, three scenarios were evaluated and only the
the attribute weight of the generic belief utility function was
used. Each scenario was developed and analyzed looking
at the overall collaborative behavior of agents forming a
consensus. The scenarios represent (i) 2 agents assigned
to 3 tasks, (ii) 3 agents assigned to 4 tasks, and (iii) 4
agents assigned 5 tasks. This was done to simulate an
asymmetric assignment situation, where at least one agent
will be assigned to two tasks. The assumptions made are (i)
each agent’s initial belief estimates of their neighbors’ belief
states are within 1–σ (i.e., 10

A sample scenario is represented by Figure 2, where
there are two autonomous heterogeneous agents and three
target location. The PWM has mixed terrain types, and each
agent type has different strengths and weaknesses, meaning

different standard weights for different terrain and weather
types. This study looks at only Unmanned Ground Vehicles
(UGVs), but can be extended to other types of unmanned
vehicles. The collective goal is for all target locations to be
visited by any agent.

In the scenario depicted by Figure 2, if all of the agents are
homogeneous with equivalent Belief Systems and the terrain
is featureless (absence of terrain information, unknowns, no-
goes, etc.), the optimal solution will be

S∗ = {A1 : {T3}, A2 : {T1, T2}}. (11)

This equation states that the optimal solution is Agent1
performing Task3, and Agent2 performing Task1 and Task2,
sequentially.

VI. RESULTS

The results of the different scenarios evaluated are as
expected. The environmental influences affect the notion of
belief for the different agents. All of the agents’ beliefs
converged to a central belief. As can be seen in in Fig-
ure 3(a) through Figure 3(c), as the the individual beliefs
converge close to a singular belief, the agents begin to plan
equivalently. The training cycle ends when all agents error
norms reach close to steady state. The “Belief Error” shown
in the figures are the sum of absolute differences between
estimated and actual values for each agent.

In the scenario depicted by Figure 2, the actual optimal
solution is S∗ = {A1 : {T2, T3}, A2 : {T1}}. Agent1’s
weights were selected to be less sensitive to terrain con-
ditions than than Agent2 weights. Therefore, as in contrast
to the optimal solution found in Equation 11, Agent1 is able
to handle the terrain (i.e., water, unknowns, uneven) better
over time; therefore, it takes over accomplishing task2 and
Task3. Agent2 visits only Task1. This scenario demonstrates
that the agents’ planners are properly interpreting the world.
Both agents form the same conclusion of optimality and plan
as an individual.

Also as expected, the more the degrees of freedom the
search graph contains (the number of nodes opened per child,
which is the combination of agents working on tasks), the
longer it takes for each Internal Belief Systems to converge
to a Central Belief System. This inherently deconflicts the
overlapping of assignments, since all agents will have the
same belief of optimality and therefore will generate the
same plans. If the environment does not change, the agents
could potentially continue to perform other missions without
any communication.

VII. CONCLUSION

In this study, we presented a method for giving a group
of autonomous heterogeneous systems the capability to de-
conflict costs and minimize communication bandwidths by
converging their internal beliefs. By performing a gradient
descent on the respective beliefs of each agent, the team
members were able to learn how their neighbors viewed
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(a) Belief convergence of 2 agents assigned 3 tasks

(b) Belief convergence of 3 agents assigned to 4 tasks

(c) Belief convergence of 4 agents assigned 5 tasks
Fig. 3. Belief Swarming results.

the “world”, and then swarm their respective beliefs in
alignment. In sharing congruent beliefs, dissimilar agent
types can plan as an individual, inherently deconflicting the
notion of cost and optimality, while minimizing the necessity
for further communications.
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