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Abstract— In this paper it is presented a PI control scheme
with guaranteed stability properties for the Permanent Magnet
Synchronous Motor (PMSM). The proposed controller solves
the speed tracking control problem and is of the output–
feedback type, since it is assumed that only stator currents
and the rotor position are available for measurement, i.e. it
is avoided the use of (noisy) speed sensors. The algorithm is
equipped with an adaptation mechanism that compensates a
(constant) unknown load torque. From a theoretical perspective
its more valuable characteristic lies in the fact that Uniform
Global Exponential Stability (UGES) of the desired operation
regime is achieved. The usefulness of the proposed scheme is
evaluated in a numerical setting.

I. INTRODUCTION

Control of electrical machines is a topic that has been
deeply studied both from a practical and from a theoretical
perspective since a long time ago [1], [2]. As a result of
this research, currently it is possible to find in the literature
several control design methodologies under which different
alternatives have been proposed with the purpose to improve
the performance achieved by these devices. On the one hand,
the Field Oriented Control (FOC) is the preferred scheme in
industrial applications, due to its structure based on nested
PI loops [3], while from the control theory community the
proposals that have captured more the attention of practition-
ers are those obtained from a passivity–based perspective [4]
and from a feedback linearization approach [5].

Some efforts have been devoted to reduce the gap between
the theoretical and the practical approaches, namely: In [6] it
has been shown the existence of a downward compatibility
between a passivity–based control for induction motors and
its corresponding FOC. Some PI tuning rules for the FOC
of induction motors have been proposed in [7] exploiting
its passivity–properties, and in [8] a feedback linearization
controller was proposed exploiting the stability properties
of the FOC for induction motors. Nevertheless, the goal of
designing PI controllers with proved stability properties is a
topic that has not been received the attention that it deserves.

In this paper the problem of designing a PI control
scheme for speed tracking with guaranteed stability proper-
ties for the Permanent Magnet Synchronous Motor (PMSM)
is approached. The motivation for dealing with this control
problem comes, first, from the remarkable features exhibited

A. Lorı́a is with CNRS. Address: LSS-SUPELEC, 91192 Gif–sur–Yvette,
France. antonio.loria@lss.supelec.fr
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by this machine concerning dynamic behavior and, second,
to the fact that in spite of the very valuable attempts reported
from the control theory community [9], [10], [11], it is the
author’s belief that the structural advantages of this machine
can be further exploited.

The controller presented in this paper belongs to the class
of output–feedback schemes since it considers that only
the stator currents and the rotor position are available for
measurement. Its structure was inspired by the controller
reported for robot manipulators presented in [12] and from a
stability point of view its more valuable characteristic lies in
the fact that Uniform Global Exponential Stability (UGES) of
the desired operation regime is achieved. The attractiveness
of the contribution from a practical viewpoint appears from
the elimination of (noisy) speed sensors and the necessity
for knowing the load torque, which is viewed as a constant
unknown perturbation that is compensated by including an
adaptation mechanism in the controller. The usefulness of
the proposed scheme is evaluated in a numerical setting.

The rest of the paper is organized as follows: In Section
II, the considered model for the PMSM together with the
control problem formulation is presented. The proposed
output feedback controller is introduced in Section III with
a brief discussion about its structure while the formal proof
of its stability properties is developed in Section IV. The
aforementioned numerical evaluation is carried out in Section
V. Section VI is devoted to state some concluding remarks.

II. PROBLEM FORMULATION

In this section, after presenting the model considered for
the PMSM and identifying the complications that arise for
its control, the problem solved in this paper is presented.

A. PMSM model

Consider the well–known dq model of the non–salient
PMSM given by the system [5]

L
di

dt
= −Rsi− ωΦJρ− ωJLi+ V

Jω̇ = npΦi2 − τL
θ̇ = ω

where i = [id, iq]T and V = [ud, uq]T are the stator currents
and voltages, respectively, θ and ω are the mechanical (po-
sition and speed) variables, τL is the load torque, L = LdI
is the inductance matrix with Ld the proper inductance of
the stator windings, Rs = RI contains the stator resistances,
Φ is the magnetic field, J is the moment of inertia and np
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is number of pole pairs. Here I is the 2× 2 identity matrix
while

J =

[
0 −1
1 0

]
; ρ =

[
1
0

]
It is easy to see that for solving a control problem (without

lost of generality), the system above can be written as

ẋ1 = −x1 + x2x3 + u1 (1)
ẋ2 = −x2 − x1x3 − γx3 + u2 (2)
ẋ3 = σx2 − τL (3)
ẋ4 = x3 (4)

where they have been retained only the terms related with
the magnetic field Φ while the other parameters have been
normalized. In this new representation, it has been defined
x1 = id, x2 = iq , x3 = ω, x4 = θ, u1 = ud and u2 = uq .

Remark. One advantage of system (1-4) that has been
exhaustively exploited for controller design purposes is that
the first three equations are decoupled from the fourth
one, i.e. they are position decoupled. In this case however,
this mechanical variable is explicitly included since it will
be considered as the mechanical measurable variable. This
decision does not complicate the controller structure, since
the mechanical position must be known in order to recover
the implementable stator variables (via the celebrated Park’s
transformation) but, as will be seen later, allows for elimi-
nating the use of speed sensors.

Remark. In spite of the above advantage, one complication
that must be noticed is that the steady state behavior of the
stator current x2 is completely determined by (3), since

x∗2 =
1

σ
[ẋ∗3 + τL] (5)

In this sense, if the load torque is unknown then this value
is also unknown.

B. Output feedback speed tracking control problem

In the context presented in the last section, the control
problem approached in this paper can be formulated as

Consider the system (1-4) with measurable output y =
[x1, x2, x4]T , unmeasurable state x3 and unknown (constant)
perturbation τL. Design a dynamic output feedback control
law

U = Γ1(ξ, y,U)

ξ̇ = Γ2(ξ, y,U)

such that

lim
t→∞

(x3 − x∗3) = 0

with x∗3 a twice differentiable function that states the desired
behavior for the mechanical speed, guaranteeing internal
stability.

III. POSITION FEEDBACK CONTROL

The design of the proposed controller departs from the
ideal structure given by

u1 = x∗1 + ẋ∗1 − x2x∗3 − k′1e1 (6)
u2 = γx∗3 + x1x

∗
3 + x∗2 + ẋ∗2 − k′2e2 (7)

where x∗2 is computed as in (5) and the error terms are
given by ei = xi − x∗i . Unfortunately, this scheme is not
implementable due to the fact that the load torque τL is not
known and therefore several modifications are introduced.

First, instead of expression (5), the set point is defined as

x∗2 :=
1

σ
[ν + ẋ∗3 + v3] (8)

v3 = −kpe4 − kdϑ, kp, kd > 0 (9)

where ν is a parameter to compensate for the unknown load
τL, to be updated online via

ν̇ = −ki(e4 − ϑ) (10)

The rational behind this modification is the PID structure
imposed to the reference value, since the variable ν indeed is
given by the integral of the position error while the variable
v3 clearly exhibits a proportional–derivative structure over
this variable. The limitation for implementing a classical PID
control comes from the fact that the time derivative of the
position error is not measurable. Hence it is necessary to
introduce the dirty-derivative filter

q̇c = −a(qc + be4) (11)
ϑ = qc + be4, a, b > 0 (12)

which completely depends on available information.
Unfortunately, it must be noticed that the time derivative

of the reference value (8) is given by

ẋ∗2 =
1

σ
[ν̇ + ẍ∗3 + v̇3]

=
1

σ
[ ˙̃ν + ẍ∗3 + akdϑ]− 1

σ
(kp + bkd)e3 (13)

where the last term is not available since e3 is unmeasurable.
This problem is avoided by, instead of directly using ẋ∗2 in
the control law, the first three terms in the expression of ẋ∗2,
namely,

1

σ
[ ˙̃ν + ẍ∗3 + akdϑ] =

1

σ
(kp + bkd)e3 + ẋ∗2

are implemented.
Under these conditions, the implementable controller is

given by (6) and

u2 = γx∗3 + x1x
∗
3 + x∗2 + v2 + ρ− k′2e2 (14)

ρ =
1

σ
[ ˙̃ν + ẍ∗3 + akdϑ]

where v2 is an stabilizing term (to be defined later).
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The proposed scheme leads to the error equations for the
stator currents given by

e1 = −k1e1 + x2e3; k1 = k′1 + 1

ė2 = −k2e2 + ∆e3 + v2; k2 = k′2 + 1

∆ =
1

σ
(kp + bkd) + (γ − x1)

On the other hand, the error equation for the rotor speed
can be written as

ẋ3 − ẋ∗3 = σx2 − τL − ẋ∗3 ± σx∗2
which is equivalent to

ė3 = σe2 + ν̃ − kpe4 − kdϑ . (15)

Further, if as in [12] it is defined

z = ν̃ − ki
ε
e4, 0 < ki < ε� 1 (16)

k′p = kp −
ki
ε

(17)

with ν̃ = ν − τL, then

ė3 = σe2 − k′pe4 − kdϑ+ z (18)

while
ż = −ki(e4 − ϑ)− ki

ε
e3 (19)

The overall closed-loop system yields

ė1 = −k1e1 + x2e3 (20)
ė2 = −k2e2 + ∆e3 + v2 (21)
ė3 = σe2 − k′pe4 − kdϑ+ z (22)
ė4 = e3 (23)
ϑ̇ = −aϑ+ be3 (24)

ż = −ki(e4 − ϑ)− ki
ε
e3 (25)

IV. STABILITY ANALYSIS

Consider the following functions which, as the reference
x∗2 are proposed following the steps of [12]

V1 =
1

2
(e21 + e22) (26)

V2 =
1

2

(
e23 + k′pe

2
4 +

kd
b
ϑ2 +

ε

ki
z2
)

(27)

V3 = εe3(e4 − ϑ), ε� 1 (28)

V̇ := V1 + V2 + V3 . (29)

1) Positivity of V : Using the triangle inequality it is clear
that

−1

2
ε
(
e23 + e24 + ϑ2

)
≤ V3 ≤

1

2
ε
(
e23 + e24 + ϑ2

)
(30)

therefore, given any control gains, there always exists a
constant 1 � ε > 0 and for such ε, positive reals α1, α2

such that the function V satisfies

α1|x|2 ≤ V (x) ≤ α2|x|2 ∀x ∈ R6 (31)

where we defined the closed-loop state x =
[e1, e2, e3, e4, ϑ, z]. Hence, V is positive definite and
proper.

2) Negativity of V̇ : The total time derivative of V1 along
the trajectories of the closed-loop system yields

V̇1 = −k1e21 + x2e1e3 − k2e22 + ∆e2e3 + v2e2; (32)

while the derivative of V2 is given by

V̇2 = σe2e3 −
kda

b
ϑ2 − εz(e4 − ϑ) (33)

and the derivative of V3 satisfies

V̇3 = ε(e4 − ϑ)[σe2 − k′pe4 − kdϑ+ z]

+εe3[e3 − (−aϑ+ be3)]

= −εk′pe24 − εkde4ϑ+ ε(e4 − ϑ)z + εe23 + εae3ϑ

−εbe23 + εk′pe4ϑ+ εkdϑ
2 ± kda

2b
ϑ2

+ε(e4 − ϑ)σe2

=
kda

2b
ϑ2 − εb′

2
e23 −

εk′p
2
e24 + ε(e4 − ϑ)(z + σe2)

− 1

2

e3e4
ϑ

>
 εb

′ 0 −εa
0 εk′p ε(k′p − kd)

−εa ε(k′p − kd) kd

(
a

b
− 2ε

)

e3e4
ϑ


where we used b′ := b − 1. The matrix above is positive
semidefinite if

kd

(
a

b
− 2ε

)
≥ (εa)2

εb′
+
ε2(k′p − kd)

2

εk′p

⇐⇒ kda

b
≥ 2kdε+

εa2

b′
+
ε(k′p − kd)

2

k′p

⇐⇒ kda

b
≥ ε

[
2kd +

a2

b
+

(k′p − kd)
2

k′p

]
(34)

which holds for sufficiently small values of ε. Note that this
restricts the choice of ki, by definition, but not the other
control gains.

Next, define the control term

v2 = −εσ(e4 − ϑ) (35)

then, under the condition (34) the total time derivative of V
satisfies

V̇ ≤ −k1e21 + x2e1e3 − k2e22 + ∆e2e3 − εσ(e4 − ϑ)e2

σe2e3 −
kda

b
ϑ2 − εz(e4 − ϑ)

kda

2b
ϑ2 − εb′

2
e23 −

εk′p
2
e24 + ε(e4 − ϑ)(z + σe2)

≤ −k1e21 + x2e1e3 − k2e22 + ∆e2e3

+σe2e3 −
kda

2b
ϑ2 − εb′

2
e23 −

εk′p
2
e24

≤ −1

2

[
k1e

2
1 + k2e

2
2 +

kda

2b
ϑ2 + εb′e23 +

εk′p
2
e24

]

−1

2

e1e2
e3

> k1 x2 0
x2 k2 (∆ + σ)
0 (∆ + σ) εb′

e1e2
e3

 .
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The matrix in the expression above is positive semidefinite
for positive values of all the control gains and if

k1k2 ≥ x22 (36)
k1k2εb

′ ≥ (∆ + σ)2k1 + εb′x22 . (37)

which hold if and only if

k2 ≥
(∆ + σ)2

εb′
+
x22
k1

(38)

condition that holds for sufficiently large constant values of
k1 and k2.

Under the previous conditions we obtain the existence of
a constant α3 > 0 such that, defining y := [e1, e2, e3, e4, ϑ]

V̇ (x) ≤ −α3|y|2 ≤ 0 ∀x ∈ R6 (39)

that is, V is negative semidefinite and the origin of the
system, x = 0, is uniformly globally stable. In particular, the
solutions are uniformly globally bounded and the origin is
Lyapunov stable. These properties together, constitute what
is called uniform global stability –see [16].

3) Uniform global exponential stability: The proof of
exponential stability follows invoking [17, Lemma 3] which
we recall below for sake of completeness.

Lemma 1. Let F : R≥0 × Rn → Rn be continuous. If,
for the system ẋ = F (t, x), there exist constants c1, c2 > 0,
p ∈ [1,∞) such that for all t◦ ∈ R≥0, x◦ ∈ Rn, all solutions
x(·, t◦, x◦) satisfy the:

uniform L∞ bound supt≥t◦ |x(t)| ≤ c1|x◦|, (40)

uniform Lp bound
(

limt→∞
∫ t

t◦
|x(t)|p

)1/p
≤ c2|x◦|

then, the origin of the system ẋ = F (t, x) is uniformly
globally exponentially stable.

To invoke Lemma 1 we need to compute “uniform Lp

bounds” on the system’s trajectories. From (39) we see that

V̇ (x(t)) ≤ −α3|y(t, t◦, x◦)|2 ≤ 0 ∀ t◦ ∈ R≥0, x◦ ∈ R6

which is equivalent to

V (x(t))−V (x(t◦)) ≤ −α3

∫ t

t◦

|y(s, t◦, x◦)|2ds x(t◦) = x◦

hence, in view of the positivity and boundedness of V –see
(31) it is obtained that for all t ≥ t◦ ≥ 0 and all x◦ ∈ R6∫ t

t◦

|y(s, t◦, x◦)|2ds ≤
α2

α3
|x◦|2 . (41)

Furthermore, we also have

α1|x(t)|2 ≤ V (x(t)) ≤ V (x(t◦)) ≤ α2|x◦|2 (42)

hence, for all t ≥ t◦ ≥ 0 and all x◦ ∈ R6,

|x(t)| ≤ c1|x◦| c1 :=

√
α2

α1
(43)

hence (40) holds. It is left to find a uniform L2 bound on
z(t). For this, consider the function

V4 = e3z . (44)

Its total time derivative along the closed-loop trajectories
yields

V̇4 = −z2− z(σe2− kdϑ− k′pe4)− e3(−ki(e4−ϑ)− ki
ε
e3)

(45)
which after the triangle inequality, satisfies

V̇4 ≤ −z2 +
1

2

[
z2 + d1|y|2

]
(46)

for an appropriate choice of d1 � 1. Integrating the above
along the trajectories, from t◦ to t we obtain

2e3(t)z(t)−2e3(t◦)z(t◦) ≤ −
∫ t

t◦

z(s)2ds+

∫ t

t◦

d1|y(s)|2ds .
(47)

Now, although of undefinite sign, the terms on the left hand
side of the inequality are bounded by c1|x◦|2 hence, using
(41) we obtain∫ t

t◦

z(s)2ds ≤
[
d1α2

α3
+ c1

]
|x◦|2 (48)

Uniform global exponential stability follows from (41),
(48) and (43) by invoking Lemma 1.

V. SIMULATION RESULTS

The usefulness of the proposed control scheme
was evaluated through numerical simulations. To
this end the considered model parameters were set
to σ = 0.51 and γ = 0.17 which corresponds to
Φ = 0.17Wb and np = 3 as reported in [13]. The
experiment consisted in imposing a speed reference
that was inspired in the signal profile proposed as a
benchmark by the French Working Group Commande
des Entraı̂nements Electriques that can be consulted
in http://www2.irccyn.ec-nantes.fr/CE2/,
namely: The desired motor speed started in zero, increasing
with a slope of 5.25 rad

s2 until reaching a value of 5.25 rad
s

at t = 1s. This value was kept constant until t = 3s when
its value was increased again, this time with a slope of
3.675 rad

s2 , to achieve a value of 12.6 rad
s during 2 seconds,

to be decreased (with a slope of 6.3 rad
s2 ), remaining at zero

for the rest of the simulation (whose total length was 14
seconds). During all this time the applied load torque was
equal to 1 Nm.

Following field orientation ideas, the desired value for x1
was set to zero while the controller gains were k1 = 4,
k2 = 75, kp = 5, kd = 10, ki = 0.01, a = 50, b = 50 and
ε = 0.02. It was considered that the motor was at standstill
at the beginning of the experiment, i.e. all the motor states
were set to zero, and in a similar way both the initial value
of the derivative filter state qc and the estimated load torque
were considered zero, the latter to include the worst case
regarding the knowledge of the actual load torque.
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The reference speed profile together with the actual speed
response are shown in Figure 1 where, besides the achieve-
ment of the stabilization objective predicted by the theory,
it can be observed the remarkable performance exhibited
by proposed controller. This behavior is verified in a more
detailed way in Figure 2 where the speed error is presented.

0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

t

s
p
e
e
d
 [
ra

d
/s

]

 

 

actual speed

desired speed

Fig. 1. Actual (continuous line) and desired (dashed line) speeds.
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Fig. 2. Speed error.

With the aim to show how the reference values for the
other states of the machine are also reached under the control
scheme, in Figure 3, Figure 4 and Figure 5 the behavior of
the stator currents and the rotor position, respectively, are
depicted comparing their evolution with their corresponding
reference values. Here it must be noticed that in the latter a
small steady state error can be observer, which is due to the
fact that the convergence rate of this variable is lower with
respect to the other states.

In order to illustrate in a complete way the internal closed–
loop stability of the system, in Figure 6 the estimated load
torque is exhibited. In this case, due to the small value of
the estimation gain ki required to assure the stability of the
closed–loop system, the convergence of this variable to its
actual value is quite slow. However, the basic boundedness
requirement was also satisfied.

Finally, in Figure 7 and Figure 8 the behavior of the
derivative filter state and the stator voltages, respectively,
are presented, where it can be verified their boundedness
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Fig. 3. Actual id stator current with a desired value equal to zero.
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Fig. 4. Actual (continuous line) and desired (dashed line) iq stator current.

during the experiment. Concerning the control input u2 some
spikes are present due to the sudden change in the first and
second derivatives of the reference speed. These spikes are
not present if a smooth reference is designed but with the
aim to evaluate the controller under stringer conditions the
discontinuities were not avoided during the experiment.

VI. CONCLUDING REMARKS

An output (position) feedback controller of the PID type
that solves the speed tracking control problem for PMSM
is presented in this paper. The proposed scheme enjoys
the simple structure characteristic of this kind of schemes
but, in contrast to the major part of these algorithms, its
stability properties were formally proved. Specifically, it was
shown that the desired speed behavior is Uniformly Glob-
ally Asymptotically Stable. From a practical perspective,
besides the remarkable dynamic performance achieved by
the closed–loop system, the proposed design avoids the use
of (noisy) speed sensor and does not rely in the knowledge of
the load torque, which is considered as a constant unknown
perturbation. The controller was evaluated via numerical
simulations exhibiting an operation that allows for expecting
very good results in an experimental setting.
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